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Abstract— This work investigates infinite-horizon properties
over discrete-time stochastic models with continuous state
spaces. The focus is on understanding how the structural
features of a model (e.g., the presence of absorbing sets) affect
the values of these properties and relate to their uniqueness.
Furthermore, we argue that the investigation of these features
can lead to approximation bounds for the value of such
properties, as well as to improvements on their computation.
The article employs the presented results to find a stochastic
bisimulation function of two processes.

I. INTRODUCTION

The analysis of general state-space stochastic models has
recently witnessed substantial efforts towards the use of
formal verification techniques [2], [7]. Recent work has
drawn formal connections between the solution of dynamic
programming problems, which constitutes the underlying
computation engine for a number of studies (such as (prob-
abilistic) reachability, invariance, and reach-avoid), and the
verification of related specifications in PCTL logic [3], [13]
(until properties). Along similar lines, control synthesis prob-
lems have been tackled with approaches that can be related to
probabilistic model checking [4]. These research efforts have
focused on models as general as stochastic hybrid systems,
namely hybrid models with stochastic continuous dynamics
as well as probabilistic jumps and resets.

There are two main approaches to study classes of infinite-
time properties for general state-space processes: 1) as the
limit of the iteration of certain operators, or 2) as the
solution of integral (Bellman-like) equations. Understanding
the properties and the computations related to the solution of
infinite-horizon properties [1] has lead to a few early results
[13], such as lack of uniqueness or triviality of solutions.

This work looks at discrete-time, general state-space mod-
els (its results can be for instance applied to stochastic
hybrid systems – dtSHS – as in [2], [4]) and has three main
objectives. First, it seeks to shed new light over the existence
of unique or trivial solutions of infinite-time properties such
as probabilistic invariance and reachability. Second, it puts
forward a technique to ease the computation of infinite-time
invariance, by hierarchically breaking down this property into
two subproblems and by approximating their solution. Third,
it exhibits the application of the above results to the problem
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of finding a stochastic bisimulation function (SBF) of two
processes [9].

The first problem (Section III) is elaborated by looking
at the presence of absorbing sets [11] over regions of
the continuous state space. These sets turn out to play
a critical role, both formally and computationally. As for
the second problem, in Section IV we propose a lower
bound for infinite-time probabilistic invariance by expressing
this property via a finite-time reach-avoid plus an infinite-
time invariance around absorbing sets on the state space.
An example is proposed in Section IV-D to elucidate the
results. With regards to the third problem (seeking a SBF
of two given processes), we put forward in Section V an
approach that is distinguished from [9] in that we do not
raise assumptions (e.g. linearity, stability) on the dynamics
of the two processes under study – a computational study is
developed in Section V-A to help explain the results. Proofs
are omitted from this manuscript due to space constraints.

II. PRELIMINARIES

Consider a discrete-time homogeneous Markov process
X on the Borel space X together with a Borel σ -
algebra B(X ) (see e.g. [8]). We define the stochastic basis
(Ω,F ,F,P), where F= {Fn}n≥0 and Fn = {Xk,0≤ k≤ n}
[6]. For each distribution of the initial state denoted as π ,
we define the probability measure Pπ such that

Pπ{X0 ∈ A}= π(A),

for all A ∈ B(X ). An expectation with respect to this
measure is denoted as Eπ . Similarly, we denote by Px(·) =
P(·|X0 = x) and the corresponding expectation by Ex. The
transition kernel associated to the process X is a measure on
(X ,B(X )) for each x ∈X given by T (A|x) = Px{X1 ∈ A}.

