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Abstract— In this paper, we consider the problem of con-
structing optimal smoothing spline surfaces with constraints
on their derivatives. The spline surfaces are constituted by
using normalized uniform B-splines as the basis functions.
We then show that the derivatives of spline surface can be
expressed by using B-splines of lower degree, and that the
corresponding control points are computed as two-dimensional
differences of original control point array. This enables us to
treat systematically equality and/or inequality constraints over
arbitrary knot point regions on partial derivatives of arbitrary
degree. Then, the problem of optimal smoothing spline surfaces
with constraints is reduced to convex quadratic programming
problem. The performance is examined numerically by approx-
imating monotone and concave surfaces.

I. INTRODUCTION

Even though the traditional approximating or interpolating

spline curves and surfaces are well behaved for wide range

of applications (see e.g. [1]), we frequently face the problems

where we need to impose various types of constraints on the

splines (see e.g. [2], [3]). In particular, the constraints for

preserving the properties on derivatives, e.g. monotonicity

and convexity, etc., are very important in practical appli-

cations of various fields – such as robotics, biochemistry,

pharmacology, statistics and finance, etc [4].

It is relatively easy to construct spline curves and surfaces

with constraints on the derivatives at isolated points (see

e.g. [2], [5], [6]). The problem of constructing spline curves

and surfaces with such constraints has been reduced to a

quadratic programming problem and solved. On the other

hand, the problem of imposing the constraints on some

interval or region seems to lead to an infinite dimensional

problem and not be easily solved in general. Thus, most of

the related works have been done for the case of splines with

specific degree. For example, Egerstedt and Martin in [7]

have developed the method of constructing monotone splines

by the control theoretic approach. Then, they formulated

and solved the problem as a dynamic programming problem

but the method is specific to the cubic splines. Meyer in

[8] has not only constructed monotone splines but also

extended the construction to the case of convex constraints.

Her construction is also limited to the cubic splines. While

these are for spline curves, similar problems for the spline

surface have been studied by various authors (see e.g. [9],

[10], [11], [12], [13]), but they are also specific to the cubic

case or lower.
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Motivated by these works, the authors have recently

developed a method for constructing optimal smoothing

spline curves with constraints on their derivatives [14]. In

particular, we have shown that B-spline approach enables us

to yield systematic treatments and solutions for problems

with equality and inequality constraints over intervals on

derivatives of arbitrary degree. Moreover, a part of such

results using B-spline approach have been extended to the

case of surfaces [6], but the constraints on their derivatives

have not been treated there.

In this paper, we concentrate on the constraints on the

derivatives of spline surfaces. Specifically, based on our

studies in [6] and [14], we develop a systematic method of

constructing optimal smoothing spline surfaces with equality

and/or inequality constraints on their partial derivatives of

arbitrary degree over arbitrary knot point regions. The spl ines

are constructed by employing normalized uniform B-splines

as the basis functions. First, we develop a formula for

expressing the derivatives of spline surfaces together with a

concise expression of the underlying control points. We then

show that the constraints on derivatives can be systemati-

cally added and the construction of spline surfaces becomes

convex quadratic programming problem. The performance

is examined numerically by approximating monotone and

concave surfaces.

Here are the principal symbols used in this paper: ∇2 and

⊗ denote the Laplacian operator and the Kronecker product,

respectively. In addition, ’vec’ denotes the vec-function, i.e.

for a matrix A = [a1 a2 · · · an]∈ Rm×n with ai ∈ Rm, vec A =
[aT

1 aT
2 · · · aT

n ]T ∈ Rmn (see e.g. [15]).

II. OPTIMAL SPLINE SURFACES

As preliminaries, we present B-spline surfaces and the

optimal design method of smoothing surfaces.

