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Abstract— In this paper we consider the state reconstruction
problem with Boolean measurements for a genetic network
governed by a piecewise affine (PWA) model. A Luenberger-
like observer is proposed and we undertake an investigation
of its convergence rate. The approach of Filippov is used to
define the solution on the surface of discontinuity. In particular
sliding modes may occur in some cases and this leads to finite-
time convergence for the observer. A transition graph is given
for the coupled observer-nominal system in general case. To
minimize the convergence time, different convergence scenarios
are discussed for optimizing the choice of initial condition of
the observer.

I. INTRODUCTION

A large number of biological networks consist of many

individual components interacting through complex positive

and negative feedback loops and it is difficult to understand,

by an intuitive approach, the resulting behaviors and their

relation with the actual functioning of the systems. So, a

piecewise affine (PWA) framework allows a rigorous math-

ematical modeling and analysis approach, which is useful

to the qualitative understanding of biological networks. Our

analysis focuses on PWA systems with discrete measure-

ments and our results are related to the topics of hybrid

systems, quantized control and synchronization.

In this paper we consider a classical genetic regulatory

network with negative feedback loop, which is composed

of two genes A and B who interact with each other, more

precisely, A activates B and B inhibits A (see [19]).

Under the assumptions of quasi-steady state of mRNAs

and simplification of the synthetic rates in the activation and

inhibition by step functions (instead of Hill functions, for

details of different frameworks comparison according to vari-

ous assumptions, see for instance [16]), the qualitative model

can be described by a 2-dimensional PWA time-invariant

system. The piecewise linear model was first introduced by

[10] and has been well studied for decades (see e.g. [6], [15]

and [18]).

This model has a simple structure of biological interest.

It is shown in [18] that, under some assumption on the

parameters, the solution behaves like a damped oscillator,

which tends to a stable focus. In mathematical biology,

oscillations play an important role since rhythmic phenomena

are quite common in living organisms, such as circadian

oscillations, oscillations in blood production or neural ac-

tivity (e.g. Parkinson’s disease). Analysis and manipulation
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of periodic behaviors of biological systems has become more

and more important at both theoretical and experimental

levels. For example, some PWA controls are proposed in [5]

to generate and destroy oscillatory behavior in the above 2-

dimensional PWA activation-inhibition network model. Qual-

itative control problems (in which only three positive values

were allowed according to the synthesis levels) have been

considered in [4] for the bistable switch model (where two

genes inhibit each other mutually) with single bounded input.

We are interested here in state reconstruction problems

with Boolean measurements, that is to say, we only know

(partially) whether the protein concentrations are above or

below some threshold values. This kind of state recon-

struction problems is interesting because very often the

measurements of genes expression are only qualitative due to

the experimental techniques used, e.g., the gene is strongly

or weakly expressed (cf. [12] and [9]).

From a mathematical point of view, this problem has

two distinct aspects when compared to classical observation

problems: firstly, the model is a switching dynamical system

(PWA), and secondly we have only Boolean measurements

(step functions). In this paper we propose to estimate the

protein concentrations through an auxiliary system, that is, an

observer, by using their locations w.r.t. the threshold values.

Moreover, the convergence rate can be accelerated by setting

the gain value and by choosing the initial condition. In some

special cases with the sliding motions one has convergence

in finite time for the observer. The convergence time in

general cases is also investigated. We believe that such state

reconstruction problems with Boolean measurements have

not yet been addressed in the literature.

For PWA systems, the authors of [2] have considered

the observability problem. In [11], both deterministic and

particle filtering approaches are considered for a class of

discrete time PWA systems. Specially for the first approach,

a Luenberger observer is proposed such that the error system

is also a switching system. The correction term contains only

the output vector and its estimate. Sliding mode observers

can also be used (e.g. see [20] and [1]) by taking additionally

the sign of the mismatch between output and its estimate.

For both cases, all the observer designs within the literature

(as far as we know) are dealt with the measurement taken

as a part of the state vector, that is, one needs (partially)

the continuous values (with errors possibly) of these state

variables. These methods cannot be applied directly in our

case because we only have qualitative measurements.

