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Abstract— This paper presents a trip-oriented Plug-in Hybrid
Electric Vehicle (PHEV) energy management control (EMC)
strategy that aims to improve the real world PHEV energy
usage efficiency, economy and flexibility. The designed control
architecture and methodologies enable the energy management
control to utilize different levels of available trip foreknowledge,
from as limited as distance between charges to as much as
driving patterns, routing and real time traffic information, to
optimize the onboard energy (fuel and electricity) usage. The
proposed EMC first programs a battery SOC profile along a
specific trip that governs an optimized energy consumption
process with respect to a customer’s energy usage budget
and foreseeable trip information. Next, a feedback controller
manages the fuel consumption to electricity depletion ratio
to achieve the preplanned energy consumption process by
following the SOC profile and controlling the PHEV powertrain
to its most efficient admissible operating states.

I. INTRODUCTION

A Plug-in Electric Hybrid Vehicles (PHEV) is an extension

of existing hybrid electric vehicles (HEV) with added energy

flexibility. A PHEV utilizes a larger capacity battery pack

that can be recharged from the electric utility grid. With the

additional source of energy supply, the control system can

bias the PHEV towards electrical propulsion. It is regarded

as one of the most promising technologies for sustainable

mobility and emission reduction.

The achievement of PHEV’s energy economy comes not

only from the PHEV design and extended energy storage, but

also from the PHEV energy management control strategy.

The PHEV energy management control problem is generally

similar to that of the HEVs, with the main objective of

minimizing energy cost and emissions without compromising

the vehicle drivability and system constraints. A default

EMC operates the PHEV in electric drive (EV) mode or in

blended operation mode to maximize the battery depletion

before the next plug-in recharge event without differentiation

on usage patterns. Thanks to the intelligent transportation

and information systems, knowledge about a trip and a

customer’s usage pattern becomes available to the vehicle

controls. The achievement of the PHEV energy management

control objective is no longer just to optimize the system

efficiency with minimized instantaneous operating power

loss, but to find a customer and trip oriented solution that

optimizes the energy consumption in a globally manner with

respect to a customized energy replenish lifestyle. As claimed

in [1], [2], [14] and [13], a PHEV energy management
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strategy that incorporates the trip distance information can

achieve better fuel economy by allowing an extended scale

of system optimization.

In literature, the PHEV energy optimization is mainly

developed along two parallel pathes [4]. The first applies

dynamic programming (DP) to determine the optimal power-

train operating states and the energy consumption distribution

between the fuel and the electricity based on a full trip

knowledge [7]. The DP based PHEV energy management

control is mainly used to explore the energy economy

potential offline due to its non-causal nature and heavy

computation loads. The insights obtained from a DP control

process can serve as a guideline for rule based control

design and calibrations [22]. In paper [19], a comparison is

made between the performances of an electric-centric charge-

depleting hybrid vehicle control strategy with a near-optimal

DP-optimized control strategy. The second path works on

online implementable PHEV energy management control

rules. A well known method is the Equivalent Consumption

Minimization Strategy (ECMS). This strategy was origi-

nated by Paganelli et al. [11] [6] [8] and other researchers

[10] based on the concept of instantaneous equivalent fuel

consumption. Theoretically based on Pontryagin’s Minimum

Principle, this method provides a metric such that the fuel

energy and the battery electric energy consumption can

be evaluated simultaneously towards a global optimization

objective. An adaptive ECMS control strategy was proposed

in [9], [23] and [24] that incorporated real time driving

cycle information into the adjustment of the ECMS control

setpoint. A stochastic optimal control based PHEV energy

management appeared in reference [5]. While a DP based

solution can realize an optimal energy management process

using full trip knowledge for one specific trip, the result

can not be applied online to real world driving cycles. On

the other hand, the afore-mentioned implementable energy

management methods assume no trip foreknowledge or just

a short range preview information but their optimality in

control is only valid with respect to an averaged customer

usage or driving patterns.

