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Abstract— In some recent works, an alternative nonparamet-
ric paradigm to linear model identification has been proposed,
where the unknown system impulse response is interpreted as a
realization of a Gaussian process. Its autocovariance belongs to
the class of so-called stable spline kernels that incorporate the
stability constraint. Within this class, the order of the kernel
establishes the degree of smoothness of the system impulse
response. In this work, first we prove that such statistical models
can be derived through Maximum Entropy arguments. Then,
we show that the kernel order can be learnt from data via
an efficient computational scheme that maximizes the marginal
likelihood with respect to only two hyperparameters. Numerical
experiments, with data generated by output error models, show
the advantages of the new nonparametric estimator over the
classical PEM approach that adopts cross validation to perform
model order selection. In Part II of the companion papers
the same identification problem is addressed in a deterministic
framework.

Index Terms— linear system identification; output error mod-
els; kernel-based regularization; Bayesian estimation; Gaussian
processes; maximum entropy

I. INTRODUCTION

The mainstream approach to identification of linear
discrete-time models is given by Prediction Error Methods
(PEM), see [9], [15]. As a rule the model order is unknown
and model-order selection is a key ingredient of the identifi-
cation process. Models of different order are identified from
data and compared resorting either to complexity measures
such as FPE and AIC criteria or cross validation, splitting the
data into a training and a validation set, see e.g. [1], [17].
Recently, an alternative nonparametric paradigm has been
proposed that focuses on the direct identification of the
impulse response [13], [12]. Instead of considering a finite
dimensional parametrization of the impulse response, its
identification is seen as a function learning problem for-
mulated in an infinite-dimensional space. According to the
framework of Gaussian regression [14], the unknown impulse
response is seen as a realization of a Gaussian process whose
autocovariance encodes the available prior knowledge. Of
particular interest is a class of autocovariances, named stable
spline kernels [13], [11], that encode exponential stability of
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the system to be identified. More precisely, the associated
Gaussian process is the m-fold integration of white noise
subject to an exponential time transformation. A derivation
of the stable spline kernel of order m = 1 via ”deterministic”
arguments has been also recently obtained in [3]. A definite
advantage of the stable spline kernel is that it is characterized
by few hyperparameters that are estimated from data, e.g.
via likelihood maximization. Once these hyperparameters
have been fixed, the impulse reponse estimate is obtained
in closed-form. Remarkably, this new paradigm has been
shown to be very competitive with respect to established
identification methods such as PEM and subspace methods.
Within this new nonparametric framework, the scope of this
paper is threefold. A first aim is to show that the statistical
model underlying the nonparametric paradigm can be derived
from Maximum Entropy arguments. Second, a new kernel
that describes impulse responses containing high frequency
poles is also derived. The third and final contribution has to
do with the optimal selection of the kernel. In fact, recent
works have shown that the choice of the kernel order m
may play a significant role in the estimation process, tuning
the degree of smoothness of the function to reconstruct,
see [11] and [3]. Since m can be interpreted as a further
hyperparameter that can be learnt from data, we propose a
novel Bayesian model for system identification where kernels
of different order may provide alternative descriptions of
the autocovariance of the unknown impulse response. It is
shown that the most suitable kernel can be selected via an
efficient computational scheme that maximizes the marginal
likelihood with respect to only two hyperparameters. We
include several numerical experiments involving output error
models and Gaussian measurement noise whose variance has
to be estimated from the data, illustrating the advantages
of the new nonparametric estimator over the classical PEM
approach where model order is selected via cross validation.
The paper is organized as follows. In Section II, the statement
of the problem is provided. In Section III, the linear system
identification problem is given a Bayesian formulation and a
new stochastic model is introduced. In Section IV, a numer-
ical algorithm which performs kernel selection and returns
the impulse response estimate is worked out. In Section V,
simulated data are used to demonstrate the effectiveness of
the proposed approach. Conclusions end the paper while the
Appendix contains some mathematical details.
In the same session the companion paper by Tianshi Chen,
Henrik Ohlsson, Graham C. Goodwin and Lennart Ljung in-
vestigates the same identification problem in a deterministic
framework.
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II. STATEMENT OF THE PROBLEM AND NOTATION

For t ∈Z, we use {yt} to indicate noisy output data coming
from a discrete-time linear dynamic system fed with a known
input {ut}. The measurements model is

yt =
∞

∑
k=1

fkut−k + vt (1)

where f = { ft}∞
t=1 is the unknown impulse response while

{vt} is white Gaussian noise of variance σ2. Our problem is
to estimate f from the available input-output data.