Systems with quantized output observations are also

widely studied. In the case where the measurements are
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only the sign-observations of the state without precise value,

[13] investigates on the observability problem of continuous-

/discrete-time linear systems (without switches). In [3], a

quantized state feedback control strategy is proposed to

stabilize linear systems in both continuous-/discrete-time

cases. The quantizer considered is a set of right-continuous

step functions. This method cannot be applied here because

our model is a discontinuous system. In [8] the authors

analyze the global convergence for a class of neural networks

where the neuron activations are modeled by discontinuous

functions, but observability problem is not considered.

This paper is organized as follows. We introduce the

PWA model and the observation problem in Section II. An

exponentially convergent observer is proposed in Section III,

and an alternative approach is discussed. In Section IV we

analyze the sliding mode solutions and finite-time conver-

gence of the observer. The convergence time in general case

is investigated in Section V. Some possible generalisations

are mentioned in Section VI.

II. PWA SYSTEMS WITH BOOLEAN MEASUREMENTS

The piecewise affine model is described by the system (Σ)

as follows:
{

ẋ1 = k1s−(x2,θ2)−d1x1,

ẋ2 = k2s+(x1,θ1)−d2x2

(II.1)

with the step functions defined by

s+(xi,θi) =

{

1, if xi > θi,

0, if xi < θi,

and

s−(xi,θi) = 1− s+(xi,θi).

The state variables xi ∈ R≥0, i = 1,2, denote the protein

concentrations of genes, and the positive constant parameters

ki, di and θi, i = 1,2, denote respectively the translation

(production) rates, the degradation rates and the threshold

concentrations.

It is well known that under the following assumption on

the parameters:

φi =
ki

di

> θi, i = 1,2. (II.2)

the system tends to a stable focus (θ1,θ2) as a damped

oscillator (see [18]).

Notice that the step functions are not defined on the

thresholds. Since on a threshold each differential equation

in (II.1) has discontinuous righthand side, it should be

defined as an differential inclusion and the solution should be

interpreted in the sense of Filippov [7], that is, an absolutely

continuous vector-valued function x(t) defined on an interval

I which satisfies the differential inclusion almost everywhere

on I.

As mentioned in the introduction, we are interested in state

reconstruction problem with Boolean measurements, i.e., we

only know the positions of the state variables xi w.r.t. the

thresholds θi. We define the following problem

(P): design an observer for (II.1) to estimate the protein

concentrations xi, i = 1,2, with the complete Boolean obser-

vations on regional location of xi w.r.t. θi (i.e., the values of

s+(xi,θi) or s−(xi,θi), i=1,2). Furthermore, the convergence

rate of the observer should be faster than the intrinsic

convergence rate of the dynamical system to its stable state.

III. OBSERVER WITH COMPLETE BOOLEAN

OBSERVATIONS

A. Observer design

Given a dynamical system, an observer is an auxiliary

system that produces an estimation of the current state by

using available registered observations.

For the problem (P) with complete Boolean measurements

y1 = s+(x1,θ1), y2 = s+(x2,θ2), (III.1)

we propose a simple piecewise Luenberger-like observer (Σ̂):
(

˙̂x1

˙̂x2

)

=

(

−d1x̂1 − k1s−(x̂2,θ2)

−d2x̂2 + k2s+(x̂1,θ1)

)

+

(

β1 −k1

k2 β2

)(

y1 − s+(x̂1,θ1)

y2 − s+(x̂2,θ2)

)

(III.2)

with βi, i = 1,2 some positive constants.

Theorem 3.1: The observer (III.2) is exponentially con-

vergent. Moreover its convergence rate can be accelerated

by setting the gain value.

Proof : By taking ε = x− x̂ we have the error equation

(

ε̇1

ε̇2

)

=

(

−d1ε1

−d2ε2

)

−

(

β1[s
+(x1,θ1)− s+(x̂1,θ1)]

β2[s
+(x2,θ2)− s+(x̂2,θ2)]

)

.(III.3)

Taking V (ε) = εT ε/2 as Lyapunov candidate function with

ε = (ε1 ε2)
T , we have

dV

dt
≤−min(β1,β2)

2

∑
i=1

{εi[s
+(xi,θi)− s+(x̂i,θi)]−diε

2
i }.

(III.4)

Define ∆(xi, x̂i) = (xi − x̂i)[s
+(xi,θi) − s+(x̂i,θi)], i = 1,2.