Applying optimal control theory, this paper presents a

Trip-oriented Energy Management Control (TEMC) strategy

that further optimizes the trip specific PHEV energy econ-

omy given scalable trip foreknowledge. The proposed TEMC

strategy fills in the gap between the DP and the rule based

methods by providing a systematic control architecture that

is able to optimize PHEV energy management using limited

available trip information. The trip oriented energy manage-

ment problem is solved at two levels of optimization. At the

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 5805



higher level, i.e. the trip domain optimization, a global energy

usage/consumption optimization is carried out such that the

battery electric energy and the fuel usage is pre-planned

based on scalable trip foreknowledge and energy storage

states. An optimal trip domain battery SOC depletion/usage

profile is generated, which serves as a feedforward guideline

for the PHEV online energy management control towards

global energy economy improvement over a given driving

schedule. Next, the trip-specific optimal fuel consumption

to electricity depletion ratio index is adaptively searched

online through a feedback control mechanism such that

the overall controlled energy consumption process achieves

approximately the preplanned optimal process. At the vehicle

system level, the most efficient PHEV system power split

state and power sourcing state are optimally resolved for

the Ford PowerSplit PHEV with respect to vehicle states,

system constraints and the trip domain energy consumption

ratio index. Such a proposed control architecture is depicted

later in Figure 4.

Due to space limit, this paper focuses on the the vehicle

domain optimization and the trip domain feedback control

with respect to a reference SOC profile. The concept about

the trip domain feedforward SOC reference generation is

only briefly introduced. More comprehensive results about

the driving pattern based energy preplanning using DP

algorithm are presented in a separated paper [21]. This

paper is organized as follows: The PHEV system model

for energy management control is provided in section II;

The trip domain PHEV energy management optimization

that maximizes power delivery efficiency and minimizes trip

fuel consumption is presented in section III; Based on that,

the trip oriented PHEV energy management control strategy

is proposed and described in section IV. Simulation results

using the Ford PowerSplit PHEV Model-in-loop (MIL) plat-

form are discussed in section V to validate the effectiveness

of the proposed TEMC strategy for PHEV fuel economy

improvement using customized driving cycles. Finally, the

contributions and conclusions of the work are summarized

in section VI.

II. PHEV SYSTEM CONFIGURATION AND ENERGY

MANAGEMENT CONTROL MODEL

In this study, a Ford PowerSplit Plug-in Escape is used as

the platform for studies and simulations. Figure 1 portrays

the main components and configuration of the electrified

powertrain architecture considered in this paper. A compre-

hensive description of the PowerSplit HEV structure and

model can be found in [4] [20]. In this study, the following

PowerSplit HEV powertrain model is used:

Jeng
dωeng

dt
= τeng + Te2gτsun (1)

Jmot

dωmot

dt
= τmot −

T1T2

̺
τsun −

T2

Tg

τdft (2)

Jgen
dωgen

dt
= τgen − τsun (3)

where Ji are inertias, τi are torques and T terms are speed

and torque transfer ratio between driveline components.

Fig. 1. PowerSplit PHEV configuration

Subscript i = eng,mot, gen indicate the engine, motor and

generator respectively.

Kinematic relationships:

ωdft =
T2

Tg

ωmot (4)

ωgen =
(1 + ̺)

̺
ωeng −

T1T2

̺
ωmot (5)

Power relationships:

Pwhl = Pfuel + Pbatt − Ploss (6)

= τdftωdft

Ploss = Pepath loss + Pice loss (7)

Pepathloss = Pbatt − ωgenτgen − ωmotτmot (8)

= Pmot loss + Pgen loss + Pelec loss (9)

Pmot loss = flm(ωmot, τmot) (10)

Pgen loss = flg(ωgen, τgen) (11)

Pice loss = Pfuel(ṁf (ωeng, τeng))− Peng (12)

ω represents rotational speed and ̺ is the planetary gear

ratio. The mechanical power transfer loss is ignored in this

study since the ICE engine loss Pice loss and the electrical

power transfer loss Pepath loss dominate the total power loss

in PHEV operations. In the above equations, Pwhl is the drive

power request at wheels. Pfuel is the total power supplied

from the fuel at current fuel flow rate. Pbatt is the battery

power that takes positive sign for discharge and negative

sign for charge. Ploss is the PHEV system power transfer

loss. The overall PHEV system’s operating point is externally

determined by the driveshaft torque τdft that is propelling the

vehicle at the current driveshaft rotational speed ωdft.

