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Abstract— This article presents a new indirect identification
method for continuous-time systems able to resolve the problem
of fast sampling. To do this, a Subspace IDentification Down-
Sampling (SIDDS) approach that takes into consideration the
intermediate sampling instants of the input signal is proposed.
This is done by partitioning the data set into m subsets, where
m is the downsampling factor. Then, the discrete-time model
is identified using a based subspace identification discrete-
time algorithm where the data subsets are fused into a single
one. Using the algebraic properties of the system, some of the
parameters of the continuous-time model are directly estimated.
A procedure that secures a prescribed number of zeros for the
continuous-time model is used during the estimation process.
The algorithm’s performance is illustrated through an example
of fast sampling, where its performance is compared with the
direct methods implemented in Contsid.

I. INTRODUCTION

Two different approaches to CT identification exist. A direct
one, where the parameters of the CT model are directly
identified from the discrete-time (DT) input-output (IO) data.
Obviously, this type of methods always relies on some
numerical skills. Its main difficulty comes from the fact that
the successive derivatives are seldom available in practice,
particularly in a noisy framework. Therefore, it is important
to find other techniques able to evaluate the successive
derivatives from measured data. Different methods to bypass
this problem include: linear filters, modulating functions and
integral methods [3]. Direct identification in CT is not as well
developed for multiple–input multiple–output (MIMO) as for
single–input single–output (SISO) systems [12]. Additional
difficulties are the existence of many tuning parameters and
the appearance of zeros in the integration methods. Subspace
methods (SM) also have problems with low signal to noise
ratio (SNR) levels.

In an indirect approach, the CT model is converted into
a DT model and then the parameters are estimated with
one of the several available DT identification methods [10].
Their advantage is to avoid computing the derivatives. Once
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the parameters are obtained, the DT model needs to be
converted back into CT, which may bring difficulties. To
be able to recover the CT model, the sampling period needs
to be chosen neither too big nor small [14]. Whenever the
system to be identified possesses fast dynamics, a large
sampling period may lead to a loss of information. Also
the use of the matrix logarithm by some methods may
produce complex arithmetics when the DT model matrices
have negative eigenvalues [2], [12]. On the other hand, very
fast sampling may raise numerical problems [16], coming
from the clustering of the poles in a very small area of
the z-plane, around the point 1 + 0j. Also, may conduct to
a loss of controllability/observability when the CT transfer
function (TF) also has got zeros, since these zeros also tend
to cluster at this small area [1]. Moreover, system parameters
of DT models are functions of the sampling period [1],
while those of CT models are always constant. Since a small
modelling error may bring a larger error in the estimation of
the parameters, differences in the error patterns may appear.
This problem becomes more pressing when trying to identify
parameters close to one, since even a small modelling error
may make the estimated parameter completely unacceptable,
and the DT model may become poor or even unstable as the
sampling period decreases [16]. The numerical sensitivity of
the DT model increases when the sampling period is small
compared to the time constant of the system. For instance
two poles located in the left-half s-plane may converge to
one single pole (i.e., 1) in the z-plane. In this situation, the
truncation error should be treated carefully.

Real systems many times require fast sampling in order
to be replicated adequately. To avoid the problems arising
from using a very small sampling interval, we propose an
indirect CT-4sid alike method where the system can be
sampled as fast as it needs and, using downsampling, the
sampling cycles may be tuned to a convenient value. The
parameters of a lower rate system are then estimated using a
DT subspace identification (SID) approach [18], [15], [21],
[9]. Our approach is distinct from decimation [6]. Moreover,
some of the parameters of the CT model can be estimated
directly and it has a mechanism able to control the number
of zeros in the DT model, whenever this is known a priori.

In what follows, we derive the DT downsampled model
in Section II. In Section III, the SID algorithm for the
downsampled model, SIDDS, is described. In Section IV, we
discuss the direct estimation of some parameters of the CT
model. Also a procedure to limit the number of zeros of
the CT state-space (SS) model is explained. In Section V,
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the performance of SIDDS is assessed through a case study
consisting of a fast sampled system very popular in the
literature. Our approach is compared with the subspace CT
identification methods implemented in Contsid, a toolbox
for linear time-invariant SISO and MIMO systems from
sampled IO data. This toolbox is a collection of the main
approaches found in the literature, with principal emphasis
on the estimation of parametric models [2], [5]. Monte Carlo
simulations (MCS) are used in order to compare SIDDS with
the direct methods, in the presence of noise.