A. Notation
For our future developments, it is useful to introduce some

additional notation. In particular, we use y and u to indicate
the n-dimensional vectors containing the output and the input
measurements, respectively. The number of data observed for
t ≤ 0 and for t > 0 is denoted, respectively, by n- and n+,
so that n = n- +n+. In addition, let

y+ = [y1 . . .yn+ ]T , v+ = [v1 . . .vn+ ]T

be the vectors containing the observed output data and the
unknown noise realizations at positive time instants. We also
define

[U ] ji = u j−i, j = 1, . . . ,n+, i ∈ N. (2)

so that, using notation of ordinary algebra to handle
infinite-dimensional objects, with f representing an infinite-
dimensional column vector, one has

y+ = U f + v+ (3)

In practice, the matrix U is never completely known, since
only n- input samples collected at negative time instants are
available. However, in what follows we will always think of
U as fully specified by setting its unobserved entries to zero.

III. SYSTEM IDENTIFICATION VIA GAUSSIAN
REGRESSION

A. A Bayesian framework for system identification
Under the framework of Gaussian regression [14], the

impulse response f is interpreted as the realization of a
stochastic process [13]. In particular, our Bayesian model
is graphically illustrated in Fig. 1 (left). The node σ is
deterministic and represents the noise standard deviation. It is
connected to y+ as, together with f , it defines the statistics
of the output vector. When output data are available, the
value of σ can be obtained using a low-bias parametric ARX
description for f , see e.g. [5]. For these reasons, even if σ
will be always estimated from data during our numerical
experiments, hereafter it will be considered known and will
not be included in the unknown hyperparameter vector.
In the network, the node (�,λ�,β�) takes values in
{1, . . . ,L}×R2

+ and gathers unknown hyperparameters. It is
connected to f as it determines the statistics of the impulse
response. To be more specific, each value of � identifies a
different Mercer kernel K�, i.e. a symmetric and positive
definite map from N×N into the real line. Then, f is a a
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Fig. 1. Bayesian network describing the nonparametric modeling approach
to system identification adopted in this paper (case a). The same model with
f integrated out (the joint distribution of f and y+ is marginalized with
respect to f ) is also reported (case b). In the network, dotted and solid lines
denote deterministic and stochastic variables, respectively.

nonstationary discrete-time zero-mean Gaussian process on
N, with covariance defined by

E[ f (t) f (s)] = λ 2
� K�(t,s;β�) (4)

where t,s ∈N are two time instants. From (4), it is apparent
that λ� plays the role of a scale factor while, as it will
become clear in the sequel, the hyperparameter β� is related
to the dominant pole of the system. In what follows, with
a slight abuse of notation, the notation K�(β�) is also used
to indicate the matrix whose entry (t,s) is K�(t,s;β�).
It comes that the set {λ 2

� K�(β�)}L
�=1 contains different

infinite dimensional autocovariances, i.e. different statistical
descriptions of f , the ”best” of which is to be determined
from data.

B. Stable spline kernels for system identification

The quality of the nonparametric estimator exploiting the
Bayesian model in Fig. 1 will crucially depend on the kernel
chosen to describe f . For convenience, in this subsection
we think of f as a continuos-time process on R+. This is
instrumental to the introduction of a class of autocovariances,
already discussed in [13], [11], useful also for continuous-
time identification. All the derivation naturally extends to the
discrete-time context considering the sampled version of the
kernels described below, as discussed in the next subsection.
In the literature on Gaussian regression, the adopted priors
usually reflect the knowledge that the unknown function,
and possibly some of its derivatives, are continuous with
bounded energy. The most widely used approach models f
as the m-fold integral of white Gaussian noise, so that its
autocovariance is assumed proportional to

Wm(s, t) =
� 1

0
Gm(s,u)Gm(t,u)du (5)
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where

Gm(r,u) =
(r−u)m−1

+
(m−1)!