A. B-Spline Surfaces

Using normalized, uniform B-spline function as the basis

function, we construct surfaces x(s, t) on a domain D =
[s0,sm1

]× [t0, tm2
] ⊂ R2. Then, x(s, t) is given by

x(s, t) =
m1−1

∑
i=−k

m2−1

∑
j=−k

τi, jBk(α(s− si))Bk(β (t − t j)), (1)

where τi, j are the weighting coefficients called control points,

α, β (> 0) are constants, m1, m2(> 2) are integers, and si’s,

t j’s are equally spaced knot points with

si+1 − si =
1

α
, t j+1 − t j =

1

β
. (2)
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Here, Bk(t) denotes normalized uniform B-spline of degree

k defined by

Bk(t) =

{

Nk− j,k(t − j) j ≤ t < j +1, j = 0,1, · · · ,k
0 t < 0 or t ≥ k +1,

(3)

and the basis elements N j,k(t) ( j = 0,1, · · · ,k), 0 ≤ t ≤ 1 can

be obtained by a recursive algorithm (see e.g. [16]). Then,

it is known that Bk(t) is a piece-wise polynomial of degree

k with integer knot points and is k− 1 times continuously

differentiable.

For the sake of later reference, we introduce (k + 1)-
dimensional vectors Nk(t) and hk(t) as

Nk(t) =
[

N0,k(t) N1,k(t) · · · Nk,k(t)
]T

(4)

hk(t) =
[

tk tk−1 · · · 1
]T

. (5)

In addition, let Sk ∈ R(k+1)×(k+1) be a matrix whose i-th row

consists of the coefficients of the polynomial Ni−1,k(t). Then,

Nk(t) is written as

Nk(t) = Skhk(t). (6)

It can be shown that the matrix Sk can be obtained recursively

as follows: Letting S0 = 1, compute Si ∈ R(i+1)×(i+1) for i =
1,2, · · · ,k by

Si =
1

i

([

0i+1 ΓiSi−1

]

+
[

∆iSi−1 0i+1

])

, (7)

where the matrices Γi,∆i ∈ R(i+1)×i are defined as

Γi =



















1

i−1 2

i−2 3

. . .
. . .

1 i

0 0



















, (8)

∆i =



















−1

1 −1

1 −1

. . .
. . .

1 −1

1



















. (9)

Here the empty spaces denote zero entries.

B. Optimal Smoothing Surfaces

Using B-spline surfaces in (1), the problem of constructing

optimal smoothing surfaces reduces to one of determining

control points τi, j [16]. Here we confine our attention to

express the cost functions for the optimal design.

Suppose that we are given a set of data

{

(ui,v j;di j) : ui ∈ [s0,sm1
],vi ∈ [t0, tm2

],di j ∈ R,

i = 1,2, · · · ,N1, j = 1,2, · · · ,N2} (10)

and let τ ∈ RM1×M2 be the control point matrix defined by

τ =











τ−k,−k τ−k,−k+1 · · · τ−k,m2−1

τ−k+1,−k τ−k+1,−k+1 · · · τ−k+1,m2−1

...
... · · ·

...

τm1−1,−k τm1−1,−k+1 · · · τm1−1,m2−1











(11)

with M1 = m1 +k and M2 = m2 +k. Then a standard problem

is to find such a τ minimizing the cost function

J(τ) = λ

∫

I1

∫

I2

(

∇2x(s, t)
)2

dsdt +
N1

∑
i=1

N2

∑
j=1

wi j(x(ui,v j)−di j)
2

(12)

with I1 = [s0,sm1
], I2 = [t0, tm2

]. Here, λ (> 0) is a smoothing

parameter, and wi j (0 ≤ wi j ≤ 1) are the weights for approx-

imation errors.