II. DOWNSAMPLED DT SS MODEL

Consider the following state-space system

ẋ(t) = Ax(t) +Bu(t), (1)
y(t) = Cx(t) +Du(t), (2)

where x ∈ Rn, u ∈ Rnu , y ∈ Rny and A ∈ Rn×n, B ∈
Rn×nu , C ∈ Rny×n, D ∈ Rny×nu . Thus, the system time
response is given by

x(t) = eA(t−t0)x(t0) +

∫ t

t0

eA(t−τ)Bu(τ)dτ, (3)

y(t) =Cx(t) +Du(t), (4)

where t0 is the initial instant.

Assume the input signal to be generated by a zero-order
hold (ZOH) Digital Analog converter with sampling period
Ts, and we can write

x [(k + 1)Ts] = eATsx(kTs) +

∫ Ts

0

eAτdτBu(kTs). (5)

In order to drop the sampling period in the notation, define

u1(k) = u(kTs), x1(k) = x(kTs), y1(k) = y(kTs)

A1 = eATs , B1 =
∫ Ts

0
eAτdτB,

C1 = C, D1 = D.
(6)

At every sampling instant, the system is described by the DT
SS model

x1(k + 1) = A1x1(k) +B1u1(k), (7)
y1(k) = C1x1(k) +D1u1(k). (8)

The CT SS model (1)–(2) can be recovered from the DT
model using (6). According to Sinha [14], the sampling
period Ts should be such that the spectral radius of A is less

than
1

Ts
. On the other hand, we also know that DT system

identification algorithms have a poor performance when the
sampling period is too small [14]. In order to overcome
this difficulty, we start by modelling a low rate sampling
DT model from high rate sampling data. Thus, consider the
same problem as before but with a larger sampling time, i.e.,
mTs,m = 1, 2, . . . . Thence, the discrete counterpart of (5):

x [(k + 1)mTs] = eAmTsx(kmTs)+

m−1∑
i=0

βiB u [(km+ i)Ts] ,

(9)

with βi = eA(m−i−1)Ts
∫ Ts

0
eAτdτ.

Observe that we have m shifted sequences of the same type:

x [((k + 1)m+ `)Ts] = eAmTsx [(km+ `)Ts] + (10)
m−1∑
i=0

βiB u [(km+ `+ i)Ts] ,

with ` = 0, . . . ,m− 1.For a more compact notation define

x [(km+ `)Ts] := xm (k, `) , (11)

um(k, `) :=


u((km+ `)Ts)

u ((km+ 1 + `)Ts)
· · ·

u (((k + 1)m− 1 + `)Ts)

 ,(12)

y [(km+ `)Ts] := ym (k, `) (13)

and

Am := eAmTs , (14)
Bmi

:= βiB, (15)
Bm :=

(
Bm0 · · · Bmm−1

)
, (16)

Cm := C, (17)

Dm =

{
D , m = 1(

D 0 · · · 0
)

, m > 1.
(18)

Hence, we end up with the following state-space model:

xm(k + 1, `) = Amxm(k, `) +Bmum(k, `), (19)
ym(k, `) = Cmxm(k, `) +Dmum(k, `). (20)

III. SID OF THE DOWNSAMPLED MODEL (SIDDS)

Solving (19)–(20) for k = 0, 1, . . . , i− 1, we have

yi(0, `) = Γmixm(0, `) +Hiui(0, `), (21)

where

yi(0, `) =
(
yTm(0, `) yTm(1, `) · · · yTm(i− 1, `)

)T
,

ui(0, `) =
(
uTm(0, `) uTm(1, `) · · · uTm(i− 1, `)

)T
,

Γmi :=
(
Cm CmAm CmA

2
m . . . CmA

i−1
m

)T
is the extended observ. matrix and Hi is the Töplitz matrix

Hi :=


Dm 0 · · · 0 0

CmBm Dm · · · 0 0
CmAmBm CmBm · · · 0 0

...
CmA

i−2
m Bm · · · · · · CmBm Dm


.