For a measurable function f : X →R let us put f−(x) =
max{0,− f (x)}. We say that f ∈L if Ex f−(X1)< ∞ for any
x∈X . For f ∈L a transition operator P and an excessive
operator Q are defined as follows:

P f (x) = Ex[ f (X1)],
Q f (x) = max{ f (x),P f (x)}. (1)

With C (B) we define the class of real-valued functions
that are continuous and bounded on B ∈B(X ) and for a
measurable function g : X → R and δ ∈ R we define the
superlevel set Xg(δ ) = {x ∈X : g(x)> δ}.
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III. PROBABILISTIC REACHABILITY AND INVARIANCE

A. Reachability as an optimal stopping problem

On the set Ω we define the following events for any N ≥ 0
and A ∈B(X ):

rN(A) = {∃n ∈ [0,N] : Xn(ω) ∈ A},
rA = {∃n≥ 0 : Xn(ω) ∈ A}.

We formally show the connection between calculating the
probability of these events and solving an optimal stopping
problem. Let us first define a stopping time [6].

Definition 1. A random variable τ is called a stopping time
for the process X if for all n≥ 0 the event {τ ≤ n} ∈Fn and
P{τ < ∞} = 1. For any subset A ∈B(X ) we also denote
τA = inf{n≥ 0 : Xn ∈ A} as a first entry time for the set A.

We introduce the following proposition, also discussed in
[5, Prop.6, p. 6176].

Proposition 1. For any N ≥ 0 and A ∈B(X ) we have

P[rN(A)] = sup
τ≤N

E[IA(Xτ)], (2)

where IA(·) : X →{0,1} is an indicator function of the set
A and τ is a stopping time. Moreover, the stopping time
τ∗ = τA∧N = min{τA,N} is an optimal stopping time in the
optimal stopping problem (2).

Corollary 1. For any A ∈B(X ),

P[rA] = lim
N→∞

P[rN(A)].

Note that these facts hold over arbitrary probability mea-
sures, in particular over Px, for any x ∈X .

The characterization of probabilistic reachability as an
optimal stopping problem leads to the following result, which
indicates a method to compute this quantity and suggests a
different perspective on [4].

Theorem 1. Let A ∈B(X ) and n ∈ N. Then

Px[rn(A)] = QnIA(x),

Px[r(A)] = lim
n→∞

QnIA(x),
(3)

for all x∈X , where as in (1), Q f (x) = max{ f (x),P f (x)}.

B. Probabilistic invariance – definition

Probabilistic invariance is dual to the problem of stochastic
reachability. It was studied in [2], assuming the process X is
a realization of a dtSHS. For a given set A ∈B(X ) and a
time horizon n ∈N we define corresponding value functions

un(x;A) = Px{Xi ∈ A for all 0≤ i≤ n}

and
vn(x;A) = Px[rn(A)].

Clearly we have the following identity

un(x;A) = 1− vn(x;Ac),

where Ac := X \A.

On the other hand we know that (see e.g. [14, Th.1, p.28])

vn(x;Ac) = max{IAc(x),Pvn−1(x;Ac)},

where v0(x;Ac) = IAc(x) and hence

un(x;A) = min{IA(x),Pun−1(x;A)} (4)

(compare e.g. [2, Prop.1, p.4]). We can also provide another
way to calculate the functions un: note that, from (4),

un(x;A) =

{
IA(x), if x ∈ Ac,

Pun−1(x;A), if x ∈ A,

hence for all n≥ 1 we have

un(x;A) = IA(x)Pun−1(x;A) = IA(x)
∫
X

un−1(y;A)T (dy|x),

where T is the transition kernel associated to the discrete
time homogenous Markov process X and u0(x;A) = IA(x).
Let us introduce the operator IA which is defined for
functions f ∈L :

IA f (x) = IA(x)
∫
X

f (y)T (dy|x). (5)

With regards to the infinite horizon invariance, let us
introduce the event {Xn ∈ A for all n ≥ 0}. It can be easily
seen that

Px{Xn ∈ A for all n≥ 0}= 1−Px[r(Ac)], thus
Px{Xn ∈ A for all n≥ 0}= u(x;A) := lim

n→∞
un(x;A),

where the limit exists pointwise for all x ∈X (cf. [1, Th.3,
p.263]). We denote v(x;Ac) = Px[r(Ac)] = lim

n→∞
vn(x;Ac).