Define the high voltage battery capacity, Qbatt. The battery

electric dynamic model is:

˙SOC = fβ(Pbatt) = −
Pbatt

QbattV h
ocη

(13)

where V h
oc is the nominal battery open circuit voltage at the

highest SOC level. η is defined as the equivalent battery
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discharge power efficiency representing the useful battery

power ratio to the total battery power consumption at de-

graded battery open circuit voltage level. η is battery SOC

dependent [20].

The system subjects to the following operation constraints:

C(X) =















ωi min ≤ ωi ≤ ωi max

τi min ≤ τi ≤ τi max

SOCmin ≤ SOC ≤ SOCmax

Pelec chg lim ≤ Pbatt ≤ Pelec dch lim















where i = eng,mot, gen. Pelec chg lim and Pelec dch lim are

electrical power discharge and charge limits at certain battery

SOC levels. The engine pull up and pull down strategy is

primarily determined with respect to a vehicle speed, drive

power demand, and battery SOC thresholds.

III. TRIP DOMAIN PHEV ENERGY MANAGEMENT

OPTIMIZATION

In the trip domain, the analysis focuses on the battery

SOC dynamic x(s) = SOC and the steady state control

input u(s) = Pbatt. The system equation is rewritten as:

dx

ds
=

fβ(u)

Vveh

= fs
β(u) (14)

where s is the trip domain distance variable and the super-

script s indicates a trip domain function.

The trip domain fuel economy optimization problem can

be formulated as: find the optimal power sourcing state u∗(s)
and determine steady state power split state ωeng(s) with

respect to given ωdft(s) and τdft(s), s ∈ [s0, sf ], such that

min
u,ωeng∈C

J = S(x(sf )) +

∫ sf

s0

v(ωeng, u)ds (15)

where

S(x(sf )) =

{

cf (x(sf )− xcs)
2, if x(sf )− xcs ≤ 0

0, else

v(ωeng, u) =
dmf

ds
=

ṁf

Vveh

∣

∣

∣

∣

ωeng,u

S(x(sf )) is the terminal cost on SOC at the end of the trip

and xcs is the predetermined nominal battery SOC level for

default charge sustaining operation. ṁf is the instantaneous

fuel flow when the vehicle is moving, Vveh > 0. The

interval [sf − s0], where sf = s(tf ) and s0 = s(t0), is

the total trip distance. This paper focuses on the PHEV

energy management in the range of usable battery DOD, it is

assumed that battery charge sustaining operation is assured

after battery is depleted for convenience of analysis.

Propostion 0.1: An optimal solution to this quasi-steady

state optimization problem is the optimal trip domain battery

power trace u∗(s) and corresponding system operating set-

point ω∗
eng(s) that minimizes a constantly indexed tradeoff

function of the trip domain fuel consumption rate and the

battery electricity depletion rate.

Proof: Based on the optimization objective function

(15) and the system constraints C(X), the Hamiltonian of

the optimization problem is:

H(s, λ) = v(ωeng, u)− λ(s)fs
β(u) (16)

where λ is the optimization costate variable.

Applying Pontryagin’s Minimum Principle to this con-

straint optimization problem, the costate dynamic along the

optimal SOC trajectory satisfies:

λ̇∗(s) = −
∂H

∂x

∣

∣

∣

∣

x∗

= λ∗(s)
∂

∂x
fs
β(u

∗)

= −λ∗(s)
u∗

VvehQbattV h
ocη

2

∂η

∂x
(17)

[u∗(s), ω∗
eng(s)] = arg min

u,ωeng∈C
H(s)|λ∗ (18)

The optimal control problem specified by equation (17)

and (18) can be solved using DP method. However, it is

difficult to find analytic optimization solution across the

battery SOC range due to the inter-dependence of the optimal

control u∗ and the costate λ∗. Instead, the problem can be

solved in a local small SOC interval by applying zero order

η-approximation with respect to the battery SOC state, i.e.