By employing Kronecker product and vec-function, x(s, t)
in (1) is rewritten as

x(s, t) = (b2(t)⊗b1(s))
T τ̂ (13)

with τ̂ ∈ RM1M2 , b1(s) ∈ RM1 and b2(t) ∈ RM2 defined by

τ̂ = vec τ (14)

b1(s) = [Bk(α(s− s−k)) Bk(α(s− s−k+1)) · · ·
· · · Bk(α(s− sm1−1)]

T , (15)

b2(t) = [Bk(β (t − t−k)) Bk(β (t − t−k+1)) · · ·
· · · Bk(β (t − tm2−1))]

T . (16)

Then, utilizing the expression in (13), the cost function J(τ)
in (12) can be rewritten as a quadratic function in terms of

τ̂ (see e.g. [16] for details),

J(τ̂) = τ̂T (λQ+ΓWΓT )τ̂ −2τ̂T ΓWd +dTWd, (17)

where Q ∈ RM1M2×M1M2 is a Gram matrix defined by

Q =
∫

I1

∫

I2

(

∇2(b2(t)⊗b1(s))
)(

∇2(b2(t)⊗b1(s))
)T

dsdt.

(18)

Moreover, in (17), the matrix Γ ∈ RM1M2×N1N2 is defined

Γ = B̄2 ⊗ B̄1 (19)

with matrices B̄1 ∈ RM1×N1 and B̄2 ∈ RM2×N2 defined by

B̄1 =
[

b1(u1) b1(u2) · · · b1(uN1
)

]

,

B̄2 =
[

b2(v1) b2(v2) · · · b2(vN2
)

]

. (20)

Also, W ∈ RN1N2×N1N2 and d ∈ RN1N2 are given by

W = diag{w11, w21, · · · , wN11, · · · ,
w1N2

, w2N2
, · · · , wN1N2

}
d = [ d11, d21, · · · , dN11, · · · ,

d1N2
, d2N2

, · · · , dN1N2
]T . (21)

Notice here that λQ+ΓWΓT in (17) is positive-semidefinite,

i.e. λQ + ΓWΓT ≥ 0, since λ > 0, Q ≥ 0 and W ≥ 0, and

hence the cost J(τ̂) in (17) is a convex function.
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III. OPTIMAL SPLINE SURFACES WITH CONSTRAINTS ON

DERIVATIVES

For the optimal smoothing spline surfaces x(s, t) of degree

k as described in the previous section, we consider to impose

the following condition on its partial derivatives

∂ l1+l2

∂ sl1∂ t l2
x(s, t) ≥ c ∀(s, t) ∈ Dκ,µ , (22)

where 0 ≤ l1, l2 ≤ k and c is a given constant. Also, Dκ,µ

is some knot point region Dκ,µ = [sκ ,sκ+1]× [tµ , tµ+1] for

κ = 0,1, · · · ,m1−1 and µ = 0,1, · · · ,m2−1. Setting (l1, l2) =
(0,1),(1,0) and c = 0 yields monotone spline surfaces, while

(l1, l2) = (0,2),(2,0),(1,1) and c = 0 yields concave spline

surfaces.

Note that such constraints for each knot point region Dκ,µ

allow us more flexible treatment of constraints over regions,

such as the surface being convex on some region and concave

on another. Also, the above inequality ’≥’ can be readily

replaced with ’≤’ or equality ’=’, as we will see in the

subsequent development.

Our task here is to derive the expression of such con-

straints in terms of the control points τi, j. In the sequel, we

first develop basic formula for expressing the partial deriva-

tives of splines (Section III-A). We then express constraints

on the derivatives in terms of control points τi, j and reduce

the problem to quadratic programming problem (Section III-

B).

A. Formula for Derivatives on Spline Surfaces

We first develop basic formula in order to derive the

expression of constraints on the derivatives. Now, we notice

that x(s, t) is constituted by a product of two piecewise poly-

nomials. We thus examine the polynomial in each knot point

region Dκ,µ = [sκ ,sκ+1]× [tµ , tµ+1] for κ = 0,1, · · · ,m1 − 1

and µ = 0,1, · · · ,m2 −1.