C. Trivial solutions of probabilistic invariance

Theorem 2. Suppose that for some N we have

uN(x;A)≤ α < 1

for all x ∈ A, then u(x;A)≡ 0.

This fact can be exploited in the computation of u(x;A),
and leads us to the question of whether there will be an N
such that supx∈A uN(x;A) < 1. To answer this question we
introduce the notion of an absorbing set [11, Def.IV, p.91].

Definition 2. A non-empty set B ∈B(X ) is called absorb-
ing if for all x ∈ B the following identity holds

T (B|x) = 1.

The absorbing set B ⊆ A is called an absorbing subset of
A. For the set A ∈B(X ) the set B is the largest absorbing
subset of A if for any absorbing set B′ ⊆ A holds B′ ⊆ B.

Definition 3. The transition kernel T is called weakly
continuous [8] if P f ∈ C (X ) whenever f ∈ C (X ). We
write then T ∈ Cw(X ).
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D. Invariance and absorbing sets

Consider the following family of sets:

An = {x ∈ A : un(x;A) = 1}.

Here we note that A = A0 and A1 ⊆ A0. Define the following
limit set

A∞ =
∞⋂

n=0

An.

Lemma 1. For all n≥ 0 we have

An+1(x) = {x : T (An|x) = 1}. (6)

and An+1 ⊆ An.

Theorem 3. Let A ∈ B(X ) be a compact set and T ∈
Cw(X ). Then

u(x;A) = 0

for all x ∈X if and only if there are no absorbing subsets
of A. Moreover, if there is an absorbing subset of A then A∞,
as in Lemma 1, is the largest absorbing subset of A.

Remark 1 (On the computation of (6)). In some verification
problems it is relevant to calculate an absorbing subset
of a given set A, or to overapproximate it [3]. Using the
monotonicity of the procedure in (6) we conclude that if
A′n ⊇ An is an overapproximation of the set An and

A′n+1 ⊇ {x : T (A′n|x) = 1} (7)

then A′n+1⊇An+1. The right-hand side in (7) can be precisely
overapproximated by means of a state space discretization
algorithm [2] (the requirement on Lipshitz continuity in [2]
also verifies the continuity assumption in Definition 3).

IV. REACH-AVOID PROBLEM

A. Bounds for infinite horizon reach-avoid problem

For the sets A,B ∈B(X ) such that A∩B = /0 we define
the reach-avoid probability as follows

w(x;A,B) = Px{∃n > 0 : Xk ∈ A∀k < n,Xn ∈ B or X0 ∈ B}.

The set B is a target (reach) set, the set A is a set of legal
states and the set X \ (A∪B) is an illegal (avoid) set.

To calculate the reach-avoid probability value in w(x;A,B)
we set up a procedure, as described in [13] for the
unbounded-until specification, which is a specification in
modal logic that corresponds to the reach-avoid problem.

Let us define the operator

RA,B f (x) = IB(x)+ IA(x)
∫
X

f (y)T (dy|x).

If we denote w0(x;A,B) = IB(x), then for n≥ 0 define

wn+1(x;A,B) = RA,Bwn(x;A,B).

This sequence in non-decreasing and bounded from above
by 1. Moreover,

w(x;A,B) = lim
n→∞

wn(x;A,B), (8)

where the limit is taken pointwise (see [13, (3.7)]).

The following theorem provides strict bounds for the
convergence in (8).

Theorem 4. Suppose that for some N we have

uN(x;A)≤ α < 1

for all x ∈ A. Then, for any n,

w(x;A,B)−wn(x;A,B)≤ Nαb
n
N c

1−α
. (9)

Remark 2. To calculate the finite-horizon quantity
wn(x;A,B) one can use the discretization technique and
formal bounds provided in [2].

B. Decomposition of the infinite-horizon invariance proba-
bility

For the reach-avoid problem we derived computational
bounds for the case when the solution in (8) may be non-
trivial. The following theorem shows how to bound invari-
ance on the infinite horizon by two different problems: using
a reach-avoid value function, and an invariance problem.

