
1

Stabilization of discrete-time linear systems with saturating actuators using
sliding modes: application to a twin-rotor system

M. L. Corradini�, A. Cristofaro� , G. Orlando∗

Abstract— This paper investigates the stabilization problem
for discrete-time linear controllable systems subject to actuator
saturation. In the case of completely known plants, a control
design technique based on a time varying sliding surface
is proposed ensuring stabilization under the assumption of
availability of all state measurements. Further, in the presence
of matched disturbances with known constant bound, a discrete
time sliding mode controller is proposed ensuring plant prac-
tical stabilization, and a conservative estimate of the attraction
domain is given. Theoretical results have been validated by
experimental data using a twin-rotor system.

Keywords: Saturating Actuators, discrete time sliding
mode control, twin rotor system.

I. INTRODUCTION

The phenomenon of amplitude saturation in actuators is
due to inherent physical limitations of devices. Though often
ignored, as happens in classical control theory, it cannot
be avoided in practice. Unfortunately, failure in accounting
for actuator saturation may lead to severe deterioration of
closed loop system performance, even to instability. Just
to mention a few examples, sliding mode control [1] [2]
has been widely used in recent literature for the control of
motors, precision devices and/or vehicles [3] [4], [5], but
the problem of actuator saturation has been considered only
rarely, at least from the theoretical viewpoint.
In the vast literature addressing the stabilization problem for
discrete-time linear systems subject to actuator saturation,
two lines of research have been mostly pursued. The first line
focuses on the estimation of the asymptotic stability region,
which often has a very conservative expression. To reduce
this conservatism, estimates are given as solution of suitable
LMI optimization problems in the continuous time [6], [7]
and in the discrete time framework [8], [9], [10]. The other
line of research focuses on the estimation, less conservative
as possible, of the null controllable region, i.e. the set of
state which can be driven towards the origin of the state
space using saturating actuators. In this latter framework,
the problem has been completely studied for plants known
as Asymptotically Null Controllable with Bounded Controls
(ANCBC), for which the null controllable region is the whole
state space [11], [12], [13]. Moreover, some results are avail-
able for general discrete-time systems about feedback laws
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achieving semi-global stabilization on the null controllable
region. Broadly speaking, such techniques consist either in
dividing the null controllable region in polygons and finding
suitable controls driving the vertices to the origin [14], or in
designing a sequence of feedback laws such that the union of
the corresponding invariant sets is an invariant set contained
in the domain of attraction [15]. Both techniques, however,
require a considerable computational burden also for plants
with relatively low order.

Furthermore, the problem of disturbance rejection for
linear systems subject to actuator saturation has been inves-
tigated only marginally in the discrete time framework. Note
that for continuous time plant an interesting research line
considers disturbances that are magnitude bounded. In such
context, [16] proved that semi-global practical stabilization
for a linear system subject to actuator saturation and input
additive disturbances can be achieved as long as the open
loop system is not exponentially unstable. For the same
class of systems, Lin [17] constructed non-linear feedback
laws that achieve global practical stabilization. Recently, it
has been proved in [18] that a 2-dimensional linear systems
subject to actuator saturation and bounded input additive
disturbances can be globally practically stabilized by linear
state feedback, while a sliding mode approach has been
very recently presented [19], [20] for continuous-time Single
Input plants.

In this paper, a novel control law is proposed, along with
experimental tests on a twin-rotor system. The controller is
aimed at ensuring that the motors driving the plant work far
from the saturation limit. In fact, it is well known that it is
not good practice to let a driving power device work near
or in saturation, for obvious reasons concerning safety and
energy supply of the device itself. To this purpose, a time-
varying sliding surface, different from that in [19], [20], has
been designed, and the corresponding controller has been
shown to be able to provide finite time plant stabilization for
completely known systems. An extension to the case when
matched bounded uncertainties affect the plant has been
also considered, and a discrete-time sliding mode controller
has been proposed ensuring ultimate boundedness of state
trajectories. Finally, experimental tests have been performed
on a twin-rotor system.

