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Abstract— When designing robust controllers, H-infinity syn-
thesis is a common tool to use. The controllers that result
from these algorithms are typically of very high order, which
complicates implementation. However, if a constraint on the
maximum order of the controller is set, that is lower than
the order of the (augmented) system, the problem becomes
nonconvex and it is relatively hard to solve. These problems
become very complex, even when the order of the system is
low.

The approach used in this work is based on formulating
the constraint on the maximum order of the controller as a
polynomial (or rational) equation. This equality constraint is
added to the optimization problem of minimizing an upper
bound on the H-infinity norm of the closed loop system subject
to linear matrix inequality (LMI) constraints. The problem
is then solved by reformulating it as a partially augmented
Lagrangian problem where the equality constraint is put
into the objective function, but where the LMIs are kept as
constraints.

The proposed method is evaluated together with two well-
known methods from the literature. The results indicate that the
proposed method has comparable performance in most cases.

I. INTRODUCTION

The development of robust control theory emerged during
the 80s and and a contributory factor certainly was the fact
that the robustness of Linear Quadratic Gaussian (LQG)
controllers can be arbitrarily bad as reported in [1]. A few
years later, in [2], an important step in the development
towards a robust control theory was taken, where the concept
of H∞ theory was introduced. The H∞ synthesis, which
is an important tool when solving robust control problems,
was a cumbersome problem to solve until a technique was
presented in [3], which is based on solving two Riccati
equations. Using this method, the robust design tools be-
came much easier to use and gained popularity. Quite soon
thereafter, linear matrix inequalities (LMIs) were found to be
a suitable tool for solving these kinds of problems by using
reformulations of the Riccati equations, see [4].

Typical applications for robust control include systems that
have high requirements for robustness to parameter variations
and for disturbance rejection. The controllers that result from
these algorithms are typically of very high order, which
complicates implementation. However, if a constraint on the
maximum order of the controller is set, that is lower than the
order of the plant, the problem is no longer convex and it is
then relatively hard to solve. These problems become very

complex, even when the order of the system to be controlled
is low. This motivates the development of efficient algorithms
that can solve these kinds of problems.

In [5], Apkarian et. al presented a method for low order
H∞ controller synthesis which relaxes only one of the con-
straints and is thus called a partially augmented Lagrangian
method. In [6] the method is extended to more general robust
control than H∞ controller problems and [7] generalizes
the framework to optimization problems with general matrix
inequality constraints.

In this paper we will describe a method based on what
is done in [5], but where the equality constraint involves
coefficients of a characteristic polynomial, similarly to what
is done in some of our previous work, [8], [9]. One main
difference compared to [8], [9] is that the method in this
paper explicitly tries to minimize the performance measure
γ instead of finding a controller that satisfies a pre-specified
value. In contrast to the approach in [5], our method does not
introduce additional variables when synthesizing dynamic
controllers, i.e. controllers of order one or higher.

Other methods for solving reduced order H∞ problems
that have gained attention recently are e.g. HIFOO and HIN-
FSTRUCT, see [10] and [11] respectively. These methods are
based on nonconvex, nonsmooth approaches for minimizing
the H∞ norm of a closed loop system that do not involve
any LMIs. The advantage of these methods is that they in
general reduce the number of variables of the problem, while
they on the other hand introduce other difficulties due to the
nonsmooth formulation of the problem.

Denote with Sn the set of real symmetric n× n matrices
and Rm×n is the set of real m × n matrices. The notation
A � 0 (A � 0) and A ≺ 0 (A � 0) means A is
a positive (semi)definite matrix and negative (semi)definite
matrix, respectively.

II. PRELIMINARIES

We begin by describing a linear system, G, with state
vector, x ∈ Rnx . The input vector contains the disturbance
signal, w ∈ Rnw , and the control signal, u ∈ Rnu . The
output vector contains the measurement, y ∈ Rny , and the
performance measure, z ∈ Rnz . In terms of its system
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matrices, we can represent the linear system as

G :

 ẋ
z
y

 =

 A B1 B2

C1 D11 D12

C2 D21 D22

 x
w
u

 , (1)

where D22 is assumed to be zero, i.e., the system is strictly
proper from u to y. If this is not the case, we can find a
controller K̃ for the system where D22 is set to zero, and then
construct the controller as K = K̃(I + D22K̃)−1. Hence,
there is no loss of generality in making this assumption. For
simplicity, it is also assumed that the whole system is on
minimal form, i.e., it is both observable and controllable.
However, in order to find a controller, it is enough to
assume detectability and stabilizability (non observable and
non controllable modes are stable).