Theorem 5. Let T ∈Cw(X ) and sets A,B∈B(X ) be such
that B ⊆ A and A′ \B is a compact set without absorbing
subsets. Then for all x ∈ A′ we have

u(x;A)≥ w(x;A,B)ψ(A,B), (10)

where
ψ(A,B) = inf

x∈B
u(x;A).

Note that due to the monotonicity of the sequence
wn(x;A′,B) we have

u(x;A)≥ wn(x;A,B)ψ(A,B), (11)

for all n≥ 0. Thus, the main question is how to find ψ(A,B)
or how to find bounds for this quantity, which we answer in
the next section. Notice that the definition of ψ(A,B) focuses
on points in set B ⊆ A: this directly leads to computational
advantages when calculating this quantity over u(x;A).

C. Bounds via local Doob’s inequality

We leverage the following Doob’s inequality [6], [12]: if
for some fixed x ∈X the process g(Xn) is a non-negative
Px-supermartingale for all n≤ N, then for all δ > 0 it holds
that

Px

{
sup

0≤n≤N
g(Xn)≥ δ

}
≤ 1

δ
sup

0≤n≤N
Ex[g(Xn)] =

g(x)
δ

. (12)

Definition 4. A measurable function g ∈ L is said to be
an excessive function (for a process X or with respect to an
operator P), if

Pg(x)≤ g(x).

for all x ∈ X . Let us call the function g excessive in
B ∈B(X ) if for all x ∈ B it holds that Pg(x)≤ g(x). The
maximal excessive set for the function g is the set

Eg = {x ∈X : Pg(x)≤ g(x)}.
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Lemma 2. [12, (1.2.40), p. 18] The function g is excessive
if and only if (g(Xn))n≥0 is a Px-supermartingale for all
x ∈X .

Often inequality (12) requires conservative assumptions on
function g: indeed, the previous lemma shows that inequality
(12) is only satisfied for excessive functions g. [10] presents
a relaxation of Doob’s inequality for functions that are
excessive only locally (see bottom of Def. 4).

Theorem 6. [10, Theorem 12, p. 71] If g is a measurable
and non-negative function such that X c

g (δ ) ⊆ Eg for some
δ > 0 then

Px

{
sup
n≥0

g(Xn)≥ δ

}
≤ g(x)

δ
.

for all x ∈X c
g (δ ).

D. Decomposition of probabilistic invariance: an example

This example displays the use of the bounds in Sections
IV-B and IV-C over a linear Gaussian discrete-time system.
Let X = Rm and M is a symmetric positive semidefinite
matrix. Let us consider the following Markov process X :

Xn+1−Xn = µ(Xn)+σ(Xn)ξn,

where µ : Rm→Rm, σ : Rm→Rm×k and ξn is a standard k-
dimensional Gaussian random vector, ξn′ ⊥ ξn′′ for all n′ 6=
n′′. We select a function g with a quadratic form g(x) =
xT Mx. Suppose that for some δ ′ > 0 the following inequality
holds, for all x ∈X c

g (δ
′):

µ
T (x)Mµ(x)+2µ

T (x)Mx+Tr(σT (x)Mσ(x))≤ 0.

Then, by application of the inequality in (12), for all δ ≤ δ ′

we have

v(x;Xg(δ ))≤
xT Mx

δ
i.e. u(x;X c

g (δ ))≥ 1− xT Mx
δ

.

We show how this bounds can be improved in the case
when M is positive definite, by leveraging the decomposition
technique in Section IV-B. We select sets A = X c

g (δ ) and
B = {x ∈X |g(x)< ε} for ε < δ . By Theorem 6, we obtain

ψ(A,B)≥ 1− ε

δ
.

Furthermore, we can use the inequality in (10), obtaining

u(x;A′)≥ w(x;A,B)
(

1− ε

δ

)
.

Finally, the term w(x;A,B) can be calculated with any
accuracy since A = A′ \B does not contain the origin, which
is the only absorbing subset of X , thus the conditions of
Theorem 4 are satisfied.