For the region Dκ,µ , the spline surface x(s, t) in (1) is

written as

x(s, t) =
κ

∑
i=−k+κ

µ

∑
j=−k+µ

τi, jBk(α(s− si))Bk(β (t − t j)), (23)

and, by (3), we get

x(s, t) =
k

∑
i=0

k

∑
j=0

τκ−k+i,µ−k+ jNi,k(α(s− sκ))N j,k(β (t − tµ)).

(24)

In addition, we introduce new variables u and v defined as

u = α(s− sκ), v = β (t − tµ). (25)

Then, the region Dκ,µ is normalized to the unit region E =
[0,1]× [0,1] for (u,v). Now x(s, t) is expressed in terms of

(u,v) as x(s, t) = x̂(u,v) with

x̂(u,v) =
k

∑
i=0

k

∑
j=0

τκ−k+i,µ−k+ jNi,k(u)N j,k(v). (26)

Moreover, let x(l1,l2)(s, t) be the derivatives of x(s, t) as

x(l1,l2)(s, t) =
∂ l1+l2

∂ sl1∂ t l2
x(s, t), (27)

and x̂(l1,l2)(u,v) be defined similarly. Then, x(s, t) and x̂(u,v)
are related by

x(l1,l2)(s, t) = α l1 β l2 x̂(l1,l2)(u,v), l1, l2 = 0,1, · · · . (28)

Now letting T[κ−k,κ]×[µ−k,µ] ∈ R(k+1)×(k+1) be the submatrix

of τ in (11) as

T[κ−k,κ]×[µ−k,µ]

=









τκ−k,µ−k τκ−k,µ−(k−1) · · · τκ−k,µ

τκ−(k−1),µ−k τκ−(k−1),µ−(k−1) · · · τκ−(k−1),µ
...

...
...

τκ,µ−k τκ,µ−(k−1) · · · τκ,µ









,

(29)

then x̂(l1,l2)(u,v) in (28) is expressed as

x̂(l1,l2)(u,v) =
k

∑
i=0

k

∑
j=0

τκ−k+i,µ−k+ jN
(l1)
i,k (u)N

(l2)
j,k (v)

= N
(l1)
k (u)T T[κ−k,κ]×[µ−k,µ]N

(l2)
k (v). (30)

Here, it was shown in [14] that the derivatives of basis

elements Nk(t) of splines in (4) are related to lower order

elements by the matrix ∆i in (9) as follows:

Lemma 1: The l-th derivatives of vector Ni(t) is given by

N
(l)
i (t) = ∆[i,i−l+1]Ni−l(t) (31)

where ∆[i1,i2] ∈ R(i1+1)×i2 is defined for i1 ≥ i2 by

∆[i1,i2] =
i2

∏
ν=i1

∆ν = ∆i1 ∆i1−1 · · ·∆i2 . (32)

By this lemma, it is shown that the derivatives of surface,

i.e. x̂(l1,l2)(u,v) in (30), is represented by the basis elements

Ni,k′p(u), (i = 0,1, · · · ,k′p, p = 1,2) of degree k′p, where k′p =
k− lp. We thus have

x̂(l1,l2)(u,v) =
k′1

∑
i=0

k′2

∑
j=0

φκ−k′1+i,µ−k′2+ jNi,k′1
(u)N j,k′2

(v)

= Nk′1
(u)T Φ[κ−k′1,κ]×[µ−k′2,µ]Nk′1

(u), (33)

where Φ[κ−k′1,κ]×[µ−k′2,µ] ∈ R(k′1+1)×(k′2+1) is defined by

Φ[κ−k′1,κ]×[µ−k′2,µ]

=









φκ−k′1,µ−k′2
φκ−k′1,µ−(k′2−1) · · · φκ−k′1,µ

φκ−(k′1−1),µ−k′2
φκ−(k′1−1),µ−(k′2−1) · · · φκ−(k′1−1),µ

...
...

...
φκ,µ−k′2

φκ,µ−(k′2−1) · · · φκ,µ









.