The linear controller is denoted K. It takes the system
measurement, y, as input and the output vector is the control
signal, u. The system matrices for the controller are defined
by the equation

K :

(
ẋK
u

)
=

(
KA KB

KC KD

)(
xK
y

)
, (2)

where xK ∈ Rnk is the state vector of the controller.
Lemma 1 (H∞ controllers for continuous plants): The

problem of finding a linear controller such that the closed
loop system Gc is stable and such that ‖Gc‖∞ < γ, is
solvable if and only if there exist positive definite matrices
X,Y ∈ Snx , which satisfy(
NX 0
0 I

)TXA+ATX XB1 CT1
BT1 X −γI DT

11

C1 D11 −γI

(NX 0
0 I

)
≺0 (3a)

(
NY 0
0 I

)TAY + Y AT Y CT1 B1

C1Y −γI D11

BT1 DT
11 −γI

(NY 0
0 I

)
≺0 (3b)

(
X I
I Y

)
�0 (3c)

rank(XY −I)≤nk.
(3d)

where NX and NY denote any bases of the null-spaces of(
C2 D21

)
and

(
BT

2 DT
12

)
respectively.

Proof: See [4].
It could be desirable to replace the rank constraint in (3d)
with a smooth function in order to be able to apply gradient
methods for optimization. To do this, the following lemma
is used.

Lemma 2: Assume that the inequality(
X I
I Y

)
� 0 (4)

holds. Let

det(λI−(I −XY )) =

nx∑
i=0

ci(X,Y )λi =

= λnx + cnx−1(X,Y )λnx−1 + . . .

+ c1(X,Y )λ+ c0(X,Y ) (5)

be the characteristic polynomial of (I − XY ), where the
functions ci(X,Y ) are its coefficients. Then the following
statements are equivalent if nk < nx:

1) rank(XY − I) ≤ nk
2) cnx−nk−1(X,Y ) = 0

Additionally, all coefficients are non-negative, i.e.

ci(X,Y ) ≥ 0, ∀i. (6)
Proof: See [12].

How to compute ci(X,Y ) and their derivatives is explained
in [12] where also additional properties of the coefficients
are shown.

III. PROBLEM FORMULATION

The problem we wish to solve is this paper is to minimize
γ subject to the constraints in (3). Formally this can be stated
as the following optimization problem.

minimize γ

subject to cnx−nk−1(X,Y ) = 0

(γ,X, Y ) ∈ X
(7)

where X is a convex set defined by the three LMIs
in (3a)–(3c). We have noticed that scaling the equal-
ity constraint function in (7) by the next coefficient in
the characteristic polynomial in (5) makes it numerically
sounder, i.e., we replace cnx−nk−1(X,Y ) by ĉ(X,Y ) =
cnx−nk−1(X,Y )/cnx−nk

(X,Y ). This results in the follow-
ing problem.

minimize γ

subject to ĉ(X,Y ) = 0

(γ,X, Y ) ∈ X
(8)

This problem can be solved by using the partially augmented
Lagrangian algorithm, see e.g. [5], where the equality con-
straint is relaxed and added to the objective function in the
following way.

minimize γ + λĉ(X,Y ) +
µ

2
ĉ2(X,Y )

subject to (γ,X, Y ) ∈ X
(9)

where λ is a Lagrangian multiplier and µ is a penalty
multiplier. The word “partially” refers to the fact that only
the equality constraint is used in the augmentation while the
LMIs are kept as they are in order to keep the structure
of the problem. The solution to the original problem (8)
is obtained by iteratively solving an approximation of (9)
for a sequence of increasing values of µ. More details on
augmented Lagrangian methods can be found in e.g. the
books by Bertsekas, [13], [14] and Nocedal and Wright, [15].

IV. REFORMULATING THE PROBLEM

To simplify the notation, let us first define the half-
vectorization operator.
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Definition 1 (Half-vectorization): Let

X =


x11 x12 . . . x1n

x21 x22
...

...
. . .

xn1 xn2 . . . xnn

 .

Then

vech(X) = (x11 x21 . . . xn1 x22 . . . xn2 x33 . . . xnn)T ,

i.e., vech stacks the columns of X from the principal diag-
onal downwards in a column vector. See [16] for properties
and details.
Next, let us do a variable substitution as follows. Let

x =
(

vech(X)T , vech(Y )T , γ
)T
.