E. Probabilistic invariance over finite state spaces

In the previous section we have described how to find
bounds for ψ(A,B) in the case when A and B are sublevel
sets of some locally excessive function g. In general one
can apply discretization techniques [2] to estimate ψ(A,B)
by working with a finite space Markov chain approximation.
With focus on this latter class of probabilistic models, we

present next an explicit solution for the infinite horizon
invariance problem for a finite space Markov chain.

Consider a Markov chain Y with a state space Y =
{yi}N

i=1. Without loss of generality we put yi = i for 1≤ i≤N.
Now, pi j = P(Y1 = j|Y0 = i) form a stochastic matrix P.
For any given set A ⊆ Y we consider a vector u, which
components

ui = P{Yn ∈ A for all n≥ 0|Y0 = i} (13)

denote infinite-horizon invariance probabilities. Vector u has
to be a solution of the following equation

u = D(A) ·Pu, (14)

where D(A) is the diagonal matrix such that Dii(A) = 1 if
and only if i ∈ A. The following holds:

Proposition 2. Equation (14) has a unique solution u = 0 if
and only if there is no an absorbing subset of A.

Let us now look to the instance where the chain admits
an absorbing subset A′ ⊆ A, and let us also suppose that
A′ is the largest absorbing subset of A, so A \ A′ has no
absorbing subsets. Without loss of generality suppose that
A′ = [1,m] = 1,2, ...,m and A = [1,n] where m≤ n≤N since
it is always possible to sort the elements of set Y in order
to obtain this form. Clearly

ui =

{
1, for 1≤ i≤ m,

0, for n+1≤ i≤ N.
(15)

We rewrite the equation (14) in the following form

(IN−D(A) ·P)u = Qu = 0,

where we denote an identity matrix of dimension N with IN .
Obviously det(Q) = 0, so 1 is an eigenvalue of the matrix
D(A) · p. We put (qi j)

N
i, j=1 to be elements of the matrix Q.

As we discussed, only the elements ui for m+1≤ i≤ n are
unknown. We can compute them from the equation Qu = 0:

m

∑
j=1

qi j +
n

∑
j=m+1

qi ju j = 0 (16)

for m+1≤ i≤ n. This equation has a unique solution if the
coefficients qi j for m+1≤ i, j ≤ n form a matrix with non-
zero determinant. Indeed, they form the [m+1,n]× [m+1,n]
block of the matrix Q, which we denote as Q′. Let us show
that the determinant is non-zero by contradiction. Assume
the contrary, det(In−m−Q′) = 0 which implies that det(IN−
D([m+1,n]) ·P) = 0.

But this is equivalent to the statement that the equation
u′ = D([m+1,n]) ·Pu′ has non-unique solution, which is not
true since A′ is a largest absorbing subset of A and hence,
the interval [m+ 1,n] of elements of Y does not contain
absorbing subsets.

In conclusion, we can summarize the discussion above
with the following proposition.

Proposition 3. In the presence of an absorbing set A′ the
solution the invariance problem (13) over A,A′⊆A, is a non-
trivial solution of (14) and is uniquely defined by (15)-(16).

529



V. STOCHASTIC BISIMULATION FUNCTIONS

Consider a stochastic model S 1 with associated discrete-
time, (time-)homogeneous strong Markov process X1, and a
second model denoted by S 2 and X2. (S 1 may be thought
of as a concrete model, whereas S 2 as its abstraction.) We
are interested in quantifying “how close” S 1 and S 2 are,
which can be done by selecting a function g inducing a
metric over the distance between their trajectories [9]. The
quality of the abstraction is characterized, over a finite and
an infinite time horizon, by the following quantities:

V N
δ
(x) = Px

{
sup

0≤n≤N
g(Xn)≥ δ

}
(17)

and
Vδ (x) = Px

{
sup
n≥0

g(Xn)≥ δ

}
, (18)

where g is a measurable non-negative function for X =
(X1,X2), a Markov process for the joint system S =
(S 1,S 2). For a finite horizon N, it can be noticed that

V N
δ
(x) = Px[rN(Xg(δ ))],

thus V N
δ
(x) can be calculated using (3).

