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Abstract— This paper considers the problem of improving
the monitoring capability of a sparse stationary sensor network
with mobile sensor nodes. The main idea is that the mobile sen-
sors should sample the areas that are least covered (monitored)
by the static sensors. Thus, a simple path planning strategy
is presented that decides the next point to be visited using
only “local” information. For a simplified scenario, the paper
derives the optimal path strategy and extrapolates some of the
properties of the scenario to a more general instance of the
problem. Furthermore, the paper proposes a surrogate metric
that can be used in order to determine the optimal searching
neighborhood and presents extensive simulation results which
indicated that this approach can achieve very good results.

I. INTRODUCTION

Mixed Wireless Sensor Networks (WSNs) are sensor net-

works that consist of both static and mobile sensor nodes.

In this paper we consider the use of a mixed wireless

sensor network for improving the area coverage (monitoring

capability) of the network. The main idea is to use mobile

sensor nodes that will collaborate with the static ones in order

to sample the coverage holes. The main objective of this work

is to determine the near optimal path that the mobile node

(or a group of nodes) should follow in order to better cover

the monitored area. In general, this is a difficult problem and

it is not possible to guarantee optimality for a given instance

of the problem.

Our approach in addressing this problem is to use a

dynamic search strategy where the mobile determines the

biggest coverage hole in an area (neighborhood) around it

which constitutes its target location (i.e., the area that needs

to be sampled next) [1]. An interesting question that needs to

be addressed is the size of the neighborhood that the mobile

needs to consider when determining its target. Clearly, that

neighborhood cannot be very small since this will lead to

myopic strategies where the mobile will search for very small

holes ignoring much bigger holes that are a little further

away. On the other hand, what we show in this paper is

that the neighborhood should not be very big either which

is a rather counter-intuitive result. This result indicates that

the mobile should look for a “medium” size coverage hole

located in the mobile’s immediate neighborhood and ignore

the possibly larger holes that are located further away. This
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strategy is justified because the mobile will waste valuable

time traveling towards a bigger hole when it can sample the

smaller coverage holes that are located much closer to it.

As indicated above, the searched neighborhood should

not be very small but it should not be very big either,

therefore, there must be an optimal size. Formulating the

problem to determine the optimal neighborhood size is not

straightforward, thus we resort to a surrogate metric that

can lead us to the optimal neighborhood size. The surrogate

metric used is the variance of vacancy used in coverage

processes [2], [3]. In this context, the computation of the

variance of vacancy is a function of the size of the area that

is used for the computation. The main idea in this paper

is to associate the neighborhood where a mobile is going

to search for the biggest coverage hole with the area that

maximizes the variance of vacancy. The justification behind

this approach is that the mobile needs to consider as much

new information as possible when it will decide where it

will go next. Thus, the mobile uses the neighborhood that

maximizes variance of vacancy. As will be presented in the

sequel, this choice achieves very good results.

The contributions of this paper are the following. In the

context of mixed wireless sensor networks, it shows that it

is not optimal to first search the largest coverage hole in

the entire field; rather searching a big enough hole close

to the current mobile location can yield faster coverage.

Furthermore, the paper proposes a surrogate metric that can

be used in order to determine the optimal size of the search

neighborhood. Even though the proposed search approach

cannot guarantee an optimal solution, the obtained solutions

are satisfactory considering the difficulty of the problem.

II. RELATED WORK

Searching for targets in unknown environments is an area

that has been investigated in [4], [5] which especially study

the moving target problem. However, in [4], [5], the focus

is on how to allocate search effort across the environment

instead of finding the best search path to follow. In the

context of sensor networks, various algorithms have been

proposed for maximizing area coverage. Several algorithms

are based on the notion of potential field and virtual forces

[6], [7], while others are based on the structure of a Voronoi

diagram in which nodes are relocated to fill up coverage

holes [8], [9]. In addition, a distributed coverage control

scheme has been proposed in [10] where mobile sensors
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move collaboratively in order to reposition and organize

themselves in response to the events distribution in the

environment and also incorporate communication costs into

the coverage control problem. However, the underlying idea

of our approach is to use mobile sensors that move using

a path planning algorithm in order to enhance the dynamic

coverage of a sparse stationary sensor network.