(34)

From (30), (31) and (33), we see that the matrix Φ in (34)

is related to T in (29) by

Φ[κ−k′1,κ]×[µ−k′2,µ] = ∆T
[k,k−l1+1]T[κ−k,κ]×[µ−k,µ]∆[k,k−l2+1]. (35)

In terms of vec-functions,

T̂[κ−k,κ]×[µ−k,µ] = vec T[κ−k,κ]×[µ−k,µ]

Φ̂[κ−k′1,κ]×[µ−k′2,µ] = vec Φ[κ−k′1,κ]×[µ−k′2,µ],

7821



this relation is written as

Φ̂[κ−k′1,κ]×[µ−k′2,µ]

=
(

∆[k,k−l2+1] ⊗∆[k,k−l1+1]

)T
T̂[κ−k,κ]×[µ−k,µ] (36)

since vec (AXB) = (BT ⊗A)vec X and (A⊗B)T = AT ⊗BT

in general.

Based on (35), we can show that the coefficients φi, j in

(33) (i.e. the elements of Φ matrix) are determined in terms

of τi, j in (30) (i.e. the elements of T matrix) as follows,

where we introduced shift operators z1 and z2 such that

zi′
1z

j′
2 τi, j = τi+i′, j+ j′ . (37)

Lemma 2: The derivative x(l1,l2)(s, t) of spline surface

x(s, t) in (23) is expressed as spline surface in (28) and (33),

where the control points φi, j (κ −k′1 ≤ i ≤ κ,µ −k′2 ≤ j ≤ µ)
in (33) are given in terms of τi, j by

φi, j = (1− z−1
1 )l1(1− z−1

2 )l2τi, j. (38)

This lemma shows that φi, j is obtained from τi, j as the

l1-th and l2-th backward difference in i and j respectively.

When l1 = l2 = 1, for example, we have φi, j = (1− z−1
1 )(1−

z−1
2 )τi, j = (1− z−1

1 )(τi, j − τi, j−1) = (τi, j − τi, j−1)− (τi−1, j −
τi−1, j−1).

Using (25), (28) and (33), we get

x(l1,l2)(s, t) = α l1 β l2

k′1

∑
i=0

k′2

∑
j=0

φκ−k′1+i,µ−k′2+ jNi,k′1
(u)N j,k′2

(v)

(39)

for knot point region Dκ,µ = [sκ ,sκ+1]× [tµ , tµ+1] with κ =
0,1, · · · ,m1 − 1 and µ = 0,1, · · · ,m2 − 1. The derivative of

x(s, t) in (1) is then expressed in terms of B-splines as

x(l1,l2)(s, t)

= α l1 β l2

m1−1

∑
i=−k′1

m2−1

∑
j=−k′2

φi, jBk′1
(α(s− si))Bk′2

(β (t − t j)).

(40)

By Lemma 2, we thus have a nice property that the partial

derivative x(l1,l2)(s, t) of spline surface is determined as spline

surface with control points φi, j obtained as l1-th and l2-th

differences of original control points τi, j for x(s, t) in i and

j respectively.

B. Constraints on Derivatives

We are now in the position to state the constraint in (22)

in terms of the control points τi, j. From the formulations in

Section III-A, we have the following proposition.

Proposition 1: If the control points φi, j given by (38)

satisfy

φi, j ≥
c

α l1 β l2
(41)

for i = κ−k′1,κ−k′1 +1, · · · ,κ, j = µ−k′2,µ−k′2 +1, · · · ,µ ,

then the spline surface x(s, t) satisfies the constraint (22).

This readily follows from (39) and the fact that

∑k
j=0 N j,k(t) = 1, N j,k(t) ≥ 0, 0 ≤ t ≤ 1, j = 0,1, · · · ,k for

any k.