∂nη/∂xn = 0 for n = 1, 2, 3, . . . , such that:

λ̇∗(s) = 0, λ∗ = const. (19)

The above equation indicates that the optimal costate λ∗ with

respect to steady state ωdft(s) and τdft(s), s ∈ [s0, sf ],
is constant if ignoring the effect of battery SOC on the

equivalent battery discharge power efficiency in a local SOC

region. This is a reasonable simplification since ∂η/∂x is

actually very small in the usable depletion range of battery

SOC.

At steady state, the trip-domain fuel consumption rate is

determined if only Pbatt and ωeng is resolved. As a result,

the original optimization problem can be simplified to:

[u∗(s), ω∗
eng(s)] = arg min

u,ωeng∈C
H(s)|λ∗ (20)

= arg min
u,ωeng∈C

1

Vveh

(

ṁf +
λ∗

η(x)

u

QbattV h
oc

)

= arg min
u,ωeng∈C

(

ṁs
f − λ∗ ˙SOC

s
)

where ṁs
f and ˙SOC

s
represents the trip domain fuel con-

sumption rate and battery SOC depletion rate, respectively.

A. Boundary Layer PHEV Power Split Optimization

In the boundary layer time scale, Pbatt and SOC are

slow dynamics. They are treated as in their steady state such

that the second term of the Hamiltonian is constant with

respect to a constant costate λ. Since the boundary dynamic

is stable in C, the optimal control problem is simplified to

be an optimal system operating setpoint search problem over

the range of drive power request, vehicle speed and power

sourcing state determined by Pbatt. That is, an optimal PHEV

power split state, which is determined by ωeng , has to be

found to minimize the instantaneous fuel consumption:

ω∗
eng|u,τdft,ωdft

= arg min
ωeng∈C

H(s) = arg min
ωeng∈C

ṁs
f |u (21)
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This is equivalent to finding the most efficient power split

state between the electrical path and the mechanical path

such that the powertrain output power for vehicle propulsion

is maximized:

max
ωeng∈C

J1 = ηsys(ωeng)|ωdft,τdft,Pbatt
=

Pwhl

Pfuel + Pbatt

(22)

The PHEV steady state operation optimization is carried

out offline based on the system configuration and compo-

nents’ parameters. Optimal ωeng is resolved with respect to

each combination of vehicle speed, drive power request and

at a candidate battery power value. A library of ω∗
eng maps

are obtained across a set of admissible battery power values.

Among them, an exemplary ω∗
eng maps at sourcing states

Pbatt = 0 kW is shown in Figure 2.

Fig. 2. Optimal engine speed map at 0 kW battery discharge power state

The PHEV power split optimization prepares the PHEV

energy management control for solving a higher level drive

power demand distribution problem with guaranteed most

efficient powertrain operations.

B. Quasi-Steady State PHEV Power Sourcing Optimization

After the battery power associated PHEV system operating

state ωeng has been optimally determined, the steady state

system optimization has to be carried out in order to deter-

mine the best driver power allocation command such that

the Hamiltonian is minimized in the quasi-steady state time

scale:

u∗(s) = arg min
u|ω∗

eng
∈C

H(s)|λ (23)

= arg min
u|ω∗

eng
∈C

(

ṁs
f (u) +

λ

η(x)

u

QbattVvehV h
oc

)
∣

∣

∣

∣

ωdft,τdft

Equation (23) indicates that the PHEV power sourcing

optimization has to be carried out with respect to a given

value of the fuel consumption rate to electricity depletion

rate index ratio λ.

Given a drive power demand and vehicle speed, the

optimal battery power can be calculated by comparing all

the possible options and selecting the optimal one that

achieves the Hamiltonian minimization with respect to a

certain costate value. Such an optimal search process has

to be repeated for each candidate value over an admissible

λ set offline. Furthermore, according to equation (23), the

equivalent battery efficiency η adjusts the weight of the

energy consumption ratio index λ at different battery SOC

levels. From the proof of Proposition 0.1, η is approximated

by a constant in small battery SOC regions and it takes

different values in different SOC states. As a result, the above

optimization programming has to be repetitively executed

in all partitioned intervals of battery SOC with different

nominal values of η to incorporate the effect of battery

equivalent discharge efficiency. This results in a library of

optimal Pbatt vs. (Pwhl, Vveh) maps with respect to λ and

SOC. The contribution of the proposed method is that it

solves the optimal control problem without ignoring the η-

SOC nonlinearity even though it does not appear in the

analytic solution. Such a η-SOC dependency is reintroduced

back by carrying out optimization programming in each

partitioned battery SOC interval. By embedding the battery

efficiency into the power sourcing optimization results, a

constant optimal λ∗ can thus be used for specific trips.