In [11], the authors focus on the dynamic coverage ca-

pabilities that result from the continuous random movement

of mobile sensors. Polycarpou et al. [12] propose a general

framework for directing a group of agents to cooperatively

search a dynamic and uncertain environment. Along similar

lines, a receding horizon approach with dynamic search is

proposed in our previous work, [1]. Finally, dynamic multi-

vehicle routing is addressed in [13] where the objective is to

minimize the delay of servicing certain demands. Dynamic

routing is also presented in [14] but the objective is to

minimize event detection time and also the problem of

optimal neighborhood is not considered.

III. MODELS AND ASSUMPTIONS

We consider a mixed wireless sensor network made of

a large number of static sensor nodes deployed in a large

square area A as shown in Fig. 1. For the purposes of this

Fig. 1. Mixed sensor network model.

paper we make the following assumptions:

• A set S with S = |S| static sensor nodes are randomly

placed in A at positions xi = (xi, yi), i = 1, · · · , S.

• A set M of M = |M| mobile sensor nodes are available

and their position after the k-th time step is xi(k) =
(xi(k), yi(k)), i = 1, · · · ,M , k = 0, 1, · · · .

• All nodes have a common (known) sensing range rd
and communication range rc > rd (see Fig. 1).

• All nodes know their position through a combination of

GPS and localization algorithms.

For notational convenience we also define the set of all

sensor nodes N = S∪M where N = S+M . The objective

of the WSN is to detect a static event that may occur at a

random position e = (xe, ye) in A. If the event occurs in the

coverage area of at least one static sensor it is immediately

detected by the network. However, if the event occurs at

a point that is not covered by any sensor, it will remain

undetected. Thus the objective of all mobile nodes is to

sample the uncovered regions efficiently such that an event

that has occurred in an uncovered region is detected as fast

as possible.

Next, we define the dynamic area coverage C which will

serve as an objective function to be maximized by the mobile

sensors. At any instant τ , let I(x, τ) be an indicator function

that takes the value 1 if point x ∈ A has been covered by

at least one sensor (static or mobile) in the interval [0, τ ],
and 0 otherwise. In other words, I(x, τ) = 1 if there exist

a sensor s ∈ S such that ‖xs − x‖ ≤ rd or if a sensor

s ∈ M has passed from a point such that x was covered,

i.e., ‖xs(k) − x‖ ≤ rd. Thus, the coverage achieved by the

network at τ is given by

C(τ) =
1

A

∫

A

I(x, τ)dx. (1)

As mobile nodes move, they cover new areas, thus a reason-

able objective function is

C(t) =
∫ t

0

C(τ)dτ (2)

which is the objective that needs to be maximized by the

mobiles. Next, we present the algorithm used by the mobile

to navigate through the sensor field in order to maximize (2).

IV. THE TWO HOLE PROBLEM

In this section we investigate what happens if there are

only two coverage holes in order to gain some insight that

can be used in other heuristic approaches for efficiently

solving the problem.
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Fig. 2. Problem geometry

Assume that the field has only two coverage holes with

areas Ab and As (Ab ≥ As) and centroids, Cb and Cs

respectively (see Fig. 2). For simplicity, it is also assumed

that there is no overlap between the two holes. A mobile node

is initially placed at position O at distance db = ‖Cb −O‖
from hole Ab and at distance ds = ‖Cs−O‖ from hole As.

The distance between the two coverage holes is indicated by

dsb = ‖Cs−Cb‖. The objective of the mobile is to maximize

C(T ) where C(t) is given by (2) and T is some time instant

such that in all of the paths considered, the mobiles achieve

full coverage.

Given that there are only two holes, the mobile has only

two options. First go to Ab, search Ab and then go to As or

first go to As, search As and then go to Ab. Fig. 3 shows

C(t) under the two different paths thus C(T ) for each path is

the area under the corresponding curve from 0 until T ≥ tb4.