Introducing a vector 1i = [1 1 · · · 1]T ∈ Ri, the constraint

(41) is written as

Φ̂[κ−k′1,κ]×[µ−k′2,µ] ≥
c

α l1 β l2
1(k′1+1)(k′2+1), (42)

and (36) gives the expression in terms of original control

points τi, j as

(

∆[k,k−l2+1] ⊗∆[k,k−l1+1]

)T
T̂[κ−k,κ]×[µ−k,µ]

≥ c

α l1 β l2
1(k′1+1)(k′2+1). (43)

It can be shown that the constraint (43) is readily extended to

arbitrarily knot point region, say [sκ ,sκ+n1
]× [tµ , tµ+n2

] for

n1,n2 ≥ 1, as

(

∆[k+n2+1,k−l2+1] ⊗∆[k+n2−1,k−l1+1]

)T

× T̂[κ−k,κ+n1−1]×[µ−k,µ+n2−1] ≥
c

α l1 βl2

1(k′1+n1)(k′2+n2).

(44)

In particular, when we want to impose the constraint (22)

over the entire domain D , namely x(l1,l2)(s, t) ≥ c, ∀(s, t) ∈
[s0,sm1

]× [t0, tm2
], then letting κ,µ = 0 and ni = mi for i =

1,2 in (44) yields the constraint on the control point vector

τ̂(= vec τ) in (14) as

(

∆[k+m2−1,k+m2−l2] ⊗∆[k+m1−1,k+m1−l1]

)T
τ̂

≥ c

α l1 β l2
1(k′1+m1)(k′2+m2) (45)

since T̂[−k,m1−1]×[−k,m2−1] = τ̂ by (11).

We now have a method of describing equality and inequal-

ity constraints on all the derivatives of spline surfaces over

arbitrary knot point region. In addition, constraints at isolated

points and integral values of spline surfaces were developed

previously in [6] as linear constraints on the control points.

Thus, using the expression of cost J(τ̂) in (17), the optimal

constrained spline problems can be formulated as convex

quadratic programming problems of the following form:

min
τ̂∈RM1M2

J(τ̂) =
1

2
τ̂T Gτ̂ +gT τ̂ (46)

subject to the constraints specified in general as

Aτ̂ = p, f1 ≤ E τ̂ ≤ f2, h1 ≤ τ̂ ≤ h2, (47)

for some matrices and vectors of appropriate dimensions.

A very efficient numerical algorithm is available for this

purpose (see e.g. [17]).

IV. NUMERICAL EXAMPLES

We examine the performance of design method in the pre-

vious sections numerically. As examples, we here consider

the two problems of approximating nonnegative monotone

surface (Section IV-A) and concave surface (Section IV-B).

In all the cases, cubic splines, i.e. k = 3, are used.

7822



A. Approximation of Monotone Surface

We approximate a monotone test function f (s, t) in D =
[s0,sm1

]× [t0, tm2
] = [0,10]× [0,10], where f (s, t) is the so-

called sigmoidal function used in [9],

f (s, t) =
(

1+2e−3(r−6.7)
)− 1

2
(48)

with r =
√

s2 + t2. The data (ui,v j,di j), i = 1,2, · · · ,N1, j =
1,2, · · · ,N2 in (10) is generated by sampling f (s, t) at 100

(= N1N2 = 10 × 10) points with additive Gaussian white

noise of zero mean and standard deviation 0.1. Also, ui,v j

are equally spaced in D , and di j = f (ui,v j). The design

parameters are set as α = β = 1 and m1 = m2 = 10 in (1), an

optimal smoothing spline surface x(s, t) is computed based

on the criterion (12) with λ = 10−3 and wi j = 1/N1N2 ∀i, j.

On designing the surface x(s, t), we imposed the inequality

constraints

0 ≤ x(s, t) ≤ 1, x(1,0)(s, t) ≥ 0, x(0,1)(s, t) ≥ 0 ∀(s, t) ∈ D .
(49)

For specifying the constraints in terms of the control point

vector τ̂ , we employ the method in [6] for 0 ≤ x(s, t) ≤ 1

and in Section III for other constraints.