, (u)+ =
�

u if u≥ 0
0 otherwise

This autocovariance arises also in the Bayesian interpretation
of m-th order smoothing splines, see [18] for details.
It is worth noticing that the kernel Wm does not depend
on any unknown hyperparameter and does not account for
impulse response stability. In fact, the variance of f increases
over time. In [13], [11] new kernels, specifically tailored to
linear system identification, have been introduced. In the rest
of this subsection, we show how such class can be derived
from maximum entropy arguments.
For our purposes, it is useful to recall that, in the Bayesian
literature, Jaynes proposed a MaxEnt (maximum entropy)
approach to derive complete statistical priors distributions
from incomplete a priori information [7]. Among all distribu-
tions that satisfy some constraints, e.g. in terms of the value
taken by a few expectations, the MaxEnt criterion selects the
distribution that maximizes the entropy.
The problem of selecting priors for continuous-time Gaussian
processes can still be approached using the MaxEnt paradigm
by resorting to the notion of differential entropy rate [4]. In
particular, let ΛB be the class of the zero-mean stationary and
differentiable Gaussian processes on [0,1] with bandlimited
spectrum, i.e. S(ω) = 0 for |ω|≤ B. The following definition
is then taken from [4].

Definition 1: The differential entropy rate of g ∈ ΛB is

D(g) :=
1

4π

� +∞

−∞
log[S(ω)]dω (6)

�
Now, we search for the least informative Gaussian prior

on R+ for f including the knowledge on smoothness and
exponential BIBO stability. To express the prior knowledge
that the variance of the derivative of f goes exponentially
to zero as t goes to ∞, it is assumed that there exists a
logarithmic time transformation that makes f a stationary
stochastic process in ΛB. To express prior knowledge on
the smoothness of f , we introduce the assumption that the
first-order derivative g(1) of the process g has finite variance
which ensures continuity of its realizations and hence of f .
The problem of finding the prior for f is reformulated as
the problem of finding a prior on g which is compatible
with the constraints induced by prior knowledge. Among the
infinite probability distributions that satisfy the constraints,
we will look for the MaxEnt prior, i.e. the one maximizing
the entropy rate (6). The next proposition shows that, under
the available prior knowledge, the MaxEnt prior for g leads
to a prior for f which coincides with the stable spline kernel
of order 1.

Proposition 2: Let f be a stochastic process on R+ such
that f (− log(t)/β ) = g(t), where g ∈ ΛB with the variance
of g(1) finite. Then, as the bandwidth B goes to ∞, the kernel
of f induced by the MaxEnt prior for g, conditional on
limt→∞ f (t) = 0, is

Σ1(s, t) := E( f (s), f (t)) = max(e−β s,e−β t) (7)

�
The autocovariance Σ1 obtained above corresponds exactly

to the Stable Spline kernel of order 1 introduced in [11]
which thus enjoys favorable MaxEnt properties. Interestingly,
this type of kernel for system identification was also derived
in [3] using a totally different deterministic argument.
One can easily see that Σ1(s, t) =W1(e−β s,e−β t) from which
it comes that the process g becomes the Wiener process. We
notice that smoother descriptions of the impulse response
can be obtained modeling g as the m-fold integration of
white Gaussian noise, with m > 1. This argument leads to
the following class of kernels Σm parametrized by the integer
m:

Σm(s, t) = Wm(e−β s,e−β t), m = 1,2, . . . (8)

In particular, setting m = 2 in (8) the kernel becomes the
stable spline kernel originally introduced in [13], i.e.