In this figure, we assume that when the mobile travels over

covered regions Ċ(t) = 0 while when it searches in coverage

holes the coverage improvement is constant at rate Ċ(t) =
2rdv/(As +Ab) where v is the constant mobile speed.
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Fig. 3. Coverage over time

When the mobile follows the path from O → Cs → Cb,

Csb(T ) is given by

Csb(T ) =
1

2

As

2rdv

As

As +Ab
+

dsb
v

As

As +Ab
+

Ab

2rdv

As

As +Ab
+

1

2

Ab

2rdv

Ab

As +Ab
+

db − ds
v

(3)

Similarly, if the mobile follows the path from O → Cb →
Cs, Cbs(T ) can be computed. Comparing Csb(T ) (3) and

Cbs(T ) or simply observing Fig. 3, the decision of the mobile

is to follow the path that maximizes C(T ) which is equivalent

to comparing the three areas W1, W2 and W3 in Fig. 3. Thus

Csb(T ) ≶ Cbs(T ) ⇔ W1 +W3 ≶ W2 (4)

which in turn is equivalent to

Csb(T ) ≶ Cbs(T ) ⇔ dsb (Ab −As) ≷ (db − ds) (Ab +As)
(5)

Next, we consider the following cases (proofs are omitted

due to space limitations):

C1 {Ab = As = A}: The decision problem Csb(T ) ≶

Cbs(T ) reduces to ds ≷ db, i.e., the mobile should go to its

nearest coverage hole first.

C2 {db = ds = d}: The decision problem Csb(T ) ≶

Cbs(T ) reduces to Ab ≷ As, i.e., the mobile should go to

the biggest hole Ab first (since by assumption Ab ≥ As).

C3 {Ab > As and db < ds}: The decision is to always

go to the biggest hole which is also located nearer to the

mobile.

C4 {Ab > As and db > ds}: The decision depends on

the relative position (dsb) and the area ratio (̺ = Ab/As)

of the the two holes. Specifically, if the smaller hole is

located inside an “egg shaped” area defined by (6) (in polar

coordinates) then the decision is to search the smaller hole

first, otherwise, it is better to search the larger hole first.

ds =
db

(

(̺+1)2−(̺−1)2cos(θ)−
√

((̺+1)2−(̺−1)2cos(θ))
2

−(4̺)2
)

4̺

θ = [0, 2π)
(6)

This holds true when O = (0,0). One can use (6) to draw

the region in polar coordinate system as illustrated in Fig. 4.

Concluding, the analysis above demonstrates that a mobile

should not go immediately to the largest hole in the field

but it should first search smaller holes that are closer to the

mobile (areas in the egg shaped region). However, note that
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Fig. 4. The Egg-shaped region for ̺ = 3 and O = (0,0). If Cs is located
inside the shaded region then a mobile should follow the path O → Cs →

Cb to maximize coverage over time.

the precise size of the egg, depends on the relative size of

the two coverage holes (̺). If for example the smaller hole is

significantly smaller than the larger one, then the egg will be

significantly narrower, implying that the smaller one should

be visited first only if it is exactly in the straight path to the

big hole. Furthermore, in many scenarios it may be difficult

to clearly identify two holes (some holes may be connected)

and as already mentioned there may be more than two holes

which makes it impractical to determine the optimal path of

the mobile. Thus, the implementation of such an algorithm

is rather difficult, however, the insight from the analysis is

clear: “Large enough holes close to the mobile should be

searched first, before moving towards the biggest holes of

the field”. The simplest way to implement this “insight” is

by searching for the biggest coverage hole in a neighborhood

around the mobile. This is the approach of the algorithm

presented next (see also [1]).

V. MOBILE PATH PLANNING STRATEGY

The mobile’s path planning strategy is based on a

Receding-Horizon approach where at each step the mobile’s

controller evaluates the cost of moving to a finite set of

candidate positions and moves to the one that minimizes an

overall cost. Suppose that during the kth step, the mobile

node is at position x(k) and is heading to a direction θ.

The next candidate positions are the ν points y1, · · · , yν
that are uniformly distributed on the arc that is ρ meters

away from x(k) and are within an angle θ − φ and θ + φ.

