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Abstract— In this paper we compute `∞ and `1 induced norm
bounds of switched linear systems. In particular, we concentrate
on certain types of such systems, namely output switching, input
switching, and combinations thereof, and we provide exact gains
for the worst case switching. As an application of the input
output approach of the paper, we consider the problem of
sensitivity minimization and show that it is convex in the Youla
et.al.-Kucera parameter.
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I. INTRODUCTION

Linear switched systems have been the focus of a lot of
renewed research over at least the last decade under various
contexts and several new results on stability and performance
have been established by now. We refer to [1], [2], [3],
[4] and references therein for some indicative samples of
relevant works. Most of the stability results involve, in one
way or another, state space, Lyapunov based approaches. The
same holds true for performance aspects as well, as the works
in the literature are concerned primarily with L2 gains of
these systems (e.g., [7], [8].) Semidefinite programming ap-
proaches have also been developed for analysis and synthesis
of L2-type of closed loop performance (e.g., [9].)

In this paper we consider `∞ (and `1) gains for linear,
discrete-time, switched systems. We provide bounds of the
`∞ gains in the general case which can be conservative (the
upper bounds.) On the other hand, when we specialize to
output-only, input-only, or input-output switched systems, we
obtain exact results in terms of the underlying linear-time-
invariant (LTI) systems associated with the specific switching
structure. These developments rely on input-output point of
view of the linear-time-varying (LTV) structure of the system
and is along the lines of the author’s earlier work in [5], [6].
In the paper we also consider designing controllers for stable,
input, or output switching systems to optimize the sensitivity
of the closed loop. These controllers are generated through
a Youla et.al.-Kucera (Y-K) parametrization, restricted to
output, or input switching Y-K parameter. The resulting
problems are convex and can be solved by well developed
methods [11].

II. BASIC SETUP

We consider switching systems G with respective input
and output vectors u and y, state vector x, described in state
space as
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x+ = Aσx+Bσu

y = Cσx
(1)

where x+(t) := x(t+ 1), and σ = {σ(t)}∞t=0 is a switching
sequence that, for every time instant t, takes values in a set
of integers J := {1, 2, . . . , N}. Accordingly, the state-space
matrices Aσ(t), Bσ(t), and Cσ(t) take values respectively in
the tuples {Aj}j∈J , {Bj}j∈J , and {Cj}j∈J . We assume
that G is internally stable for arbitrary switching which
equivalently means [4] that there exists some integer q :

ρ := max
Aik
∈{Aj}j∈J

|Ai1Ai2 . . . Aiq | < 1

where | • | stands for the ∞-induced matrix norm1. Given
a specific σ, we denote the corresponding LTV system
as Gσ and the `∞-induced norm ‖Gσ‖. Note that Gσ is
associated with the time-varying, state space representation
Gσ ∼ (Aσ(t), Bσ(t), Cσ(t))∞t=0 and the way Gσ relates to
G is through the equation (Gu)(t) = (Gσu)(t). We are
interested in characterizing the worst-case norm ‖G‖ :=
supσ ‖Gσ‖. Towards this end, let

α := max
j∈J
|Aj |, β := max

j∈J
|Bj |, γ := max

j∈J
|Cj |

and let ‖Gj‖ be the norm of the LTI system associated to
the state space matrices of index j, i.e., Gj ∼ (Aj , Bj , Cj).
The following proposition can be easily proved.

Proposition 2.1: If α < 1 then

max
j
‖Gj‖ ≤ ‖G‖ ≤

γβ

1− α
.

If α ≥ 1 then

max
j
‖Gj‖ ≤ ‖G‖ ≤

γβᾱ

1− ρ
where ᾱ := 1 + α+ α2 + · · ·+ αq .

Proof: The lower bound follows trivially as the specific
Gj correspond to a constant σ(t) = j for all t ≥ 0. For the
case α < 1 the result follows immediately as

|y(t)| = |Cσ(t)

t−1∑
τ=0

Aσ(t) . . . Aσ(t−τ−1)Bσ(τ)u(τ)|

≤ max
j∈J
|Cj |(

t−1∑
τ=0

max
j∈J
|Aj |t−τ−1) max

j∈J
|Bj | max

τ≤t−1
|u(τ)|.

1i.e., if M = (Mij) is a matrix of real scalar elements Mij , then |M | =
maxi

∑
j |Mij |
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The case α ≥ 1 follows in a similar pattern by bounding
any product Aσ(t) . . . Aσ(t−τ−1) in chunks of size q as

|Aσ(t) . . . Aσ(t−τ−1)| ≤ ρbt/qcαt−τ−1−bt/qc

if bt/qc ≤ t− 1.