Next, we focus on the infinite horizon case, where

Vδ (x) = Px[r(Xg(δ ))] = v(x;Xg(δ )).

However, as discussed, this latter quantity is in general
difficult to precisely quantify. Alternatively, one can exploit
the use of a stochastic bisimulation function (SBF), as
developed for continuous-time models in [9].

Definition 5. Let the measurable function ϕ : X → R+

satisfy the following conditions
1) (ϕ(Xn))n≥0 is a Px-supermartingale for any fixed x ∈

X ,
2) ϕ(x)≥ g(x) for all x ∈X .

Then ϕ is an SBF for the function g (with respect to the
process X).

If ϕ is an SBF of g then

Px

{
sup
n≥0

g(Xn)≥ δ

}
≤ Px

{
sup
n≥0

ϕ(Xn)≥ δ

}
,

thus, using Doob’s inequality, we obtain Vδ (x)≤
ϕ(x)

δ
.

Let us again employ excessive functions as in the follow-
ing definition.

Definition 6. [14, Def.2, p.39] An excessive function f is
said to be an excessive majorant of the measurable function
g if f (x)≥ g(x) on X . An excessive majorant f of g is said
to be the smallest excessive majorant of g if f (x) is less than
or equal to any excessive majorant of g.

Clearly, ϕ is an SBF of g if and only if ϕ is an excessive
majorant of g. The following theorem holds over the smallest
excessive majorant of a function.

Theorem 7. Let a function g ∈L then the function

ϕ(x) = lim
n→∞

Qng(x) (19)

is the smallest SBF of the function g, i.e. ϕ is an SBF of g and
for all ϕ∗ which is an SBF of g it holds that ϕ(x)≤ ϕ∗(x)
for all x ∈X .

Remark 3. Note that the limit in (19) exists pointwise for all
x∈X . Indeed, for any fixed x, we have that ϕn+1(x)≥ϕn(x)
and due to the monotonicity of the sequence (ϕn(x))n≥0 the
limit lim

n→∞
ϕn(x) always exists, being either finite or infinite.

Note also that ϕ(x) defined in (19) is unique.
Alternatively, for a function g ∈L , its smallest excessive

majorant ϕ(x) satisfies the following equation

ϕ(x) = max{g(x),Pϕ(x)}, (20)

which solution, however, is not unique (see [14, Rem.1,
p.43]): if g(x)≤C < ∞ for all x ∈X , then for any constant
C′ ≥C the function ϕ(x)≡C′ admits (20).

It is in general difficult to characterize analytically the
smallest SBF, as well as to provide strict bounds for the
numerical calculations in (19) or (20). On the other hand one
can find Vδ (x) using the fact that Vδ (x) = v(x;Xg(δ )) = 1−
u(x;X c

g (δ )). Notice the similarity of the recurstions in (3)
and (19), tailored to calculate respectively v(x;Xg(δ )) and
ϕ(x). Since the SBF gives only bounds on the reachability
probability, the only advantage of characterizing an SBF in
the discrete-time case is that, once obtained, it can be applied
to any set of the form Xg(δ ), whereas the reachability
probability would require being calculated for each of these
sets separately,

Let us assume that there exists min
x∈X

g(x) = δ∗ and more-

over that for all δ > δ∗, we have that X c
g (δ ) is a compact

set and T ∈ Cw(X ). By Theorem 3 we know that if there
are no absorbing subsets of X c

g (δ ) then u(x;X c
g (δ )) ≡ 0

and the bisimulation is not valid over the infinite horizon.
Thus we conclude that to find a finite SBF over an infinite
horizon for the processes X1 and X2 we need for X c

g (δ ) to
contain an absorbing subset.