Notice that ∆(xi, x̂i) ≥ 0. Indeed, we have

∆(xi, x̂i)































= |xi − x̂i|, if (xi −θi)(x̂i −θi) < 0,

= 0, if (xi −θi)(x̂i −θi) > 0

or xi = x̂i = θi,

∈ [0, |xi − x̂i|], if xi 6= θi, x̂i = θi

or xi = θi, x̂i 6= θi.

(III.5)

Hence the derivative of V is negative definite, moreover V

is radially unbounded, thus the error system is GAS. �

It is clear that if one takes β = 0 then the error equation

becomes ε̇ = −diag(d1,d2) · ε , and the convergence rate of

the observer is d = min{d1,d2}. But this is just a detector,

we are interested in accelerating the convergence rate of the

error, that is, find some l > d such that ε̇ < −lε .

The precise study of convergence rate will be discussed

in Section IV.
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B. Some remarks

It is well known that in some sense the state reconstruction

problem is equivalent to the initial condition inverse problem.

In our particular case where the system is piecewise affine,

the explicit solution of linear equations in each regular

domain (orthant) can be easily computed, which depends on

its initial condition in the domain:

xi(t) = (xi0 −Φi)e
−dit + Φi, i = 1,2

with the focal points depending on the initial condition

Φ1 = φ1s−(x20,θ2), Φ2 = φ2s+(x10,θ1).

In addition, in the above negative feedback loop system all

the switching domains are transparent walls (see [15]).

Notice that the measurements s+(xi,θi) are time-varying

functions, so we know the instant tn when each switch

xi(tn) = θi occurs and the interval of time in which the

trajectory stays in each regular domain. The history of the

measurements allows us to determine the initial condition

back in time, which is unknown a priori in the observation

problem. Indeed, in each regular domain the two equations

are decoupled and the rates di are known together with the

switch time, then the starting point and ending point of the

trajectory in each domain can be determined uniquely.

To apply this method we need a minimum observation

time T since the system should hit two switching domains.

To see this, denote by t1, t2 respectively the time for the

system to hit the first two switching domains. Without loss

of generality, suppose that after t1 the trajectory hits first the

vertical threshold θ1 at some point P1 = (θ1, x̃20), and t2 later

it hits the horizontal threshold θ2 at P2 = (x̃10,θ2). On the

other hand, the time needed for the system to get to P2 from

P1 is

tP1→P2
=

1

d1

ln
( θ1 −φ1

x̃10 −φ1

)

=
1

d2

ln
( x̃20 −φ2

θ2 −φ2

)

with φi defined in (II.2). By setting t2 = tP1→P2
we can com-

pute explicitly x̃10 and x̃20. Thus the exact initial condition

can be determined with the value of x̃20 and the measured

time t1. We can obtain the upper bound of Tmax:

Tmax =
2

∑
i=1

max
{ 1

di

ln
(φi

θi

)

,
1

di

ln
( φi

φi −θi

)}

. (III.6)

Though this alternative approach does work for our simple

example, the observer design is still important because:

1) the inverse approach needs precise time measurement to

guarantee the precision of the initial condition reconstruction;

2) we are also interested in the online estimation of the state

variables before the necessary time to determine the exact

initial condition. The advantage of the dynamical observer

(in contrast to an algebraic computation) is to have an

adaptive estimation which is robust to small perturbation in

the parameters.

IV. SLIDING MODE SOLUTION AND FINITE TIME

CONVERGENCE FOR THE OBSERVER

Denote by Dσ
i , i ∈ {1,2}, σ ∈ {+,−}, the four regular

domains:

D−
1 = {x ∈ R

2
≥0,0 < x1 < θ1,0 < x2 < θ2},

D−
2 = {x ∈ R

2
≥0,0 < x1 < θ1,x2 > θ2},

D+
1 = {x ∈ R

2
≥0,x1 > θ1,x2 > θ2},

D+
2 = {x ∈ R

2
≥0,x1 > θ1,0 < x2 < θ2}.

and Sσ
i , i ∈ {1,2}, σ ∈ {+,−} the four switching domains:

S−1 = {x ∈ R
2
≥0,x1 = θ1,0 < x2 < θ2},

S−2 = {x ∈ R
2
≥0,0 < x1 < θ1,x2 = θ2},

S+
1 = {x ∈ R

2
≥0,x1 = θ1,x2 > θ2},

S+
2 = {x ∈ R

2
≥0,x1 > θ1,x2 = θ2}.