The above upper bounds can be in general conservative and,
in the case where α ≥ 1, finding the integer q and hence
ρ is a combinatorial problem so these general bounds may
not be very practical. Also, it is obvious that if we define an
average system Ḡ := 1

N

∑N
j=1Gj then

∥∥Ḡj∥∥ ≤ maxj ‖Gj‖
for any system norm.

In the sequel we elaborate on specific classes of switched
systems where exact expressions for ‖G‖ can be obtained.
These are systems with non-switching state dynamics, that
is they have a constant A-matrix. We begin with the output
switched systems. To avoid unnecessary complexity we will
consider the case of two systems i.e., J = {1, 2} to expose
the developments. Generalizations are easy to obtain.

III. OUTPUT SWITCHING

Herein we consider the case where the A and B-matrices
are constant and the output matrix C switches between C1

and C2. Thus, the state space is of the form

x+ = Ax+Bu

y = Cσx
(2)

Consider now the LTI two-output system
[
G1

G2

]
and

the output switching operator S defined by y(t) =

(S
[
y1
y2

]
)(t) = yj(t) when σ(t) = j with j ∈ {1, 2}.

It should be clear that S represents a 1x2 time-varying gain
matrix Sσ(t) with takes the value [1 0] if σ(t) = 1 and [0 1]

when σ(t) = 2. Then, G is the composition G = S

[
G1

G2

]
as depicted in Figure 1. In this case, due to the definition of
`∞-norm ‖y‖ of a signal y,

‖y‖ = max{‖y1‖ , ‖y2‖}
≤ max{‖G1u‖ , ‖G2u‖}
≤ max{‖G1‖ , ‖G2‖} ‖u‖

G1
G2

uy
y1

y2

σ

Fig. 1. Output switching

Based on the Proposition 2.1 it follows that

‖G‖ = max{‖G1‖ , ‖G2‖}.

The above assertion can also easily be seen from the
infinite lower triangular representation of Gσ . Note that as
Gσ represents a LTV system for a given σ, it can be thought
of as an infinite lower triangular matrix. The elements of
this matrix are the corresponding elements of the pulse
response of either G1 or G2. For the output switching, Gσ
will be made of rows that belong to either G1 or to G2

depending on what σ(t) is. For example, for the sequence
σ = {1, 1, 2, 1, 2, 2, . . . } the form of Gσ is as

Gσ =



1
1 1
2 2 2
1 1 1 1
2 2 2 2 2
2 2 2 2 2 2
. . . . . . . . . . . . . . . . . . . . .


(3)

where the entries “1” and “2” correspond to the pulse
response coefficients {g1(t)}∞t=0 and {g2(t)}∞t=0 of G1 and
G2 respectively. That is, the (τ, ξ) entry will be g1(τ − ξ) if
it is “1” and g2(τ − ξ) if it is “2.” For example, the (1, 0)
entry which is “1” corresponds to g1(1); the (4, 1) entry
which is “2” corresponds to g2(3); the (3, 3) entry which is
“1” corresponds to g1(0), etc.

IV. INPUT SWITCHING

Dual in a sense to the previous case is the input switching,
where A and C are constant and the input matrix-B switches
between B1 and B2. Thus, the state space is of the form

x+ = Ax+Bσu

y = Cx
(4)

Consider now Figure 2 and the LTI two-input system[
G1 G2

]
where the input switching operator S∗ defined

by (S∗u)(t) =
[
u1

u2

]
(t) with uj(t) = u(t) when σ(t) = j,

otherwise uj(t) = 0, with j ∈ {1, 2}. It should be clear
that S∗ represents a 2x1 time-varying gain matrix S∗σ(t) with

takes the value
[

1
0

]
if σ(t) = 1 and

[
0
1

]
when σ(t) = 2.

Then, G is the composition G =
[
G1 G2

]
S∗. We note

that the infinite lower triangular representation of Gσ in this
case will be made of columns that belong to either G1 or to
G2 depending on what is σ(t). For example, for the sequence
σ = {1, 1, 2, 1, 2, 2, . . . } of the previous section, the form of
Gσ is as
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G1  G2   
u1

y

σ

u2
u

Fig. 2. Input switching

Gσ =



1
1 1
1 1 2
1 1 2 1
1 1 2 1 2
1 1 2 1 2 2
...

...
...

...
...

...
...


(5)

where the entries are interpreted in a similar manner. Ob-
taining the worst `∞-induced norm of Gσ is not so clear,
particularly for a MIMO system. Because of the duality
however with the output switching, we can obtain exactly
the worst `1-induced norm. Denoting ‖Gσ‖∗ the `1-induced
norm of Gσ , it is easy to see through the lower triangular
representation above that

‖G‖∗ := sup
σ
‖Gσ‖∗ = max{‖G1‖∗ , ‖G2‖∗}.