If we replace yi(0, `), ui(0, `) and xm(0, `) by Yp = Y0|i−1,
Up = U0|i−1 and Xp = X0, respectively, defined by

Y0|i−1 =
(
yi×m(0) yi×m(1) · · · yi×m(j − 1)

)
,

U0|i−1 =
(
ui×m(0) ui×m(1) · · · ui×m(j − 1)

)
,

X0 =
(
xm(0) xm(1) . . . xm(j − 1)

)
,

(22)
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with
yi×m(k) =

(
yi(k, 0) yi(k, 1) · · · yi(k,m− 1)

)
,

ui×m(k) =
(
ui(k, 0) ui(k, 1) · · · ui(k,m− 1)

)
,

xm(k) =
(
xm(k, 0) xm(k, 1) · · · xm(k,m− 1)

)
.

equation (21) also holds. In a similar manner, (21) also
holds for Yf = Yi|2i−1, Uf = Ui|2i−1 and Xf = Xi, i.e.,
Yf = ΓiXf + HiUf . On the other hand, we can see that
Xf = AimXp + CRi Up, where CRi is the reversed acces-
sibility matrix CRi =

(
Ai−1
m Bm · · · AmBm Bm

)
.

From these equations, we can estimate the DT SS model
parameters, Am, Bm, Cm, Dm, using a SID algorithm [9],
[18], [21].

IV. CT MODEL PARAMETERS ESTIMATION

The SID algorithm estimates the parameters of the DT
model (19)–(20). Equations (14)–(18) relate the DT model

parameters to the CT ones. Hence A =
1

mTs
log(Am) and

C = Cm, where log(Am) is the principal matrix logarithm of
Am. Since B and D are linear functions of Bm and Dm, the
subspace algorithm can be changed to compute directly these
CT model matrices. Moreover, a model with a prescribed
number of zeros can be obtained if linear restrictions are
imposed on the estimates of B and D.

In this section, it is shown how to estimate directly the CT
model parameters B and D. Also, conditions to impose a
certain number of zeros on the model are derived.

A. Estimation of B and D

In SM, Bm and Dm are the solution of a least squares

(LS) problem Z = M

(
Dm

Bm

)
, where Z ∈ R·×mnu

and M ∈ R·×(ny+n). From (15)–(16) and (18), we have:

Z =
(
M1 M2

)( D 0 . . . 0
β0B β1B . . . βm−1B

)
, with

M1 ∈ R·×ny , M2 ∈ R·×n.

If Z is partitioned in a convenient way:
Z =

(
Z0 Z1 . . . Zm−1

)
, with

Z0 = M1D +M2β0B

Z` = M2β`B, ` = 1, . . . ,m− 1.

Stacking together the columns of the matrices, hence

Z =M
(
D
B

)
, (23)

where

Z =


Z0

Z1

...
Zm−1

 and M =


M1 M2β0

0 M2β1

...
0 M2βm−1

 .

Then, B and D can then be found by a LS estimator [23].

B. Restriction of the zeros of the CT model

Consider (1)–(2) as a SISO system (ny = nu = 1). Differen-

tiate (2) k times and define yk =
dky

dtk
and uk =

dku

dtk
. Then

yk = CAkx+Duk +CBuk−1 + · · ·+CAk−1Bu. Assume

CAk−2B = CAk−3B = · · · = CB = D = 0, (24)

and thence yk = CAkx+ CAk−1B︸ ︷︷ ︸
:=Dk

u

=⇒ Gk(s) =
Yk(s)

U(s)
=
skY (s)

U(s)
= skG(s),

where G(s) is the TF of (1)-(2). If G(s) has nz zeros, then
they are also zeros of Gk(s) and Gk has k additional zeros
at the origin. Therefore, Gk(s) has nzk = nz + k zeros.
If Dk = 0 then nzk ≤ n − 1 =⇒ nz ≤ n − k − 1.
To restrict the number of zeros to zM , we need to impose
zM = n− k − 1⇔ k = n− zM − 1. Define

Γn−zM−1 :=
(
C CA . . . CAn−zM−2

)T
and consequently

nz ≤ nzmax ⇔
(

1 0
0 Γn−zM−1

)(
B
D

)
= 0. (25)

To simplify notation, define Ψ :=

(
1 0
0 Γn−zM−1

)
and

θ :=

(
D
B

)
. Then (25) is equivalent to θ ∈ Im(ΨT )⊥ ≡

Ker(Ψ). Next, define the orthogonal projection operator
P on ker(Ψ) P := I − ΨT

(
ΨΨT

)−1
Ψ, and then θ ∈

{Pφ,∀φ ∈ Rn} , i.e., θ = φ\(Ker(Ψ))T , where V \W means
the projection of the column space of V into the column
space of W. Thence (23) can be written as Z = MPφ.
Given thatMP is rank deficient, there is an infinite number
of LS solutions for φ [8]:

φ = (MP )
†Z +

(
I − (MP )

†MP
)
ξ. (26)

Notice that ϑ =
(
I − (MP )

†MP
)
ξ is the projection of

ξ into the orthogonal complement of the column-space of
PM. Since PM is in the Im(ΨT )⊥, then ϑ ∈ Im(ΨT )
and consequently θ̂ = (MP )

†Z, i.e., θ̂ is the constrained
LS estimator of θ.