By choosing b as the last unit vector such that γ = bTx, the
optimization problem (9) can be written as

minimize
x

Φc(x, λ, µ)

subject to x ∈ X
(10)

where
Φc(x, λ, µ) = bTx+ λĉ(x) +

µ

2
ĉ2(x).

This is a nonconvex problem, since the function ĉ(x) =
cnx−nk−1(x)/cnx−nk

(x) is nonconvex. However X is a
convex set which makes the problem somewhat less difficult
to solve than a general nonconvex problem.

V. CALCULATING THE SEARCH DIRECTION

The next step is to approximate Φc(x + p, λ, µ) by a
quadratic function related to the first three terms in the Taylor
series expansion around the point x. Similarly to what is done
in regular Newton methods, we intend to find a step direction
p that minimizes this second order model, but the difference
is that we also require that x+p ∈ X, i.e. that the next point
also lies in the feasible set. This problem can be formulated
as

argmin
p

∇xΦc(x, λ, µ)T p+
1

2
pTH(x, λ, µ)p

subject to x+ p ∈ X
(11)

which is a conic programming problem that can be solved
efficiently using e.g. Yalmip, [17] with SDPT3, [18]. The
symmetric matrix H(x, λ, µ, δ) is a positive definite approx-
imation of the Hessian of Φc(x, λ, µ). We will come back
to how this approximation is calculated later.

A. Calculating the derivatives

In order to solve (11), we need to calculate the gradient
and Hessian of Φc. Differentiating Φc(x, λ, µ) with respect
to x yields

∇xΦc(x, λ, µ) = b+ λ∇xĉ(x) + µĉ(x)∇xĉ(x)

∇xxΦc(x, λ, µ) =
(
λ+ µĉ(x)

)
∇2
xxĉ(x) + µ∇xĉ(x)∇Tx ĉ(x)

with

∇ĉ =
1

cnx−nk

∇cnx−nk−1 −
cnx−nk−1

c2nx−nk

∇cnx−nk

∇2ĉ =
1

cnx−nk

∇2cnx−nk−1 −
cnx−nk−1

c2nx−nk

∇2cnx−nk

+
2cnx−nk−1

c3nx−nk

(∇cnx−nk
∇T cnx−nk

)

− 1

c2nx−nk

(∇cnx−nk−1∇T cnx−nk

+∇cnx−nk
∇T cnx−nk−1)

where we have omitted the dependence on x to simplify
notation. Since the constraint function ĉ(x) is nonconvex,
the Hessian ∇2

xxĉ(x) is not always positive definite which
in turn might lead to that H(x, λ, µ) = ∇2

xxΦc(x, λ, µ) is not
necessarily positive definite, which has to be dealt with. Two
common ways are to either use Newton methods in which the
Hessian is convexified or to use Trust-region methods where
the nonconvexity is dealt with by optimizing over a limited
region in each iteration. The authors of [5] advice against
using Trust-region methods since the complexity of such a
method is too large in this case. Therefore, our choice is to
convexify the Hessian ∇2

xxΦc(x, λ, µ) as will be explained
next.

B. Hessian modification

We have chosen to calculate the exact Hessian
∇2
xxΦc(x, λ, µ), and then convexifying it using a modified

indefinite symmetric factorization as described in [19]. The
procedure is as follows. First calculate the indefinite symmet-
ric factorization ∇2

xxΦc = PTLDLTP , where L is lower
triangular, P is a permutation matrix and D is a block
diagonal matrix with block sizes of 1× 1 or 2× 2. Then we
construct a modification matrix F such that L(D+F )LT is
sufficiently positive definite. In order to calculate this mod-
ification matrix, first compute the eigenvalue factorization

D = QD̄QT . (12)

Then calculate the modification matrix

F = QEQT ,

where the diagonal matrix E is defined by

Eii =

{
0, if D̄ii ≥ δ,
δ − D̄ii, if D̄ii < δ,

i = 1, 2, . . . (13)

The matrix F is now the minimal matrix in Frobenius norm
such that D+F � δI . Note that since D is tridiagonal, calcu-
lating the eigenvalue factorization in (12) is computationally
cheap. The parameter δ is chosen as 10−4‖∇2

xxΦ‖∞, where
the matrix norm ‖A‖∞ denotes the largest row sum of A.