The mobile node evaluates a cost function J(yi) for all

candidate locations (y1, · · · , yν) and moves to the location

x(k+1) = yi∗ = x(k)+ρ.ei(θ+ϕi∗ ) where i is the imaginary

unit and i∗ is the index that minimizes J(yi).

J(yi∗) = min
1≤i≤ν

{J(yi)} (7)

In this model, θ is the direction that the mobile is heading,

ρ is the distance that the mobile can cover in one time step,

φ is the maximum angle that the mobile can turn in a single

step, and ν is the number of candidate positions that is being

evaluated for the next step.
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The cost function that each mobile is trying to minimize

is of the form

J(y) =
∑

j

wjJj(y) (8)

where Jj(·) is a specific objective and wj’s are non-negative

constant weights such that
∑

j wj = 1.

After extensive investigation [1], two specific normalized

functions have been selected: Jt(·) which penalizes positions

that are away from its target (medium term goal) position

and Js(·) which penalize positions that are close to static

or mobile sensors. Assuming that the mobile has a target

destination point xt, the Jt(y) is a function that pulls the

mobile towards its target. The objective of Js(·) function is

to push the mobile away from areas covered by other sensors,

thus the Js(y) used involves a repulsion force that pushes

the mobile away from its closest neighbor (see [1] for more

details).

Given the intuition gained from the 2-hole problem, the

mobile’s target position xt is set as the centroid of the biggest

coverage hole in a “local” neighborhood of radius rz around

its current location x(k) This target point is dynamic as it

is updated at every moving step and is determined using the

zoom algorithm [1], [15]. An important question that arises

is the size of the neighborhood. If rz is too small, then the

mobile may waste time searching insignificant holes missing

much larger holes. On the other hand, if the neighborhood

is too big, then the mobile will move straight towards much

larger holes avoiding significant holes that are located close

to it. Therefore, there is an optimal neighborhood size. In

the next section we investigate a surrogate function that we

can use to perform this optimization.

VI. VACANCY

Given the difficulty in directly finding the optimal value

for rz , the objective of this section is to derive a surrogate

function that can be used to approximate the solution of this

problem.

A. Preliminaries on coverage processes

In this subsection we use tools from the theory of coverage

processes [2], [3] in order to analyze the coverage holes

that are generated from the random deployment of sensors

in A. Consider a two-dimensional point process where a

collection of N random points is thrown in a square area

A according to the probability density f(x) = 1
A . Let

the countable collection of randomly distributed points be

P ≡ {x1,x2, · · · ,xN}. Assume that there exists a disc

around each point of radius r (in our case r = rd the

detection range) thus all points in the union of all N discs

are considered as covered while all non-covered points are

considered as vacant. Vacancy is the collection of all vacant

points within an arbitrary area R ⊂ A which constitutes

a random variable with mean and variance that are defined

in the sequel [16]. Let I(x) be the indicator function of

uncovered points such that I(x) = 1− I(x) = 1 if x ∈ A is

not covered by any disk of radius rd or I(x) = 0 otherwise.

The vacancy within and arbitrary area R ⊂ A, VR = V (R)
is given by

VR = V (R) ≡
∫

R

I(x)dx (9)

and the mean of vacancy (expected uncovered area) is

E(VR) =

∫

R

E{I(x)}dx =

∫

R

P (x not covered) dx

=

∫

R

(

1− a

A

)N

dx = R
(

1− a

A

)N

(10)

where p = a
A is the probability that a point x ∈ A is covered

by a disk of area a = πr2d and (1− p)
N

is the probability

that the point x is not covered by any of the N disks (sensor

positions are independent). Also R is the area of R.