Denote by Γ (resp. Γ̂) the trajectory of (Σ) (resp. (Σ̂)) and

we use the index 0 to denote their initial locations. We also

use the notations φi = ki/di, i = 1,2.

A. Existence of sliding mode

Notice that the error system is a switching system, so

a sliding mode may occur. In this case, one of the state

variables remains constant while the other evolves towards a

point determined by the signs of the vector fields. Geometri-

cally, the trajectory of the solution will evolve on a switching

domain (sliding surface), see Fig. 1.
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0.1

0.2
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0.7

v̂+

2

v̂−2
x ∈ D+

2

x̂ ∈ V (S−

2 )

Fig. 1. The sliding mode in a neighborhood of the switching domain S−2
for the observer.

Recall the assumption on the parameters (II.2), hence there

exists some small η such that ki/di ≥ θi +η . It is well known

that a sufficient condition for sliding mode to exist on some

hyperplane s = 0 is

lim
s→0−

ṡ · lim
s→0+

ṡ < 0. (IV.1)

Clearly there exists no sliding mode for the nominal system.

For example, to check the nonexistence of sliding mode on

x2 = θ2, we take the righthand side of the second equation in

(II.1): k2s+(x1,θ1)−d1x2 with x2∈[θ2−δ ,θ2 +δ ], 0<δ <η .

If x belongs to the left half-plane, one has s+(x1,θ1)= 0.

Hence −d1(θ2 −δ ) and −d1(θ2 +δ ) are both negative. If x

belongs to the right half-plane, then s+(x1,θ1) = 1, we have

both k2 − d1(θ2 − δ ) and k2 − d1(θ2 + δ ) positive. For the

same reason, there is no sliding mode for a detector.
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TABLE I

THE VALUES OF (ψ1,ψ2) IN (IV.2), ACCORDING TO x AND x̂ LOCATIONS.

H
H

H
Hx̂ ∈

x ∈
D−

1 D−
2 D+

1 D+
2

D−
1 (k1,0) (0,β) (β ,β + k2) (β + k1,k2)

D−
2 (k1,−β) (0,0) (β ,k2) (β + k1,−β + k2)

D+
1 (−β + k1,0) (−β ,β) (0,k2) (k1,−β + k2)

D+
2 (−β + k1,−β) (−β ,0) (0,β + k2) (k1,k2)

This is not the case for the observer with a sufficient large

gain value. In fact, we can give a sufficient condition for the

existence of a sliding mode.

Proposition 4.1: If x̂ is in a neighborhood of θi, i = 1,2,

then a sliding mode may occur on θi if x ∈ Dσ
i , σ ∈ {+,−}

and β > max{diθi,ki −diθi}.

Proof: Take the righthand side of the first equation in (III.2):

v̂1 = k1s−(x2,θ2)+ β s+(x1,θ1)−β s+(x̂1,θ1)−d1x̂1

with x̂1 ∈ [θ1 − δ ,θ1 + δ ], 0 < δ < η . If x ∈ D−
1 , i.e.,

s+(x1,θ1) = 1 and s−(x2,θ2) = 1, then we have

{

v̂−1 = k1 −d1(θ1 − δ ) > 0,

v̂+
1 = k1 −β −d1(θ1 + δ ) < 0, with β1 > k1 −d1θ1.

Hence we have a sliding mode on θ1. A similar reasoning

leads to the existence of sliding mode on θ1 when x ∈ D+
1

and β > d1θ1. When x ∈ D+
2 (resp. x ∈ D−

2 ), it is easy to

see that both v+
1 and v−1 are positive (resp. negative), hence

there is no sliding mode in these cases. One can check the

existence of sliding mode on θ2 in the same way by taking

the righthand side of the second equation in (Σ̂). �

So the existence of sliding mode depends not only on

the location of x w.r.t. a threshold, but also the direction

of the oscillation. In our case where the oscillation is anti-

clockwise, the sliding mode may occur on a threshold where

x̂ is nearby only when x is behind the threshold.