Now we are ready to outline the suggested algorithm for
H∞ synthesis.
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VI. AN OUTLINE OF THE ALGORITHM

The algorithm can be outlined as follows.
1) Initial phase.

a) Find a starting point by solving the convex SDP

minimize
x

γ + trace(X + Y )

subject to (X,Y, γ) ∈ X
(14)

and denote the solution (X(0), Y (0)). The ob-
jective function in (14) is a combination of
two objectives. The first objective is that the
performance measure γ should be low and the
second is that the equality constraint ĉ(X,Y ) = 0
should be approximately satisfied. Minimizing
trace(X + Y ) is a heuristic for minimizing the
rank of I−XY that is used in e.g. [20], [21] and
[22].

b) Set k := 0. Choose starting values for λ(0) and
µ(0), the parameters ρ > 1 and 0 < ρ0 < 1 and
the tolerance ε.

2) Optimization phase.
Set k := k + 1 and let pX , pY ∈ Snx , pγ ∈ R.

a) Using λ = λ(k−1) and µ = µ(k−1)), solve (11)
for the solution

p =

vech(pX)
vech(pY )

pγ

 ,

which is the step direction.
b) Update the variables as

X(k) = X(k−1) + αpX ,

Y (k) = Y (k−1) + αpY ,

γ(k) = γ(k−1) + αpγ ,

or equivalently

x(k) = x(k−1) + αp,

where α = 0.98.
3) Update phase.

Update the Lagrangian multiplier λ using the following
update rule.

λ(k) = λ(k−1) + µ(k−1)ĉ(x(k)) (15)

If ĉ(x(k)) > ε, update µ as follows.

µ(k) =

{
ρµ(k−1) if ĉ(x(k)) > ρ0ĉ(x

(k−1))

µ(k−1) if ĉ(x(k)) ≤ ρ0ĉ(x(k−1))
(16)

The first option in (16) reflects our thought that the de-
crease in the equality constraint function value was not
enough. Therefore we increase the penalty parameter.
The second option reflects our content with the value
of the constraint function, and we leave the penalty
parameter at its current value.

4) Terminating phase.
If ĉ(x(k)) > ε, go to phase 2, otherwise we check the
following.

• if γ(k) < 0.99γ(k−1) for three consequent iterates,
it is likely we are close enough to a local optimum.
Proceed to phase 5.

• Otherwise, the objective function value is still
decreasing, hence we continue the optimization,
i.e., go back to phase 2.

5) Recover controller phase.
Recover the controller parameters (KA,KB ,KC ,KD)
as described in [4] and verify that the closed loop
system is stable and that ‖Gc‖∞ < γ holds true. These
requirements should normally be satisfied, but if there
are numerical problems this might not hold true.

Remark 1: Note that in the optimization phase, one nor-
mally choose α in the interval 0 < α ≤ 1 by performing a
line search. However, we noticed that very small step-lengths
α were taken which resulted in bad performance that might
be caused by the Maratos effect. A solution could be to use
a watchdog strategy to remedy this, but we have chosen to
simply use α = 0.98 which seem to work well. For more
details on the Maratos effect and watchdog strategies, see
[15].

VII. NUMERICAL EXPERIMENTS

All experiments were performed on a DELL OPTIPLEX
GX620 with 2GB RAM, INTEL P4 640 (3.2 GHz) CPU
running under WINDOWS XP using MATLAB, version 7.11
(R2010b).

Evaluation of the methods was done on examples from the
benchmark problem library COMPleib, see [23]. The sug-
gested method was evaluated and compared to HIFOO 3.0,
see [10], and HINFSTRUCT which is based on the paper
[11]. HINFSTRUCT is included in the ROBUST CONTROL
TOOLBOX in MATLAB, version 7.11 (R2010b).

The results from the evaluation are presented in Table I,
where the H∞ norms and required computational times for
the respective methods are displayed. Note that the same
settings were used throughout the whole evaluation for the
augmented Lagrangian method. Cases where the augmented
Lagrangian method had numerical problems are marked by ∗.
As suggested in [24] and [25] HIFOO was evaluated by
running it ten times on each problem and choosing the
best result. These results are displayed in Table I where the
required time is summed over all ten runs. HINFSTRUCT
was evaluated according to [26], by running it only once
and initializing it with two extra starting points when com-
paring its performance with HIFOO, since HIFOO uses three
randomized starting points. The effect of using additional
randomized starting points for the augmented Lagrangian
method has not been investigated.