Σ2(s, t) =
e−β (s+t)e−β max(s,t)

2
− e−3β max(s,t)

6
(9)

It can be shown that modeling f as a Gaussian process
of autocovariance Σm corresponds to assume that the Bayes
estimate of the impulse response belongs to a particular
reproducing kernel Hilbert space dense in the space of
continuous functions, see [13] for details. In other words,
irrespective of the chosen m, the estimator associated with
each kernel has a negligible model bias. However, the choice
of the kernel order regulates the degree of smoothness of f
and is likely to have a significant influence on the estimation
bias1, which increases with m. Indeed, the variance of the es-
timates decreases because smoother profiles, less influenced
by the measurement noise, are preferred.

C. Three kernels for nonparametric system identification

The first two statistical models for the discrete-time im-
pulse response f are the sampled versions of stable spline
kernels of order 1 and 2. The associated infinite-dimensional
autocovariance matrices are defined for s, t ∈ N as follows

[K1(β1)]st = max(e−β1s,e−β1t) (10)

[K2(β2)]st =
e−β2(s+t+max(s,t))

2
− e−3β2 max(s,t)

6
(11)

A third kernel is obtained by the following argument. The
model underlying the stable spline kernel of order 1 is a
random walk (subject to an exponential time transformation
parametrized by β1), i.e.

gk+1 = gk +wk, k = 1,2, . . . (12)

where {wk} is white noise. However, if the impulse response
is rapidly oscillating due to the presence of dominant poles
with negative real part, it could be better explained by a
model accounting for negative correlation between adjacent
samples, i.e.

gk+1 =−gk +wk, k = 1,2, . . . (13)

1See subsection 7.3 in [6] for a discussion on model and estimation bias.
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Once this model is projected onto R+ via an exponential
transformation parametrized by β3, the following third com-
petitive model, defined for s, t ∈ N, is obtained

[K3(β3)]st =
�

max(e−β3s,e−β3t) if s+ t is even
−max(e−β3s,e−β3t) if s+ t is odd

(14)
In the sequel, this model is referred to as high-frequency
(HF) stable spline kernel.

IV. NUMERICAL ALGORITHMS

According to (4), the statistics of f are known up to the
three hyperparameters �,λ� and β� that must be estimated
from data. To this aim, a key quantity is the marginal
likelihood of y+, i.e. the marginalization with respect to f
of the joint density of y+ and f . After simple computations,
one obtains

p(y+) =
exp

�
− 1

2 (y+)T (Var[y+])−1y+�
�

det(2π(Var[y+]))
(15)

where the autocovariance of y+ is

Var[y+] = λ 2
� UK�(β�)UT +σ2In+ (16)

where In+ is the n+× n+ identity matrix. The model, ob-
tained after marginalization, is graphically depicted in Fig. 1b
(right).
Hyperparameter estimation proceeds trough sequential op-
timization of sections of the marginal loglikelihood. First,
fix the integer � and let β� take values on a logarithmically
scaled grid in R+. The elements of such grid are ordered in
the vector Ωβ whose dimension is denoted by |Ωβ |. Given a
value of β�, the singular value decomposition of UK�(β�)UT

is computed, i.e.

UK�(β�)UT = P(β�)D(β�)P(β�)T (17)

where D = diag{di(β�)}, i = 1, . . . ,n+. Letting z = PT y+,
with i-th element given by zi, one obtains

J�(λ ) :=− log(p(y+)) (18)

=
n+

2
log(2π)+

1
2

n+
∑
i=1

�
z2

i
diλ 2 +σ2 + log(diλ 2 +σ2)

�

Notice that both zi and di depend on β�, but we omit this
dependence to simplify the notation. It is easy to prove
that the global minimum of J� must fall in the compact
[0,maxi(z2

i − σ2)/di]. In addition, a good starting point
for the optimizer is given by the mean of {z2

i /di}n+
i=1, that

corresponds to the minimizer of Jβ once σ is set to 0. Since
the pointwise evaluation of the objective J�(λ ) requires
only O(n+) operations, a grid method can be efficiently
employed to perform optimization avoiding the risk of local
minima.
For a given value of �, associated with the kernel function
K�, the numerical procedure returning the estimates of λ�

and β� is summarized below.