It is interesting to note that also [9] considers cases with
the origin as an absorbing set. Due to the monotonicity and
compactness of the family X c

g (δ ), that it is equivalent to
the following statement: X c

g (0) = {x ∈X : g(x) = 0} has
to contain an absorbing subset. If the function g is locally
excessive (i.e. it is excessive on X c

g (δ ) for some δ > δ∗)
then for the overapproximation of Vδ (x) one can use the
decomposition technique provided in Section IV-B.

A. Stochastic Bisimulation Functions: a case study

We consider a discrete-time approximation of the follow-
ing stochastic differential equation

dxt = αxtdt +σxtdwt ,

where we select α =−1 and σ = 0.3. The time discretization
is obtained by first-order Euler-Maryuama scheme. For two
discretization steps ∆t and ∆t

2 we obtain respectively two
discrete time processes, denoted as Xn and X ′n. In order to
set up a relation over the distance between the two processes,
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we consider Xn and Yn = X ′2n and select the distance function
as follows:

g(x,y) = (x2 +1)((x− y)2 +1)−1.

In the above expression we employ a distance term between x
and y, additionally the term (x2+1) ensures the compactness
of sublevel sets, and −1 is used to rescale the minimum of
g to be equal to 0 (see discussion above).

The dynamics of the two processes are described by

Xn+1 = Xn(1+αdt +σξn
√

dt),

Yn+1 = Yn

(
1+αdt +

(αdt)2

4
+σ

√
dt
2
(ηn +ζn)

)

+Yn

(
ασ

√
dt3

8
(ηn +ζn)+σ

2 dt
2

ηnζn

)
,

where ξn,ηn,ζn are i.i.d. standard normal random variables.
Note that the distribution law of Yn+1, conditional on Yn, is
not Gaussian. Two realizations of the processes are plotted
in Figure 1.

Fig. 1. Realizations of processes X and Y (resp. in red and blue), starting
from the initial condition 0.2.

We select ∆t = 0.01 and sets A = X c
g (0.1) and B = {x ∈

X |g(x) < 0.01}. We would like to compare the values of
the quantity V0.1(0.15,0.15) as in (18), obtained by three
different techniques: decomposition, direct reachability com-
putation, and via the smallest SBF (through the Q iterations).

For the computation of the reach-avoid problem (decom-
position), of probabilistic reachability, and of the SBF, we
have discretized the region A by square cells with diameter
equal to 0.015. With this discretization we can approximate
the original processes by a Markov chain [2]. (This also
allows computing the associated discretization error, which
is not pursued here.) With the Markov chain approximations,
we calculate functions wn, vn and ϕn for n = 2000 steps. In
all these cases the calculation time for the value functions is
approximately 109 sec.

Notice that there is one absorbing set coinciding with
the origin. Hence, the decomposition technique can be used.
Using local Doob’s inequality we obtain that ψ(A,B)≥ 0.9.

Leveraging the decomposition approach, from (11) we obtain
the bound V0.1(0.15,0.15)≤ 0.43.

The direct calculations of reachability iterations give
V0.1(0.15,0.15) ≈ 0.4. Notice that the straightforward com-
putation does not allow defining a bound.

Finally, the numerical calculation of the smallest SBF φ by
(19) give a very conservative bound: V0.1(0.15,0.15)< 1.04.

VI. FUTURE WORK

Current work is focused on the characterization of absorb-
ing sets and on the properties they entail. This is approached
from three main directions.
First, the combination of Theorem 3 and Proposition 2 for the
Borel state space gives a useful criterion relating absorbance
with uniqueness and contractivity of operators IA,RA,B.
Together with the decomposition technique in Theorem 10,
it is used to find infinite horizon value functions with strict
bounds on the error and to study their properties such as
continuity.
Second, the authors are working on the extension of Propo-
sition 3 to the case when the kernels admit densities. For this
instance the knowledge of the largest absorbing subset of a
given set is extremely useful.
The last direction is to find a way to verify and characterize
the absorbing feature of a given set, which is a problem
related to other areas of mathematical analysis.
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