The optimal battery power maps over a set of nominal λ
values, (2 ∼ 4), are depicted in Figure 3. According to the

optimization results, it is observed that the larger the value

of λ, which means the higher the ratio of fuel consumption

rate to the battery depletion rate, the less the drive power is

to be satisfied by the battery electric energy.

Fig. 3. Optimal battery discharge power evaluated at different costate and
SOC values
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IV. TRIP-ORIENTED ENERGY MANAGEMENT CONTROL

The power-split and power-sourcing optimization results

prepare the PHEV energy management control for achieving

the fuel consumption minimization objective by selecting the

best battery power and engine power partition at the most

efficient system operating state with respect to instantaneous

drive power demand in the vehicle operating speed range.

However, all the maps are obtained with respect to a specific

value of λ∗ from the candidate λ set. The results can only

be useful if the value of λ∗ is known for a target trip.

Given limited trip information a priori, especially when only

trip distance is known, predetermination of the trip specific

optimal value λ∗ is impossible. The only realistic method to

solve this problem is to search for a quasi-optimal value of

λ∗ based on the already experienced trip knowledge after a

target trip has started and by assuming such knowledge will

persist to the rest of the trip. To this end, a λ∗ searching

strategy needs to be constructed.

With only knowledge of the driving distance between

charges Sccd, the best assumption that can be made for

a future trip is that it contains a single driving pattern.

That is, the driving process contains relatively consistent

drive power demand at almost constant vehicle speed. For

such a simplified driving cycle, it had been proved [20]

that the optimal battery SOC trace will exhibit a nearly

linear trajectory, called the battery efficient CD (charge

depletion) profile, in the spatial domain. This SOC profile

starts depleting at the initial SOC until reaching the charge

sustaining SOC near the end of the trip and it is plotted as

the green curve in Figure 5. Alternative, without considering

the battery discharge efficiency variation across the range of

SOC, a linear trajectory, called trip averaging CD profile, is

commonly used for simplicity.

Using such a SOC depletion process as the target optimal

process, a feedback control strategy can be designed to

adjust the setpoint of λ used in EMC such that the real

battery SOC trajectory following the reference SOC profile

in an asymptotically stable manner. The control strategy

proposed in this paper is called Trip-oriented Energy Man-

agement control (TEMC). The trip specific optimal energy

management solution is thus found reversely by using λ
as a control variable. By doing this, it is expected that

the controlled energy consumption process can approximate

the optimal fuel economy process by adaptively searching

for the unknown trip-dependent λ∗. The TEMC strategy

implements a feedforward plus feedback control structure

as shown in Figure 4. The feedback controller continuously

adjust the energy optimization setpoint λ according to the

current power load vs. the energy usage budget. As a result,

the battery SOC is maintained within a vicinity of the

reference SOC profile such that the global fuel consumption

minimization target is achieved by adapting to the past and

the predicted energy usage demands. In general, the TEMC

strategy provide a systematic method of realizing a trip

domain quasi-optimal control process without having the

knowledge of λ∗ a priori. The energy consumption ratio λ

is controlled in the spatial domain as:

∆λ = λ(k)− λ(k − 1) = Ctfb(socref (s)− SOC(s)) (24)

where λ(k) is the value of lambda in spatial domain control

station k∆s ≤ s < (k + 1)∆s. ∆s is the station length.

Similar control updating law but implemented in time do-

main also appeared in [23] and [24]. Ctfb represents a set

of feedback control functions that can be designed with

different reference tracking algorithms, among which, a PID

controller is commonly used.

Fig. 4. Conceptual trip-oriented energy management control structure

Fig. 5. Candidate reference battery SOC depletion profiles

When additional trip information is known a priori, a better

optimized reference SOC profile can be generated through

driving pattern based trip domain dynamic programming.

The optimality of such trip oriented energy consumption

plan depends on the amount of trip foreknowledge used.