Algorithm 1: The input to this algorithm includes a ker-
nel function K�, the input-output data contained in the n-
dimensional vectors u and y, the values of n+ and n-, the
variance σ2 and the grid Ωβ . The outputs of this algorithm
are the estimates of λ� and β� and the optimized value of
the marginal loglikelihood. The steps are as follows:

• Compute U using (2), setting its unobserved entries to
zero.

• For i = 1 to |Ωβ |, perform the following operations:

– Letting β i
� denote the i-th element of Ωβ , compute

the SVD of UK�(β i
�)U

T , i.e.

UK�(β i
�)U

T = P(β i
�)D(β i

�)P(β i
�)

T , D = diag{di}

– Compute λ i
� as

argmin
λ

n+

2
log(2π)

+
1
2

n+
∑
i=1

�
z2

i
diλ 2 +σ2 + log(diλ 2 +σ2)

�

and set Ji
� to the minimum of the above objective

• Return Ĵ� := mini Ji
� as well as the optimal pair {λ̂�, β̂�}.

After Algorithm 1 is repeated L times using each kernel K�,
the optimizers {λ̂�, β̂�}L

�=1 and the corresponding objective
values {Ĵ�}L

�=1 become available. Then, the index � that
minimizes Ĵ� provides the ”optimal” statistical model for f .
Such index defines the ”best” kernel and the corresponding
hyperparameters, denoted, respectively, by K̂ and {λ̂�, β̂�}.
Once kernel selection has been completed, the minimum
variance estimator of f admits a simple expression. In fact, f
and y+, are jointly Gaussian. Hence, exploiting a well known
property of multivariate Gaussians [2], one obtains

E[ f |y+] = λ̂ 2K̂(β̂ )UT (Var[y+])−1y+ (19)

We are now in a position to summarize the numerical
procedure that returns the estimate of the system impulse
response.

Algorithm 2: The input to this algorithm includes the
candidate kernel functions {K�}L

�=1, the input-output data
contained in the n-dimensional vectors u and y, the values of
n+ and n-, the variance σ2 and the grid Ωβ . The output of
this algorithm is the estimate of the system impulse response.
The steps are as follows:

• For each value of �, associated with the kernel func-
tion K�, execute Algorithm 1 and store the optimiz-
ers {λ̂�, β̂�}L

�=1 and the corresponding optimal values
{Ĵ�}L

�=1
• Determine the best kernel minimizing {Ĵ�}L

�=1 with
respect to �. Let such optimal kernel and the correspond-
ing hyperparameters be denoted by K̂ and {λ̂�, β̂�}.

• According to (16) and (19), return the estimate of the
system impulse response as

f̂ = E[ f |λ̂ , β̂ ] = λ̂ 2K̂UT (λ̂ 2UK̂(β̂ )UT +σ2In)−1y
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Remark 3: The proposed kernel selection scheme admits a
Bayesian interpretation. First of all, regard the hyperparame-
ters {λ�,β�} of each K� as known and equal to their estimates
{λ̂�, β̂�}. Then, assume that the candidate autocovariance
K of f is randomly drawn with equiprobable outcomes
{K�}L

�=1. Then, the a posteriori probability of the event
K = K� is

P(K = K�|y+) =
�

p(y+, f |K = K�)P(K�)d f
p(y+)

(20)

=
p(y+|K = K�)

Lp(y+)
=

exp(−Ĵ�)
Lp(y+)

Hence, our kernel selection procedure can be seen as a
Bayesian model selection scheme, e.g. see [8], where one
maximizes the a posteriori probability of K just neglecting
the uncertainty relative to the hyperparameters λ� and β�.

V. NUMERICAL EXPERIMENTS

A. Set up of four Monte Carlo experiments

The performance of the proposed approach was evaluated
by 4 Monte Carlo studies, each consisting of 1000 runs.
The four experiments differ each other in terms of the four
features listed below.

• Measurement noise. Data are collected after getting rid
of initial conditions and are corrupted by white Gaussian
noise. In the first three experiments σ = 1 while in the
last one σ is 1/3 of the sample standard deviation of
the noiseless output.