The upper part of Table I shows the results from when
controllers of either order zero or three were synthesized in
order to evaluate both static output feedback controllers and
reduced order feedback controllers. In cases where only the
static output feedback controller is shown it is due to the fact
that the higher order controllers turned out to have the same
performance, thus there is no gain in using those results.
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Since the computational complexity of HIFOO and HIN-
FSTRUCT depend on the number of parameters in the con-
troller while the augmented Lagrangian method does not,
we chose to also include a system (IH) which has 11 input
signals and 10 output signals in order to check if the results
would differ. The number of decision variables for HINF-
STRUCT and HIFOO is n2k +nkny +nunk +nuny while for
the augmented Lagrangian method it is nx(nx+1)+1, which
means that the number of decision variables in our method
is not affected by the number of states of the controller (nk),
inputs (nu) or outputs (ny), while HINFSTRUCT and HIFOO
are. The results of this evaluation are shown in the lower part
of Table I. For this example we also synthesized controllers
of higher order than for the other examples. A comparison
with the quasi-Newton method in [8] is presented in [27].

TABLE I
RESULTS FROM EVALUATION ON A COLLECTION OF SYSTEMS

FROM COMPLE IB. THE FIRST COLUMN DISPLAYS THE SYSTEM

NAME, THE ORDER OF THE SYSTEM, THE NUMBER OF INPUTS

AND OUTPUTS AND THE ORDER OF THE CONTROLLER THAT WAS

SYNTHESIZED. THE SECOND, THIRD AND FORTH COLUMNS

SHOW THE H∞ NORM AND REQUIRED TIME FOR THE

AUGMENTED LAGRANGIAN METHOD (AL), HINFSTRUCT (HS)
AND HIFOO (HF) RESPECTIVELY. CASES WHERE THE

AUGMENTED LAGRANGIAN METHOD HAD NUMERICAL

PROBLEMS ARE MARKED BY ∗ . NOTE THAT THE REQUIRED TIME

FOR HIFOO (tHF) IS THE ACCUMULATED TIME FOR ALL TEN

RUNS.

Sys, (nx,nu,ny ,nk) ‖ · ‖AL
∞ , tAL ‖ · ‖HS

∞ , tHS ‖ · ‖HF
∞ , tHF

AC2 (5,3,3,0) 0.11, 19.1 s 0.11, 3.47 s 0.11, 168 s
AC5 (4,2,2,0) 670, 20.8 s 665, 1.80 s 669, 24.8 s
AC5 (4,2,2,3) 660∗, 10.3 s 658, 3.88 s 643, 1100 s
AC18 (10,2,2,0) 14.8, 37.4 s 10.7, 2.97 s 12.6, 124 s
AC18 (10,2,2,3) 8.09, 36.9 s 6.51, 8.22 s 6.54, 3860 s
CM1 (20,1,2,0) 0.84, 278 s 0.82, 1.91 s 0.82, 125 s
EB4 (20,1,1,0) 2.46∗, 460 s 2.06, 3.94 s 2.06, 10.5 s
EB4 (20,1,1,3) 2.14, 370 s 1.82, 7.78 s 1.82, 1160 s
JE3 (24,3,6,0) 8.74, 645 s 5.10, 5.31 s 5.10, 4880 s
JE3 (24,3,6,3) 2.89∗, 1403 s 2.90, 11.6 s 2.89, 5910 s
IH (21,11,10,0) 1.88, 367 s 1.59, 38.0 s 1.90, 2450 s
IH (21,11,10,1) 1.86, 523 s 1.80, 43.0 s 1.80, 2410 s
IH (21,11,10,3) 1.49, 373 s 1.57, 51.0 s 1.74, 2170 s
IH (21,11,10,5) 1.39∗, 868 s 1.15, 65.3 s 1.69, 2620 s
IH (21,11,10,7) 1.61∗, 169 s 0.79, 86.2 s 1.72, 2450 s

VIII. RESULTS

The results in the upper part of Table I indicate that the
augmented Lagrangian method achieves comparable results
in most cases. HIFOO performs well but HINFSTRUCT
obtains the best results overall and is by far the fastest
algorithm. However it does not always find the best result of
the three methods.