B. Some properties of sliding mode solutions

In fact, the observer can be written as
{

˙̂x1 = −d1x̂1 + ψ1,

˙̂x2 = −d2x̂2 + ψ2,
(IV.2)

where the values of (ψ1,ψ2) are given by Table I. Thus the

observer has (Ψ1,Ψ2) = (ψ1/d1,ψ2/d2) as its focal point

according to different locations of x and x̂.

The next results show that sliding mode solutions guar-

antee the synchronization of one of the coordinates of the

observer and the system, i.e., xi(T ) = x̂i(T ) for some i at the

end of a sliding mode.

Lemma 4.2: Let T (x0) (resp. T̂ (x0)) be the time for a

trajectory Γ starting from x0 (resp. x̂0) to hit the first

switching domain Sσ
i . Then T (resp. T̂ ) is an increasing

function w.r.t. |xi0 −θi| (resp. |xi0 −θi|).

Proof: It is easy to compute

T (x0) =
1

di

ln
(xi0 −Φi

θi −Φi

)

=
1

di

ln
(

1 +
xi0 −θi

θi −Φi

)

(IV.3)

with (xi0 − θi)(θi −Φi) > 0 by the assumption (II.2). The

result follows. By similar reasoning with

T̂ (x0) =
1

di

ln
( x̂i0 −Ψi

θi −Ψi

)

=
1

di

ln
(

1 +
x̂i0 −θi

θi −Ψi

)

, (IV.4)

one can obtain the analogous result for T̂ . �

Notice that T (x0) cannot be computed directly because

the value of x20 is unknown a priori. Even though the exact

value of T (x0) is not available, one can use its upper bound

to estimate the upper bound of the total convergence time.

Proposition 4.3: Let T (resp. T̂ ) be the time for a tra-

jectory Γ (resp. Γ̂) to hit its first switching domain. Then

there is a sliding mode only if T > T̂ , with the sliding time

TSM = T − T̂ . Given initial conditions x0 of the observation

system and x̂0 of the observer, both belong to a same regular

domain, the ending point of the sliding mode on Sσ
1 (resp.

Sσ
2 ) can be determined by an auxiliary trajectory Γ̃ of (Σ)

starting from the point (x̂10,x20) (resp. (x10, x̂20)).
As shown in the diagram Fig. 4 , the only possible step

after sliding mode is the case where x and x̂ enter into a

same regular domain with at least one of the coordinates

synchronized.

C. Convergence of the observer in finite time

Since an observer is a software sensor for the model,

we can set its initial condition x̂0 in order to guarantee an

optimal convergence time, wherever the initial condition x0

of the model is located. In our case the best choice for x̂0

is the intersection point (θ1,θ2). In fact, in this case the

state variables x̂ of the observer evolve either on a switching

domain as sliding mode, or together with x on a same regular

domain (see Fig. 2, in contrast with Fig. 3 representing the

convergence without sliding mode).
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0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

 

 

system
observer

x0

x̂0

x(t1)

x̂(t1)
x̂(t2)

x(t2)
x̂(T )

x(T )

Fig. 2. Convergence with sliding modes: the observer starting from (θ1,θ2)
converges to the nominal system in finite time.

Proposition 4.4: For Γ̂ starting from (θ1,θ2), there is a

sliding mode on the switching domain which Γ will hit first.

Proof: At the point (θ1,θ2), the solution of the observer

should be interpreted in sense of Filippov, as the solution of

the differential inclusion

( ˙̂x1
˙̂x2)

T ∈ H(θ1,θ2),

where H(θ1,θ2) is the convex hull of the vector fields in

the regular domains D ∈ {Dσ
i , i = 1,2,σ ∈ {+,−}}, whose

boundary ∂D contain (θ1,θ2)

H(θ1,θ2) = co{(v̂D
1 (θ1,θ2) v̂D

2 (θ1,θ2))
T , (θ1,θ2) ∈ ∂D}
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Fig. 3. Convergence without sliding mode: the error converges into a small
neighborhood of zero in finite time. This case will be studied in Section V.

with v̂D
i = ψD

i −diθi. By checking Table I, it is easy to see

that for every fixed x ∈ D, ψi, i ∈ {1,2} have only 2 possible

values, denoted by ψσ
i , σ ∈ {+,−}. In general, we have

∏
i ∈ {1,2}

σ ∈ {+,−}

(ψσ
i −diθi) < 0.