Note that, if Gj’s are SISO systems, then ‖Gj‖∗ = ‖Gj‖ =∑∞
t=0 |CAtBj |. Also for SISO systems, it is possible to

obtain the worst `∞-induced norm of Gσ as follows. Define

ḡ ={ḡ(t)}∞t=0 := {max{|g1(0)|, |g2(0)|},
max{|g1(1)|, |g2(1)|},max{|g1(2)|, |g2(2)|}, . . . }

Then, by using the same idea as in Theorem 5.1 of the
following section, it can be shown that

‖G‖ = ‖ḡ‖1 =
∞∑
t=0

|ḡ(t)|.

Finally, we should mention that we can define a worst case
H2 norm for input-switching systems and compute it exactly.
For more details we refer to [6].

V. INPUT-OUTPUT SWITCHING

We consider now the case of both output and input
switching where both the C and B-matrices switch. In this
case the state space description of G becomes

x+ = Ax+Bσu

y = Cσx
(6)

Considering the LTI systems Gik ∼ (A,Bk, Ci), the system
G can be represented (see Figure 3) as the composition a
2x2 LTI system with the switching operators S and S∗ as

G = S

[
G11 G12

G21 G22

]
S∗.

G11  G12   
G21  G22

u1y y1

y2

σ σ

u2

u

Fig. 3. Input-Output switching

A representation of Gσ in terms of an infinite lower
triangular matrix is more elaborate than the one of the
previous sections. Denoting gik = {gik(t)}∞t=0 the unit
pulse response of the LTI system Gik, the (τ, ξ) entry will
be one of the gik(τ − ξ); For example, for the sequence
σ = {1, 1, 2, 1, 2, 2, . . . } of the previous section, the form of
Gσ is as

Gσ =



11
11 11
21 21 22
11 11 12 11
21 21 22 21 22
21 21 22 21 22 22

. . .
... . . .

... . . .
... . . .

... . . .
... . . .

... . . .
...


(7)

where the entries “ik” correspond to gik(τ − ξ); so, the
(3,3) entry is “11” and thus corresponds to g11(0), the (4,0)
entry is “21” and thus corresponds to g21(4), etc. We note
here that SS∗ = I and that for any norm it holds that

‖G‖ ≤
∥∥∥∥[ G11 G12

G21 G22

]∥∥∥∥ . However, this bound may be

conservative. We will concentrate again on the `∞-induced
norms case and assume for simplicity that G is a SISO
system. Define the sequences

ḡ1 ={ḡ1(t)}∞t=0 := {|g11(0)|,max{|g11(1)|, |g12(1)|},
max{|g11(2)|, |g12(2)|}, . . . }

and similarly

ḡ2 ={ḡ2(t)}∞t=0 := {|g22(0)|,max{|g22(1)|, |g21(1)|},
max{|g22(2)|, |g21(2)|}, . . . }.

Let ‖ḡj‖1 =
∑∞
t=0 |ḡj(t)| be the `1-norm of the sequence

ḡj . Then the following holds.
Theorem 5.1: With the above notations

‖G‖ = max
j=1,2

‖ḡj‖1
Proof: The proof relies on the matrix visualization of

Gσ . To this end, one has to consider each row of Gσ and
check its 1-norm, i.e., the absolute sum of its elements, to
see what is its maximum possible value. For a given t let

gσ(t) = [gσ(t)(0), . . . , gσ(t)(t)]
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represent the t-th row of Gσ . We note that for the “last”
element of the row we have gσ(t)(t) = g11(0) if σ(t) = 1,
or, gσ(t)(t) = g22(0) if σ(t) = 2. We also note that σ(t) does
not affect any previous rows. Let’s assume for the moment
that σ(t) = 1 and so gσ(t)(t) = g11(0). Then for the element
gσ(t)(t−1) just before gσ(t)(t) we have gσ(t)(t−1) = g11(1)
if no switch occurred at t − 1, i.e., σ(t − 1) = 1, or,
gσ(t)(t − 1) = g12(1) if a switch occurred at t − 1, i.e.,
σ(t − 1) = 2. Now, if max{|g11(1)|, |g12(1)|} = |g11(1)|
then it should clear that to maximize the 1-norm of the row
we need not have a switch at t−1, that is we need σ(t−1) =
1. On the contrary, if max{|g11(1)|, |g12(1)|} = |g12(1)| then
maximize the 1-norm of the row we need to have a switch at
t− 1, that is we need σ(t− 1) = 2. In this fashion, working
backwards from gσ(t)(t) to gσ(t)(t− 1), to gσ(t)(t− 2), etc,
we can find what is the “worst” possible 1-norm of row t,
i.e., sup