The better availability of the trip information, the closer

the preplanned SOC profile is to the true optimal SOC

depletion process. The proposed TEMC strategy is able to

synthesize scalable trip foreknowledge by applying driving

pattern classification and association methods. A driving

pattern characterizes certain properties of driving behaviors,

especially on drive power demand. Technically, the driving

pattern defined for this research is the Probability Mass

Function (PMF) of the the Spatial Domain Normalized Drive

Power (S-NDP). The concept of S-NDP is developed as

follows: for a trip partitioned into p interconnected sections
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of different driving behaviors, the total energy demand can

be evaluated by the following equation:

Eprop =

∫ T

0

Pwhldt = Σp
i=1

∫ Ti

0

P i
whldt

=

∫ Sccd

0

Psnds = Σp
i=1

∫ Si

0

P i
snds

= P sn
setΣ

p
i=1

℘i(P
sn
set)Si (25)

where Pwhl is the time domain drive power demand. T is

the total trip time duration. Variables with index i indicates

the corresponding signals in the i-th section along the trip.

Equation (25) translates the time domain energy consumption

to the spatial domain where S is the section distance and Psn

denotes the spatial domain normalized drive power:

Psn = Pwhl/Vveh (26)

℘(P sn
set) denotes a PMF with respect to a predefined discrete

S-NDP set P sn
set. Generically, it represents the equivalent

wheel force distribution during a period of driving process.

The S-NDP distribution is an effective mathematic model

to find the consistency among various driving behaviors.

For example, the S-NDP distribution for some standard

emission test cycles, California Unified (CA), IM240, JP-

JC08, NYCC, CSC, FTP72, FTP75, JP-JE05, FTP-SC03

and UDDS, are plotted in Figure 6. Based on their S-

NDP property and average speed, it is easy to identify their

commonality in drive demand and to classify them into

different driving patterns even though their time domain

profiles are very different and do not provide any identity

to associate them together.

The advantage of the proposed driving pattern based

method is its capability to capture countless different driving

behaviors (e.g. speed/power profiles) into a limited num-

ber of driving patterns. As a result, the time-consuming

PHEV energy consumption optimization can be first achieved

offline by carrying out full scale system dynamics based

DP optimization with respect to representative full trip in-

formation for each identified driving pattern. A library of

driving patterns and their corresponding energy consump-

tion characteristic tables will thus be established. The trip

information and optimization results can be reused to real

world and real time driving processes that are associated to

a common driving pattern. In online application, a predicted

trip is first partitioned into a sequence of spatial domain

driving sections where a driving pattern is identified for each

of them. Next, a trip specific global energy consumption

preplanning needs only be done by a much simplified DP

algorithm to allocate different amount of available electric

energy to the limited number of sections. The most heavy

computation load associated to PHEV system dynamics is

separatively processed in offline optimization. The online

optimal energy allocation programming needs only be carried

out over a grid of spatial domain sections instead of time

steps. The size of the optimization space is largely reduced.

Furthermore, the energy cost at each step is directly obtained

from the offline programmed characteristic consumption

tables based on identified driving patterns along the trip.

The proposed two step optimization technique significantly

minimizes the online computational resource and information

accessibility requirements and costs. Thus, it enables the

online implementation of the proposed PHEV energy con-

sumption optimization strategy with respect to scalable trip

foreknowledge. An exemplary pattern based optimal SOC

profile preplanned is plotted as the blue piecewise liner

trajectory in Figure 5. Interested reader can refer to [21]

for more comprehensive description about this pattern based

global energy preplanning technology.
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Fig. 6. S-NDP distribution for stop-and-go and low speed city patterns

V. SIMULATION ANALYSIS AND VERIFICATION

The proposed TEMC strategy had been validated through

both simulation study on the Ford PowerSplit PHEV MIL

platform and vehicle tests. However, only simulation re-

sults will be presented in this paper. The first group of

simulation cases assume only the knowledge of the charge

cycle distance. The optimal battery power is determined

from the optimal power sourcing maps with respect to the

controlled λ setpoint such that a nearly consistent battery

electricity depletion rate is maintained with respect to the

total trip distance. A default PHEV energy management

strategy without incorporating any trip information is also

used in the simulation studies for comparison purposes. The

default strategy applied a fixed constant λ value that is

calibrated to achieve a 35 mile PER in FTP cycle at near

maximal rate of depletion. It is important to point out that

the TEMC strategy retains the same engine on/off criteria as

the default control strategy in the reported results in order to

focus on the energy consumption optimization effectiveness.