Hence either v̂+
1 v̂−2 or v̂+

2 v̂−2 is negative. So v̂+
i v̂−i < 0 implies

a sliding mode on the switching domain Sσ
i with σ depending

on the sign of v̂+
j , j 6= i. Moreover, the first switching domain

Sσ ′

i′
that Γ will hit depends on the sign of v j′ , j′ 6= i′. Notice

that v̂+
j v j > 0, so the sliding mode will exactly occur on the

first switching domain that Γ will hit. �

Theorem 4.5: For Γ̂ starting from (θ1,θ2), the observer

converges in finite time with Tmax given by (III.6) as an

upper bound of the convergence time.

Proof: Suppose that x0 ∈ Dσ
i , i ∈ {1,2}, σ ∈ {+,−}, then

Γ will hit first the switching domain Sσ
i . According to

Proposition 4.4, for Γ̂ starting from (θ1,θ2) there is a sliding

mode on Sσ
i . This leads to s+(x j,θ j) = s+(x̂ j,θ j) with j 6= i.

Moreover, we have vi = v̂i. Denote by T1 the time needed

for Γ to reach Sσ
i , then at T1 we have synchronization of

the xi-coordinate i.e., |εi(T1)|= 0 and |ε j(T1)|= |ε j(0)| with

j 6= i. Notice that |x̂i(T1)− θi| = 0 ≤ |xi(T1)− θi|, and by

Lemma 4.2 the time T is an increasing function on |xi −θi|,
we can conclude that Γ̂ will hit the next threshold θ j before Γ
does. This leads again to a sliding mode for the observer at

the next Sσ
j . With a similar reasoning as above, we have

synchronization of the x j-coordinate after a time T2, and

|ε j(T1 +T2)| = 0. It is easy to check that the upper bound of

T1 + T2 is the same to Tmax in (III.6). �

V. GENERAL CASE: ACCELERATED CONVERGENCE

Consider all the possible relative locations of x and x̂:

(I) x and x̂ are in a same regular domain;

(II) x and x̂ are in two adjacent domains and Γ hits a

switching domain before Γ̂ does;

(III) x and x̂ are in two adjacent domains and Γ̂ hits a

switching domain before Γ does;

(IV) x and x̂ are in two opposite domains;

(V) x̂ is on a threshold and follows a sliding mode.

All the possible transitions among these cases are il-

lustrated in Fig. 4, Each arrow line represents a possible

transition between two of the five cases. Some of them

(drawn by green dash lines) can be neglected under the

assumptions that x is not too close to the point (θ1,θ2) and

β is large enough.

Fig. 4. Transition graph of two coupled systems (Σ) and (Σ̂): all the possible
state transitions according to the locations of x and x̂. When the gain value
β is large enough we consider only the transitions represented by red lines.

A. Convergence time estimation

Now we give some estimations of convergence time in

general case.

Proposition 5.1: If both x and x̂ start from a regular

domain, then the error enters into a small neighborhood of

zero after at most Tmax + 2T̃max with Tmax given by (III.6)

and

T̃max(β ) ≤
1

d
ln
( β + max(k1,k2)

β + min
i=1,2

(diθi,ki −diθi)

)

≤
1

d
ln
(β + max(k1,k2)

β

)

. (V.1)

Sketch of proof : Suppose that Γ̂ hits a switching domain

before Γ does, denote T1 (resp. T̂1(β ), which depends on

the gain value β ) the time needed for Γ (resp. Γ̂) to hit the

switching domain. According to the diagram Fig. 4, there

are two possibilities: either one passes from the case (I) to

(V ) after T1, or from (I) to (II) after T̂1(β ). In order to study

the convergence time, we use the following transition chain

diagrams:

I
T1−→ II

T̂1(β )
−−−→ I

I
T̂1(β )
−−−→V

T1−T̂1(β )
−−−−−→ I

I
T1(β )
−−−→ II

T̂1(β )
−−−→V

T2−T̂1(β )
−−−−−→ I

(V.2)

The time needed for each transition is indicated above the

corresponding arrow. We return to the case (I) after at most

T ∗ + T̃ (β ) with

T ∗ = max
i=1,2

{ 1

di

ln
(φi

θi

)

,
1

di

ln
( φi

φi −θi

)}

.