The results in the lower part of Table I show that even
if the number of parameters in the controller are many,
HINFSTRUCT achieves better results than the augmented
Lagrangian method in all cases but one. For these problems
HIFOO does not perform as well as for the problems in the
upper part of the table and the required time is far more than

required by the other methods. However, if time is an issue,
either using fast mode or just running it once instead of ten
times will reduce the required computational time.

IX. CONCLUSIONS AND FUTURE WORK

A. Conclusions

We have presented a method for low order H∞ controller
synthesis based on the LMI formulation of the problem. The
approach is to reformulate the rank constraint as a rational
equality constraint and then solve the problem by using a
partial augmented Lagrangian minimization algorithm. The
suggested method was evaluated and compared with two
other methods from the literature. The evaluation indicates
that the suggested algorithm obtains comparable results in
most cases. Overall, HINFSTRUCT is the fastest of the three
compared methods.

B. Future Work

We would like to improve the numerical properties of the
method so that it becomes more stable and able to handle
higher order systems. The impact of adding extra, possibly
randomized, starting points would also be interesting to
investigate.

X. ACKNOWLEDGMENTS

The author would like to thank The Swedish research
council for financial support under contract no. 60519401.

REFERENCES

[1] J. Doyle, “Guaranteed margins for LQG regulators,” IEEE Transac-
tions on Automatic Control, vol. 23, no. 4, pp. 756–757, 1978.

[2] G. Zames, “Feedback and optimal sensitivity: Model reference trans-
formations, multiplicative seminorms, and approximate inverses,”
IEEE Transactions on Automatic Control, vol. 26, no. 2, pp. 301–320,
Apr 1981.

[3] J. Doyle, K. Glover, P. Khargonekar, and B. Francis, “State-space so-
lutions to standard H2 and H∞ control problems,” IEEE Transactions
on Automatic Control, vol. 34, no. 8, pp. 831–47, 1989.

[4] P. Gahinet and P. Apkarian, “A linear matrix inequality approach to
H∞ control,” International Journal of Robust and Nonlinear Control,
vol. 4, no. 4, pp. 421–48, 1994.

[5] P. Apkarian, D. Noll, and H. Tuan, “Fixed-order H-infinity control
design via a partially augmented Lagrangian method,” International
Journal of Robust and Nonlinear Control, vol. 13, no. 12, pp. 1137–
1148, 2003.

[6] B. Fares, P. Apkarian, and D. Noll, “An augmented Lagrangian method
for a class of LMI-constrained problems in robust control theory,”
International Journal of Control, vol. 74, no. 4, pp. 248–360, 2001.

[7] D. Noll, M. Torki, and P. Apkarian, “Partially augmented lagrangian
method for matrix inequality constraints,” SIAM Journal on Optimiza-
tion, vol. 15, no. 1, pp. 161–184, 2004.

[8] D. Ankelhed, A. Helmersson, and A. Hansson, “A quasi-Newton
interior point method for low order H-infinity controller synthesis,”
IEEE Transactions on Automatic Control, vol. 56, no. 6, pp. 1462–
1467, June 2011.

[9] ——, “A primal-dual method for low order H-infinity controller
synthesis,” in Proceedings of the 2009 IEEE Conference on Decision
and Control, Shanghai, China, Dec 2009.

[10] S. Gumussoy, D. Henrion, M. Millstone, and M. Overton, “Multiob-
jective robust control with HIFOO 2.0,” in Proceedings of the IFAC
Symposium on Robust Control Design, Haifa, Israel, June 2009, pp.
144–149.

[11] P. Apkarian and D. Noll, “Nonsmooth H∞ synthesis,” IEEE Transac-
tions on Automatic Control, vol. 51, no. 1, pp. 71–86, 2006.

8223



[12] A. Helmersson, “On polynomial coefficients and rank constraints,”
Department of Automatic Control, Linköping university, Sweden,
Tech. Rep. LiTH-ISY-R-2878, 2009. [Online]. Available:
http://www.control.isy.liu.se/publications/doc?id=2119

[13] D. Bertsekas, Constrained optimization and Lagrange multiplier meth-
ods. New York, USA: Academic Press, Inc., 1982.

[14] ——, Nonlinear programming. Belmont, Massachusetts, USA:
Athena Scientific, 1995.

[15] J. Nocedal and S. Wright, Numerical optimization, 2nd ed. Springer,
2006.

[16] H. Lütkepohl, Handbook of matrices. John Wiley & Sons, Ltd, 1996.
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