TABLE I

FUEL ECONOMY IMPROVEMENT ON CUSTOMIZED DRIVING CYCLES

Sccd SOC Cycle Sequence Base TEMC FEI
# (km) (%) [1 2 3] FC(kg) FC(kg)

1 120 75 [322122123] 5.73 5.40 5.65%

2 128 87 [311221213] 5.20 4.94 4.78%

3 160 97 [31122112113] 6.55 6.23 4.6%

4 160 95 [322122112233] 7.41 6.97 5.9%

5 96 60 [3221223] 4.44 4.24 5.59%
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The first group of simulation used driving cycles con-

structed from arbitrarily combining three standard test cycles:

1. HWYFET; 2. US06; 3. FTP72. The simulation results

provided insights about the TEMC real-world application

potential in fuel economy (FE) improvement. Table I sum-

marized 5 example simulation cases. More than 2% to

7% fuel economy improvement (FEI) had been observed

in the artificial cycle simulations. The controlled process

from the first simulation case with a 120 km trip distance

and 75% initial battery SOC were presented in Figure 7.

For this simulation case, it can be identified through off-

line programming that λ∗ = 2.83. The TEMC controlled λ
setpoint converged to the λ∗ adaptively and asymptotically.

Throughout the adaptive searching process, the fuel economy

obtained from the TEMC controlled process was only 0.87%
worse than that from the λ∗ trace, which has total fuel

consumed (FC) 5.40 kg. But it achieved 5.65% fuel economy

improvement by using only trip distance information.
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Fig. 7. Artificial combined cycle simulation results

Given additional trip information, a real life commuting

cycle, shown in Figure 8, was used to verify the pattern based

global SOC preplanning. Regarding it as a predictive speed

profile, this trip was partitioned into five sequential sections

by a pattern based trip partitioning algorithm. The first, third

and fifth sections were linked to a low speed city pattern

and the second and fourth sections were related to a high

speed freeway pattern. The preplanned optimal SOC profile

and its associated feedforward λ setpoint preplanned from

the energy allocation DP algorithm were plotted in Figure 9.

It is necessary to point out that the preplanned λ setpoint was

not nearly constant because λ was also used to control the

powertrain operating mode (EV vs. HEV) besides indicating

power sourcing ratio. An EV operating mode was preferred

when the reference λ took smaller value.

Applying the optimally planned SOC profile to the TEMC

control strategy, the simulation results from the customer

commuting cycle were shown in figures 10 to 12. For

the same test cycle, the base control strategy had a total

fuel consumption of 7.92 kg. The TEMC using the battery

efficient SOC profile assuming known charge cycle distance

consumed 7.4 kg, which realized a 6.73% fuel economy

improvement. The TEMC using the preplanned SOC profile

assuming driving pattern information consumed 7.29 kg,

which realized a 7.93% fuel economy improvement. It can

be observed from Figure 11 and Figure 12 that the engine

operating efficiency from the TEMC controlled trace had

been largely elevated with more operating points distributed

to the high efficiency region.

Fig. 8. Customer commuting cycle and driving pattern classification

Fig. 9. Battery SOC profile preplanned from trip domain energy allocation
DP

VI. CONCLUSIONS

This paper presents a PHEV energy management control

strategy that aims to improve real world fuel economy and

energy usage flexibility. The success of the proposed energy

management strategy assumes scalable trip foreknowledge

from only charge cycle distance to more trip and drive

behavior information in order to shape driving patterns. By

optimally distribute the battery electric energy to the whole

trip, the system operation efficiency is further elevated by

taking advantage of sufficient e-drive assistance through-

out the driving process. The proposed TEMC strategy was

validated through simulation based verification tests with

demonstrated fuel economy improvement results.
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Fig. 10. Customer cycle simulation results using SOC preplanning

Fig. 11. Engine operation distribution from the default control strategy
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