• System input u. In the first two Monte Carlo studies u is
white noise with unit variance (WN). In the other two
experiments it is a Low-Pass random Gaussian signal
(LP), generated by the idinput.m Matlab function with
band [0,0.8], where 0 and 0.8 are the lower and upper
limits of the passband, expressed in fractions of the
Nyquist frequency.

• Data set size n. It is 250 in all the experiments except
in the second one where the size of input and output
vectors is 500.

• System generators. Two different random generators of
systems are employed. The first type is used in the first
three experiments and exploits the MATLAB function
drmodel.m to generate at any run a random stable 30-th
order model. System poles are restricted to be inside
the circle of radius 0.95 while the �2 norm of the
impulse response lies between 0.5 and 10 (drmodel.m
is repeatedly called at any run until such requirements
are fulfilled). In this way, since σ is always equal to 1,
at any run the ratio between the standard deviation of
the noiseless output and that of the measurement noise
is a random variable uniformly distributed in [0.5,10].
The first type of system generator leads to a great variety
of challenging systems. They may well contain poles at
high frequency, leading to oscillating impulse responses,
see the top panel of Fig. 2 where five impulse response
realizations are shown. The second system generator
is instead derived from the bioengineering literature.
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Fig. 2. Five impulse response realizations drawn from the systems generator
#1 (top panel) and #2 (bottom panel).

Experiment #1 #2 #3 #4
System input WN WN LP LP

System generator 1 1 1 2
Measurement noise WN WN WN WN

Data set size 250 500 250 250

TABLE I
FEATURES CHARACTERIZING THE 4 MONTE CARLO STUDIES.

It exploits prior information coming from real data to
generate smooth impulse responses whose spectrum is
concentrated at low frequencies. The impulse response
is the sum of three exponentials describing the kinetics
of C-peptide in humans, a hormone related to insulin
secretion. In particular, at each run the six system
parameters are drawn from a truncated multivariate
Gaussian distribution, derived from population studies
and reported in the Appendix of [16]. The impulse
response is then sampled with a unit sampling step. Five
realizations are visible in the bottom panel of Fig. 2.

All information relevant to the 4 experiments is summa-
rized in Table I.

B. Performance index
The performance index regards the quality of the estimated

system impulse response. In particular, we use f j and f̂ j

to denote, respectively, the true impulse response, randomly
generated at the j-th run, and the corresponding estimate.
Then, the error is computed as

err j =
� f̂ j− f j�2

� f j�2
, j = 1,2, . . . ,1000 (21)

In (21), � ·�2 is the �2 norm that is approximated numer-
ically by considering only the first n samples of f j and f̂ j

(n = 250 or 500, depending on the considered experiment).

C. The competing estimators
During the Monte Carlo simulations, the following esti-

mators are used:
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Fig. 3. Boxplot of the relative errors {err j}1000
j=1 defined in (21) obtained by the 7 estimators during the four Monte Carlo studies. The number of possible

outliers contained in {err j}, but not displayed in the panel, is also reported near each boxplot.

• SS{1,2,HF}. This is the nonparametric estimator de-
scribed in the previous section that considers three
candidate autocovariances: the stable spline kernels of
order 1 and 2 and the new HF kernel. The value of the
noise variance σ2 is obtained at each Monte Carlo run
using a low-bias parametric ARX description for f , see
e.g. [5]. In the experiments #1,3,4, where data set size is
250, the stable spline estimator uses the first 100 input-
output pairs in the training set just to obtain 100 past
inputs entering U in (2). In this way, n- = 100 while the
dimension n+ of y+ in (3) is 150. In the experiment #2,
where n = 500, we instead set n- = 150 and n+ = 350.
Finally, the grid Ωβ contains 27 elements, being defined

by

− log([0.01,0.02,0.03,0.04,0.05,0.1,

0.15,0.2, . . . ,0.95,0.96,0.97,0.98,0.99])

• SS{1,2},SS{1},SS{2},SS{HF}. These other four stable
spline estimators are defined as above except that they
use either two candidate autocovariances, excluding the
HF kernel, or only one of the three candidate kernels.