The variance of vacancy is

V ar(VR) = E
(

V 2
R

)

− (E(VR))
2

(11)

where the mean square of vacancy is

E(V 2
R) =

∫ ∫

R2

E{I(x)I(y)}dxdy

=

∫ ∫

R2

P (x,y both not covered)dxdy
(12)

Thus, V ar(VR) can be computed numerically by performing

an integration of the probability P (x,y both not covered).
Let the density λ ≡ N

A of points per unit area of A
converges to a constant value as A increases. Hence, for N
large and a

A small, by (10) the mean of vacancy in a region

R ⊆ A is approximated by

E(VR) ≈ Re−λa (13)

An approximation of the variance of vacancy in a subre-

gion R ⊆ A is derived in [16] and is given by

V ar(VR) ≈ Rae−2λa

(

8

∫ 1

0

x
(

eλ
a

π
B(x,1) − 1

)

dx−Raλ2

)

(14)

where B(x, r) is the intersection area of two disks with radius

r and which are centered 2x apart. This area is given by

B(x, r) =

{

4r2
∫ 1

x/r

√

1− y2dy if 0 ≤ x ≤ r

0 if x > r
(15)

Hence B(x, 1) = 2 arccos (x) − 2x
√
1− x2. Even though

(14) cannot be computed analytically, it can be computed

numerically (see [16]). Let

Q(λ, rd) =

∫ 1

0

x
(

eλr
2

d
B(x,1) − 1

)

dx (16)

independent of R, then the V ar(VR) can be written as

V ar(VR) ≈ Rπr2de
−2πr2

d
λ
(

8Q(λ, rd)−Rλ2πr2d
)

(17)

which is a polynomial of R with a maximum at

R∗ =
4Q(λ, rd)

πλ2r2d
(18)
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B. An Approximation of Optimal Search Neighborhood

Next, we use the optimal area size R∗ in order to

determine the optimal neighborhood size that the mobile

node should use in order to determine the biggest coverage

hole to visit next. Recall that the conjecture is that the

neighborhood size should be large enough such that the new

information considered by the mobile in making this decision

is maximized. Assuming that at time k the mobile is at

position x(k), then it should search for the biggest hole in

a circular area R1 with radius rz . During the next step, the

mobile will move to a new location x(k + 1) = x(k) + ρ,

ρ ∈ R
2, where the region that the mobile will search for

a coverage hole will be R2. Thus, the new information

that the mobile will consider from one step to the next is

∆R = R2 \ R1 (i.e Rc
1 ∩ R2). The objective then is to

choose the size of the areas R1 and R2 (the radius rz)

such that the variance of vacancy in ∆R is maximized. As

the variance of vacancy in ∆R is maximized between two

consecutive steps, the mobile can exploit, on average, the

“maximum” difference in vacancy at each step k in order to

take, on average, the optimal local decision. The new region

∆R depends on the current position of the mobile and the

next candidate position. This means that by maximizing the

variance of vacancy in the new region ∆R (between two

consecutive steps) one also maximizes the amount of new

information that is used by the mobile to decide its next

target.

Given the result of (18), the optimal radius r∗z is the

solution to the equation

∆R =
4Q(λ, rd)

πλ2r2d
(19)

where ∆R is the area of ∆R.

Lemma 1: The solution to (19) is approximated by

r∗z ≈ 64Q2(λ, rd) + π2(ρλrd)
4

32πρλ2r2dQ(λ, rd)
(20)

where ρ = ‖ρ‖ is the distance traveled by the mobile in one

step.

VII. SIMULATION RESULTS

In this section, we present some numerical results that

support the conjecture of this paper, i.e., that the optimal

search radius rz is given by Lemma 1. For the mobility

strategy the following parameters were used: the mobile

evaluates ν = 10 candidate next positions which are uni-

formly distributed on an arc with radius ρ = 2.5m and

extends φ = 35◦ above and below of the current direction

of the mobile. Unless otherwise stated, all experiments refer

to a square sensor field of area A = 40000m2. A set of

S = 200 static sensors are deployed and their coordinates are

generated according to a uniform distribution. The detection

radius of all sensors is rd = 5m and the communication

range rc = rz + rd. The radius rz defines the radius of

the search area where the mobile is searching for its target

(largest coverage hole center). All simulations performed

in MATLAB and the outcomes are the averages of 100
independent random deployments.