∑t
τ=0 |gσ(t)(τ)|, and the corresponding switching

sequence σ(t), σ(t − 1), . . . when σ(t) = 1. This leads us
to the definition of ḡ1 of the theorem. Similarly, under the
assumption that σ(t) = 2 and so gσ(t)(t) = g22(0), using
the same backwards approach we are led to the definition
of ḡ2 of the theorem. Therefore, the “worst” possible row
will correspond to the max{‖ḡ1‖1 , ‖ḡ2‖1} as stated in the
theorem.
Generalizations to MIMO G are more complicated and will
be presented in future publications. Generalizations to the
case of N , SISO switching systems however, are immediate.
For the SISO case regarding the `1-induced norm, dual
results hold. That is,

‖G‖∗ = max
j=1,2

‖ḡj∗‖1

where

ḡ1∗ = {ḡ1∗(t)}∞t=0 :={|g11(0)|,max{|g11(1)|, |g21(1)|},
max{|g11(2)|, |g21(2)|}, . . . }

and similarly,

ḡ2∗ = {ḡ2∗(t)}∞t=0 :={|g22(0)|,max{|g22(1)|, |g12(1)|},
max{|g22(2)|, |g12(2)|}, . . . }.

Finally, we mention that all the developments in sections
do not rely at all on the strict causality of the systems, i.e.,
the fact that we did not include any feed-through term (D-
matrix) in the state space descriptions; they rely only on the
input output representations and so they still hold when there
are nonzero D-matrices.

VI. SENSITIVITY MINIMIZATION

We consider the problem of sensitivity minimization when

we have an output switching plant P = S

[
P1

P2

]
as

in Figure 4. The LTI systems P1 and P2 are stable. We
consider controllers K being parameterized by a Youla-
Kucera parameter Q generated as an input switching of two
stable LTI systems Q1 and Q2, i.e., Q =

[
Q1 Q2

]
S∗.

We remark here that these K are a subset of all possible
stabilizing controllers due to the fact that we prescribe the

P1
P2

y

σ

P1
P2

σ

Q1  Q2   

u1
σ

u2

u

d

‐

P

K

Fig. 4. Sensitivity minimization

structure of Q as an input switching system. More general
parameterizations of (switching) stabilizing K can be found
in [10]. At this point, it is not clear how much is missed by
imposing this structure on Q, but we certainly search over
a large class of Ks which lead to exact convex optimization
problems. Indeed, the resulting K in Figure 4 is expressed
as K = Q(I + PQ)−1 and the resulting sensitivity map
Φ : d 7→ y = (I − PK)−1 becomes Φ = I + PQ. Upon
substitution of P and Q we obtain

Φ = I + PQ = I + S

[
P1

P2

] [
Q1 Q2

]
S∗

= S

[
I + P1Q1 P1Q2

P2Q1 I + P2Q2

]
S∗.

This shows that Φ is an input-output switching system.
Based on the development in the previous section (Theorem
5.1), minimizing ‖Φ‖ is a convex problem, in fact a linear
program. We should note here that in [5], among other
things, the same problem was considered with Q being an
output switching system. The resulted problem was, however,
significantly more complicated as the composition of two
output (input) switching systems generates more complex
structures than an input-output switching system. Finally,
we mention that if P and Q are input and output switching
respectively and the input sensitivity map Ψ := (I−KP )−1

is of interest it results in a similar expression as above,
namely,

Ψ = I +QP = I + S

[
Q1

Q2

] [
P1 P2

]
S∗

= S

[
I +Q1P1 Q1P2

Q2P1 I +Q2P2

]
S∗

which is an input-output switching system. Minimizing
‖Ψ‖ results in a convex problem. In fact, in this case the
optimization of Q1 and Q2 decouples (as they are involved
in separate rows.) With the same token, minimizing ‖Φ‖∗
decouples Q1 and Q2 (as they are involved in separate
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columns.) Furthermore, including control effort constraints
in the two set ups of the form, ‖Q‖∗ ≤ γ or ‖Q‖ ≤ γ, in
minimizing ‖Φ‖ or ‖Ψ‖∗, results in linear programs. These
infinite dimensional, convex problems can be solved by the
methods in [11] to obtain solutions within any pre-specified
accuracy. It is also worth to point out that although the
controller K = Q(I +QP )−1 is a feedback interconnection
of an input and an output switching system, it is not an input,
or an output, or an input-output switching system.

VII. CONCLUSIONS

We presented exact expressions for the `∞ and `1 gains
of certain types of switching systems. For the case of input-
output switching of SISO systems we showed that certain
sensitivity minimization problems are convex using the Y-K
parametrization. Future work includes the full development
of similar results for MIMO systems as well as coprime fac-
torization of general switching systems in terms of specific
structures.
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