When (1)–(2) is a MIMO (nu > 1) and θ becomes:

θ =
(
θ1 · · · θnu

)
:=

(
D1 · · · Dnu

B1 · · · Bnu

)
∈ R.(ny+n)×nu

Also, Gi,j(s) =
Yj(s)

Ui(s)
is the TF between in-

put ui(t), i = 1, . . . , nu, and output yj(t), j =
1, . . . , ny. Likewise, the restrictions on zMi,j

, the max-
imum number of zeros of Gi,j , can be represented by

6465



Ψiθi = 0, where Ψi :=


I 0
0 Γn−zMi,1

−1(1)

0 Γn−zMi,2
−1(2)

...
...

0 Γn−zMi,ny
−1(ny)

 ,

Γk(j) :=
(
C(j, :) C(j, :)A . . . C(j, :)Ak−1

)T
,

where C(j, :) is the jth row of C. Once having defined
Pi := I − ΨT

i

(
ΨiΨ

T
i

)−1
Ψi, the constrained LS estimator

for each θi can be written as θ̂i = (MPi)
†Z.

V. CASE STUDY

We analyse a fourth order non minimal phase system with
high rate sampled data, used in the program idcdemo of
Contsid [2], [5] and appearing often in the literature, e.g.
[11], [13], [17]:

G(s) = −
6400

(
s− 1

4

)
(s2 + 4s+ 400)(s2 + s+ 4)

. (27)

The system has two resonance frequencies, 20 and 2 rad/sec,
with the respective damping values of 0.01 and 0.25. As
the magnitude of its modes is rather different, this is a stiff
system. Since the poles and zeros are well apart, it should
be feasible to identify the system.
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Fig. 1. Left: Pole zero map of G(s). Right: Pole zero map of Gd(s).

A TF of the discretised system for ZOH inter-sample be-
haviour and a sampling period of Ts = 0.01 sec is

Gd = − 0.001051 (z − 1.003)(
z2 − 2487

1250
z +

98962873

100000000

) × (28)

×

z +

sampling zero︷ ︸︸ ︷
3.675

z +

sampling zero︷ ︸︸ ︷
0.2621


(
z2 − 9609

5000
z +

3843549

4000000

) .

One may observe that the discrete-poles pd1,1 = 0.9948 ±
j0.0113 and the discrete zero zd1 = 1.003 cluster around
the point 1 + j0 and the zero almost cancels with one of
the poles. This is due to a very small sampling period and
translates into numerical difficulties for the DT identification
algorithm. Also, two sampling zeros appear [1].

A. Comparative simulation results

The CT system (27) was simulated using Ts = 0.01 sec, a
ZOH and a pseudo random binary sequence (PRBS) with 10
stages and a switching time Tsw = 7Ts = 0.07 sec as input.

1) Influence of the sampling period: The singular values
(SV) pattern of an extended observability matrix estimated
by a subspace algorithm is shown in Figure 2. For m = 1, as
the fourth SV is very small, a small amount of noise to the
output might be sufficient to hide it. For m = 6, there are
4 SV clearly different from zero, denoting significant degree
of robustness to noise.
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Fig. 2. Left: SV of SIDDS(1). Right: SV plot of SIDDS(6).

When a band limited white noise is added to the output
(SNR= 20 dB/ 0 dB), extra SV appeared. For m = 1, the
noise SV can be easily confused with the fourth process SV:
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Fig. 3. SV of SIDDS(1).