• PEM+oracle. Classical PEM approach, as implemented
in the oe.m function of the MATLAB System Identifi-
cation Toolbox [10], equipped with an oracle. This is
an ideal tuning, not implementable in practice, since at
each run it requires the knowledge of the true impulse
response f j. Model selection is restricted to transfer
functions whose numerator and denominator polynomi-
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als have the same order. Then, at every run j, the oracle
provides a bound on the best achievable performance of
PEM selecting the model order minimizing err j in (21).

• PEM+VAL. The same as above except that the model
order is selected using cross validation. In particular,
data are split into a training and a validation data set
of equal size2. For every model order ranging from 1
to 30, first system identification is performed through
the oe.m function fed with the training set. Then, the
prediction error on the validation set is computed using
the predict.m function fed with all the input data con-
tained in the training and test set. Finally, the estimate of
the impulse response is obtained fixing the model order
to the one leading the best prediction on the validation
data set and using the oe.m function fed with all the
available measurements (the union of the training and
of the validation data sets).

The system input delay is assumed known and its value
is provided to all the estimators described above.

D. Results
The four panels of Fig. 3 report boxplots of the relative

errors {err j}1000
j=1 defined in (21) obtained by the 7 different

estimators in the four experiments. The performance refer-
ence is represented by PEM+oracle.
We start comparing the results obtained by PEM+oracle,
PEM+VAL and SS{1,2,HF}. In all the four case studies, the
nonparametric estimator SS{1,2,HF} provides results compa-
rable to those of PEM+oracle and outperforms PEM+VAL.
Notice also that, differently from SS{1,2,HF}, the box-
plots produced by PEM+VAL contain many outliers, not
all displayed in Fig. 3. This is particularly true in the last
two experiments where system identification is made more
difficult by the LP input (less exciting than WN).
We now compare the results obtained by SS{1}, SS{2} and
SS{HF}. In the first two experiments (first two panels of
Fig. 3) all the three nonparametric estimators perform well,
with the performance of SS{1} and SS{HF} slightly better
than that of SS{2}. This derives from the fact that in the first
two case studies the input is WN and the systems to identify
may well possess oscillating poles that are better captured
by the HF and the first-order stable spline kernel. In the
third experiment (third panel of Fig. 3), the adopted system
generator is the same but the input is LP. One can see that
the performance of SS{1} and SS{2} is much similar while
the quality of the results achieved by SS{HF} deteriorates,
possibly due to the lack of high frequency content in the
training signal. On the other hand, SS{1} and SS{2} can
deal also with high-frequency impulse responses thanks to
their built-in regularization properties that keep estimation
variance low.
In the last experiment (fourth panel of Fig. 3) the estimator
SS{2} outperforms SS{1} and SS{HF}. This is not surprising
since the frequency content of the transfer functions to

2We have also tried a different partition where the split is 2/3 for training
and 1/3 for validation, as e.g. suggested in Chapter 7 of [6], finding that
this does not lead to improved results.

reconstruct is now mostly located at low frequencies. Hence,
the impulse responses are better described as realizations of
smooth processes.
In view of these results, the robustness of the estimator
SS{1,2,HF} is remarkable. In fact, Fig. 3 reveals that the
proposed kernel selection procedure very often leads to the
kernel guaranteeing the minimum estimation error. In other
words, the estimator adapts well to the different experimental
conditions. In fact, the boxplot of the errors coming from
SS{1,2,HF} always appears as a suitable synthesis of those
associated with SS{1}, SS{2} and SS{HF}. For instance, in
the last experiment it turns out that the HF kernel, which
leads to large estimation errors, is almost always discarded
while the the second-order stable spline kernel is selected in
almost all of the 1000 runs.