The results are shown in Figure 1, where the data points

(ui,v j,di j) are shown by asterisks (*), and the designed

spline surface x(s, t) is plotted in Figure 1 (a). Also, Figure

1 (b) shows an optimal smoothing spline x0(s, t) obtained

without the constraints (49). The corresponding derivatives

x(1,0)(s, t) and x
(1,0)
0 (s, t) are shown in Figure 2. We conclude

that the constrained surface x(s, t) results in satisfactory

approximation of original one f (s, t) while preserving the

monotone nondecreasing property specified as (49), which

is not the case with the surface x0(s, t).

(a) Constrained case : x(s, t)

(b) Unconstrained case : x0(s, t)

Fig. 1. Data points (*), (a) constrained and (b) unconstrained smoothing
spline surfaces x(s, t) and x0(s, t).

(a) Constrained case : x(1,0)(s, t)

(b) Unconstrained case : x
(1,0)
0 (s, t)

Fig. 2. Corresponding derivatives (a) x(1,0)(s, t) and (b) x
(1,0)
0 (s, t) of

smoothing spline surfaces.

B. Approximation of Concave Surface

Next, we approximate the following concave function

f (s, t) =
1

8−
√

23.5

×
√

64−81
(

(0.1s−0.5)2 +(0.1t −0.5)2
)

(50)

in D = [s0,sm1
]× [t0, tm2

] = [0,10]× [0,10]. This is a part of

spherical surface used in [10], and the constraints are

x(0,2)(s, t) ≤ 0, x(1,1)(s, t) ≤ 0, x(2,0)(s, t) ≤ 0 ∀(s, t) ∈ D .
(51)

By employing the method in Section III, the constraints

(51) are specified in terms of the control point vector τ̂ .

The data (ui,v j,di j) are generated by sampling f (s, t) at 100

(= N1N2 = 10×10) equally spaced points (ui,v j) in D with

additive Gaussian white noise of zero mean and standard

deviation 0.1. The design parameters for smoothing are set as

α = β = 1, m1 = m2 = 10, λ = 10−3 and wi j = 1/N1N2 ∀i, j.

The results are shown in Figure 3, where the data points

(ui,v j,di j) are shown by asterisks (*), and the designed

spline surface x(s, t) are plotted in Figure 3 (a). Figure 3 (b)

shows an optimal smoothing spline x0(s, t) obtained with-

out any constraints in (51). In addition, the corresponding

derivatives x(2,0)(s, t) and x
(2,0)
0 (s, t) are plotted in Figure 4.

We observe that the desired results are obtained by including

the constraints on second partial derivative.

V. CONCLUDING REMARKS

We considered the problem of designing optimal smooth-

ing spline surface with constraints on its derivatives. The
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(a) Constrained case : x(s, t)

(b) Unconstrained case : x0(s, t)

Fig. 3. Data points (*), (a) constrained and (b) unconstrained smoothing
spline surfaces x(s, t) and x0(s, t).

splines are constructed by using normalized uniform B-

splines as the basis functions, hence the central issue is to

determine the matrix τ consisting of optimal control points.

The partial derivative x(l1,l2)(s, t) of spline surface x(s, t) of

degree k is expressed by using bivariate B-splines of degrees

k− l1 in s and k− l2 in t. Then, the computation of control

points φi, j are obtained as l1-th and l2-th backward differ-

ences of original control points τi, j in i and j respectively.

This enabled us to treat systematically the problem with

equality and inequality constraints over some regions on

derivatives of arbitrary degree. This includes monotone and

convex spline surfaces. In addition, pointwise constraints can

readily be incorporated in this scheme. We demonstrated the

effectiveness of design method by numerical examples of

approximating monotone and concave functions. We used

MATLAB for numerical computations, in particular, its func-

tion ’quadprog’ for quadratic programming problems. The

computational process was stable in the sense that the results

did not change much for different data noise sequences. It

might be possible that the shape preserving constraints as

used in the examples suppress the data noises resulting in

more stable construction of surfaces.
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