For m = 6, there is a clear distinction between the process
and noise SV.
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Fig. 4. SV of SIDDS(6).
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2) Comparison with Direct methods of Contsid: Since a
choice of m > 15 results into aliasing in the exponential
matrix eAmTs , the CT system (27) was identified with SIDDS
for m = 1, . . . , 15, SIDDS(m). The obtained models were
compared with the following Contsid system identification
methods:

• SVRIC—Simplified Refined Instrumental Variable for
Continuous Time Output Error Model

• SSBCGPMF— State-Space Biased Compensating Gen-
eralized Poisson Moment Functionals

• SSIVGPMF—State-Space Instrumental Variable Gener-
alized Poisson Moment Functionals

• SSLSGPMF—State-Space Least Squares Generalized
Poisson Moment Functionals

• SIDGPMF—Subspace State-Space Model Identification
Generalized Poisson Moment Functionals

• SIDFMF—Subspace State-Space Model Identification
Fourrier Modulating Functions

• SIDRPM—Subspace State-Space Model Identification
Reinitialized Partial Moments

• SIDHMF—Subspace State-Space Model Identification
Hartley Modulating Functions

• SIDLIF—Subspace State-Space Model Identification
Linear Integral Filter

The SRIVC, an IO identification method was used as a
reference, because it produces optimal results under the
conditions considered in the MCS. The last three methods
were discarded due to its poor performance when compared
with the others. For the deterministic case, all Contsid
methods estimated an exact model, as well as the SIDDS(m),
m = 1, . . . , 15.

To evaluate the effect of noise, we run MCS with 100
experiments for SNR of 20 dB and 0 dB. That is, we
kept the same conditions as before and added a bandwidth
limited noise at the Nyquist frequency to the output. The
performance of the methods was assessed by the percentage
simulation error (PSE), defined as:

Ep =

√√√√∑N
k=1 (ydet(k)− ŷ(k))

2∑N
k=1 y

2
det(k)

× 100, (29)

where N is the length of the IO data record, ydet is the
deterministic output generated by the true model and ŷ is
the output generated by the estimated model. This error was
calculated for two data sets: (i) the data set generated by the
input signal used in the identification experiment, Epi and (ii)
the data set generated considering a random binary sequence
as input, Epv . Figure 5 displays a box plot of both the
Epi and Epv errors, for the different identified models with
SRN=20 dB. On each box, the central mark is the median,
the edges of the box are the 25th and 75th percentiles, and
the whiskers extend to the most extreme data points. Figure 6
displays a box plot of both the Epi and Epv errors, for the
different identified models with SRN=0 dB. From Figure 5
and 6, we can assess the superior performance of the SRIVC,
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followed from close by the SIDDS with an adequate choice of
m, e.g. m = 9, . . . , 13. Consequently, SIDDS behaved better
than the SS Contsid methods.

Figure 7 shows the scatter plot of the poles and zeros
estimated by SRIVC, SIDDS(10) and SSIVGPMF, with SNR=0
dB. In this figure, one may observe that SIDDS and SRIVC
have similar variability.

TABLE I
DC GAIN OF THE ESTIMATED MODELS WITH SNR=0 dB.

SRIVC SIDDS(10) SSIVGPMF

K 1.0217± 0.3127 1.0190± 0.3553 1.0123± 0.5620

Table I displays the value and the 95 % confidence interval
for the estimated DC gain of the DT model. Once again,
SIDDS(10) is close to the SRIVC.

VI. CONCLUSION AND FUTURE WORK

A new SID method for CT systems have been proposed. This
new approach is based on subspace DT identification meth-
ods, but takes into consideration the intermediate sampling
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Fig. 7. Scatter plot of the zero-pole diagram using algorithms SIDDS(10),
SRIVC, and SSIVGPMF.

instants of the input signal of a downsampled data set. Some
of the parameters of the CT are directly estimated, avoiding
the problem of converting the parameters of a DT model into
the CT ones. A procedure that secures an a priori number of
zeros for the CT model is used during the estimation process.
The algorithm performance is illustrated and compared using
an example of fast sampling from Contsid.

The proposed algorithm has outperformed the SS methods
described in Contsid and reached a performance very close
to an optimal IO instrumental variable method, the SRIVC
method.

Being a DT based SID algorithm our approach suffers from
some problems that are inherent to these SM, namely when
the row spaces defined by the past and future inputs are
almost parallel. In the future, we would like to analyse this
problem in order to make this algorithm able to cope with a
wider range of input signals. We also intend to adapt SIDDS
algorithm to the identification of CT linear parameter varying
systems and to extend the downsampling approach to other
classes of Linear Time Invariant Identification algorithms
such as gradient based SS and prediction error methods for
IO models.
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