Moreover one can prove that T̃ (β ) is of order O(1/β ), which

means it can be sufficiently small when β is big enough.

Such a transition chain allows us to synchronize (by sliding

mode (V)) or almost-synchronize (by (II)) at one of the xi-

coordinates, then the error belongs to a small ball of zero

after two transition chains. We use here the notion of (weak)

practical observer [17], that is, for any η > 0, there is an

observer parametrized by a gain β such that

∀(x0, x̂0), ∃T > 0, ‖x̂(t)− x(t)‖ ≤ η , ∀t > T.

To see the convergence by almost-synchronization, one can

take the first transition chain in (V.2) as an example. At the

instant T1 when Γ hits the switching domain, one has xi(T1)=
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θi and we are in the case (II). Suppose that the mismatch

‖ε(T1)‖ is not negligible. Using (IV.4), one can obtain the

time for the observer to reach the threshold θi:

T̂1(β ) =
1

di

ln
(

1 +
x̂i −θi

θi −β/di

)

≈
|εi|

|β −diθi|
.

On the other hand, at T1 + T̂1(β ) one has

xi(T1 + T̂1(β )) = (θi −Φi)e
−diT̂1(β ) + Φi

≈ θi + di(Φi −θi)T̂1(β ).

So |εi(T1 + T̂1(β ))| ≈ di(Φi − θi)T̂1(β ) is small for β large

enough, in other words, one has almost-synchronization

at xi-coordinate. More details of error estimation can be

found in [14]. In particular, when two sliding modes occur

successively as in Theorem 4.5, one has convergence in finite

time Tmax with zero error. �

By similar reasoning, we obtain convergence time estima-

tion in the other cases.

Proposition 5.2: If x and x̂ start from two adjacent do-

mains (resp. opposite domains), then the error enters into a

small neighborhood of zero after at most Tmax + 3T̃max(β )
(resp. Tmax + 2T̃max(β )).

B. Practical consideration for optimal choice of initial con-

dition for application

In this section we analyze the convergence time in the

general case. The convergence rate can be accelerated by

setting the gain value β , however it cannot be as fast as

one likes (see Fig. 5). Indeed, the correction term is not

activated when both x and x̂ are in the same regular domain

(case (I)). Comparing to the results obtained in Section

IV, we see that a good choice in practice is to set the

starting point of the observer at the intersection point of the

thresholds. The convergence time is optimal in the sense that

it will not exceed the observation time (III.6) whatever the

initial condition of the nominal system is. Moreover the error

reduces to zero.
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Fig. 5. The evolution of protein concentration x1 (in red) and its estimate
x̂1 with gain value β = 10 (in blue), β = 1 (in green) and without correction
term (in black).

VI. CONCLUSIONS AND PERSPECTIVES

Some state reconstruction problems with Boolean mea-

surements for a PWA model of genetic networks are ad-

dressed in this paper. An exponentially convergent observer

is presented. The convergence time estimation in general case

is given under different scenarios. Furthermore using sliding

mode solutions in some particular cases, one obtains finite-

time convergence for the observer. A transition graph is also

given for the coupled observer-nominal system. The observer

can be easily generalized for higher dimensional negative

loop systems (which converge to some limit cycle, cf. [6],

[18]). The proof is similar. Note that observer convergence

is independent from nominal system behavior.

Future work aims to design an observer for the observation

problem with partial Boolean measurements, that is, only

one of s+(xi,θi), (i = 1 or 2) is known. Another issue is the

study of the robustness of the observer w.r.t. the uncertainty

of the model and the parameters such as threshold values: it

depends on the experimental errors, and needs further work.
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[4] M. Chaves and J.-L. Gouzé. Exact control of genetic networks in

qualitative framework: the bistable switch example. Automatica, 47:
1105-1112, 2011.

[5] R. Edwards, S. Kim and P. van den Driessche. Control design for
sustained oscillation in a two-gene regulatory network. J. Math. Biol.,
62:453-478, 2010
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