E. Computational considerations
A simple analysis of Algorithm 2 developed in Section

IV reveals that, for large values of the data set size n, the
complexity of the nonparametric scheme proposed in this
paper is O

�
L|Ωβ |(n+)3�, where |Ωβ | is the grid size for

β , while L is the number of candidate autocovariances. A
possible strategy to reduce the number of operations is to
use a reduced data set to perform kernel selection and then
employ the entire data set to estimate the impulse response
via (19). As an example, we have repeated Experiment #2
forcing the estimator SS{1,2,HF} to exploit only 250 data, in
place of the overall 500, for kernel selection. More specif-
ically, we split the 250 data available for hyperparameter
estimation setting n- = 150 and n+ = 100. Then, we set
n- = 150 and n+ = 350 to obtain the impulse response
estimate from the 500 measurements. In this way, using
a Pentium 3GHz, very few seconds were needed at every
Monte Carlo run to complete system identification. Define
the average identification error at the j-th run as

err j =
∑ j

k=1 errk

j
(22)

Then, Fig. 4 plots err j as a function of the Monte Carlo run,
using the entire and the reduced data set for selecting the
kernel. One can see that the quality of the estimates is very
similar, further corroborating the robustness of the proposed
approach.

VI. CONCLUSIONS

In this paper, we have extended a recently proposed
nonparametric approach to system identification where the
unknown impulse response is modeled as a Gaussian process
with autocovariance defined by stable spline kernels. First,
we have shown how the class of autocovariances introduced
in [13], [11], [3] can be derived via Maximum Entropy
arguments. In addition, we have also proposed a new kernel
suited to systems containing high frequency poles. This
analysis leads to the definition of a new Bayesian model for
system identification where different competitive kernels are
introduced. All the kernels include the stability constraint,
but describe impulse responses with different degrees of
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Fig. 4. Monte Carlo experiment #2. Average reconstruction error err j , see
(22), as a function of the Monte Carlo run, obtained by SS{1,2,HF} using
the full and reduced data set for hyperparameter estimation.

smoothness. An efficient computational scheme that per-
forms kernel selection and impulse response estimation has
been worked out.
Numerical experiments involving output error models show
that the proposed technique outperforms the classical PEM
approach that uses cross validation for model selection. The
main drawback of PEM+VAL has to do with the possible
selection of wrong-order models that perform well on the
validation set but provide unreliable estimates of the impulse
response. In fact, when some frequency ranges are dominant
in the validation set, cross validation may select models
that perform badly in other frequency ranges. This does not
happen in the SS approach due to its inherent regularization
properties.

APPENDIX: PROOF OF PROPOSITION 2
The proof is an adaption of the proof of the main result in

[4] where the issue of stability is not addressed. We introduce
the following constraints on g

Var[g(k)] = λ 2
k , k = 0,1 (23)

Notice that the constraint on the variance of g (k=0) will
be subsequently relaxed by letting Var[g] go to ∞. Now,
the MaxEnt spectrum of g solves the equality constrained
optimization problem whose Lagrangian is

L[S,ς ] =
1

4π

� B

−B
log[S(ω)]dω

+
1

∑
k=0

ςk

�
λ 2

k −
1

2π

� B

−B
w2kS(ω)dω

�

where ς = [ς0 ς1] is the vector of Lagrange multipliers. We
have

∂L
∂S

=
1

2π

� B

−B

�
1
2

1
S(ω)

− ς0− ς1ω2
�

dω

Hence

S(ω) =

�
1

2(ς0+ς1ω2) if −B < ω < B
0 otherwise

where {ςk} must satisfy the following conditions coming
from the equality constraints:

� B

−B

ω2 j

∑1
k=0 ςkω2k

dω = 2πλ 2
j , j = 0,1 (24)

If λ 2
0 tends to ∞, then, from (24) the corresponding Lagrange

multiplier ς0 goes to zero. Thus, the MaxEnt spectrum of g
becomes

S(ω) =
1

ς1ω2

Roughly speaking, for B tending to ∞, this corresponds
to the spectrum of the integrated continuous-time white
noise. The additional constraint limt→∞ f (t) = 0 implies
limt→0 g(t) = 0 so that, under the logarithmic time-
transformation, g becomes a Brownian motion. This corre-
sponds to E[g(s),g(t)] = min(s, t) for s, t ∈ [0,1] from which,
using the equation f (t) = g(e−β t), the stable spline kernel (7)
is immediately obtained.
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