In the first simulation experiment we investigate the effect

of the sensor detection range rd on the optimal neighborhood

size. Using Lemma 1, the optimal neighborhood size for

different rd is presented in Table I. As shown in Table I

rd S ρ rz
∗ V ar(V∆R)

2 200 2.5 20.3 35.9
5 200 2.5 21.9 847
8 200 2.5 25.7 2232.1

10 200 2.5 30.1 2417.6

TABLE I

THE OPTIMAL SEARCH NEIGHBORHOOD r∗z FOR DIFFERENT rd VALUES

as the detection radius rd increases, the r∗z radius, where

V ar(V∆R) is maximized, also increases but remains small

compared to the field size (e.g. 200m). This is reasonable

because as the sensing radius of each sensor increases (and

given that the number of sensors is fixed S = 200) it is

possible to generate deployments with higher variation in

the achieved coverage.
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Fig. 5. The average dynamic coverage accomplished over 100 sensor fields
by a mobile node after k=2000 moving steps for different rz values when
rd = 5m

Fig. 5 presents the average dynamic coverage C(k)
achieved by the path planning algorithm after k = 2000 time

steps accomplished over 100 sensor fields by one mobile

node when rd = 5m. The figure indicates that coverage is

maximized when rz = 22m which is what was also predicted

by Lemma 1 (see Table I).

In the next simulation experiment we investigate how the

optimal rz value is affected by the density λ ≡ S
A of the static

sensors. First, using Lemma 1 we compute the optimal r∗z
as shown in II.

rd S ρ rz
∗ V ar(V∆R)

5 100 2.5 41.9 1141.3
5 200 2.5 21.9 847
5 300 2.5 15.4 630.4
5 400 2.5 12.1 470.7

TABLE II

THE OPTIMAL SEARCH NEIGHBORHOOD r∗z FOR DIFFERENT S VALUES
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Fig. 5 shows that for S = 200 the optimal r∗z = 22m
which is in agreement with the results of Table II. Further-

more, Fig. 6 presents the coverage achieved by the path

planning algorithm when S = 300 sensors are deployed.

The maximum coverage is achieved when rz = 15m which

is again consistent with the Lemma 1 prediction as indicated

in Table II.
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(
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Fig. 6. The average dynamic coverage accomplished over 100 sensor fields
by a mobile node after k=2000 moving steps for different rz values when
N = 300

The next simulation considers how the optimal rz value is

affected by ρ, the distance that the mobile can move in one

time step. Distance ρ also indicates how frequently the target

(biggest coverage hole centroid) in the searching neighbor-

hood is computed with respect to the distance moved. Again,

we evaluate the optimal radius r∗z using Lemma 1 as shown

in Table III.

rd S ρ rz
∗ V ar(V∆R)

5 200 1 54.8 846.99
5 200 2.5 21.9 846.99
5 200 4 13.8 846.98
5 200 5 11.1 846.97

TABLE III

THE OPTIMAL SEARCH NEIGHBORHOOD r∗z FOR DIFFERENT ρ VALUES

Fig. 5 indicated that the optimal rz for ρ = 2.5m is about

22m while Fig. 7 indicated that for ρ = 4m the optimal rz
is about 15m. Both of these results are consistent with the

Lemma 1 predictions shown in Table III.
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Fig. 7. The average dynamic coverage accomplished over 100 sensor fields
by a mobile node after k=2000 moving steps for different rz values when
ρ = 4m

In the previous simulations we have investigated the single

mobile case, but we point out that the approximation method

for obtaining r∗z also remains valid for the case of multiple

mobiles given that the coverage process is mainly governed

by the initial distribution of stationary nodes. In other words,

when the number of mobiles as well as their coverage rate

are small enough, however simulations are omitted due to

space limitations.

VIII. CONCLUSION

In this paper we propose a method to approximate the

optimal searching neighborhood that enhances the dynamic

coverage performance in a mixed sensor network archi-

tecture in conjunction with other parameters used in the

path planning method presented in previous work. This

approximation is based on the variance of vacancy of the

binomial coverage process. Obtained results from numerical

evaluations of the mathematical approximations have been

verified by Monte Carlo simulation outcomes of the dynamic

coverage performance of the path planning method.
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