It is worth noticing that the control technique proposed
here contains a number of novelties with respect to our
previous works. Firstly, it addresses discrete-time plants,
while previously published results [19], [20] considered the
continuous time framework. Moreover, the sliding surface
and the corresponding control law here discussed is not
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simply the discrete-time counterpart of the surface studied in
[19], [20], but has been differently designed. Finally, one of
the main focuses of this paper is the experimental validation
of the controller, never performed in our previous papers.

II. PROBLEM STATEMENT

Consider the following discrete-time, time invariant SISO
plant S def

= {Â, B̂} described by:

x̂(k + 1) = Âx̂(k) + B̂u(k) (1)

where: x̂(k) = [x̂1(k) · · · x̂n(k)]T ∈ IRn is the state vector
(assumed available for measurement), u(k) ∈ IR is the
control input, and Â ∈ IRn×n, B̂ ∈ IRn are the state and
input distribution matrices, respectively.

Assumption 2.1: The plant is controllable.
The plant is supposed to be preceded by a saturating

device u(k) = f(v(k)) described by the following analytical
expression:

u(k) = f(v(k)) =


M if v(k) ≥M
v if −M < v(k) < M

−M if v(k) ≤ −M
(2)

with threshold M known.
Under the controllability hypothesis, there exists a smooth

change of coordinates: x(k) = T2T1x̂(k) such that by T1

the plant is transformed in the controllability form, and T2

is such that system (1) becomes:

x(k + 1) = Ax(k) + Bu(k) (3)

with: A = T2T1ÂT−1
1 T−1

2 =

[
A11 A12

A21 A22

]
=

=


0 α1 0 . . . 0
0 0 α2 . . . 0
... . . . αn−1

a1 a2 a3 . . . an

 , (4)

B = T2T1B̂ =

[
0
b

]
|α1| < 1; . . . |αn−1| < 1 (5)

Since |α1| < 1; . . . |αn−1| < 1, it is straightforward that,
when all the eigenvalues of A are equal to zero, i.e. when
a1 = a2 = · · · = an = 0, matrix A has norm less than 1.

Recalling that only the input v(k) is available for direct
manipulation, the control problem addressed in this paper
consists in finding a state feedback controller v(k) guaran-
teeing the stabilization of the system (1), in the presence of a
saturating non-linearity in the actuating device given by (2).

III. A FINITE TIME STABILIZING CONTROLLER WITH
SATURATING INPUTS

The basic idea pursued in this section is to design a time-
varying sliding surface such that the achievement of a quasi
sliding motion on it can be ensured with saturating input. The
associated sliding mode based controller is used to drive the
plant state toward a suitable neighbourhood of the origin,
where a standard state feedback controller can be used to
achieve finite time stability.

First of all, a set of initial states can be easily found,
starting from which the state vector can be directly steered
to the origin using a standard linear state feedback controller.
To this purpose, with reference to the transformed plant (3),
consider the following control law:

u(k) = Kx(k) (6)

where K is such that the matrix A+BK
def
= N is nilpotent.

In the following, the symbol || · || will denote || · ||2.
Lemma 3.1: It is given the discrete-time system (3) pre-

ceded by the saturating device (2) under Assumption 2.1. The
deadbeat controller (6) guarantees finite time stabilization
with saturating inputs for any initial condition belonging to
the set:

I =

{
x(0) : ||x(0)|| ≤ M

||K||
def
= M̄

}
(7)

Such set is an invariant set.
Proof: Consider x(0) as the initial condition, and

apply the deadbeat controller u(k) = Kx(k). The saturation
constraint provides:

|Kx(k)| ≤M (8)

Moreover, the following chain of inequalities is straightfor-
ward:

|Kx(k)| ≤ ||K|| · ||x(k)|| ≤ ||K|| · ||Nk|| · ||x(0)||
≤ ||K|| · ||N||k · ||x(0)|| ≤ ||K|| · ||x(0)|| (9)

since ||N|| < 1. In fact, N = A + BK is nilpotent
and therefore all the elements of its last row are equal to
zero, due to transformation matrix T1: as a consequence
||N|| < 1, due to transformation matrix T2, i.e. to the choice
of coefficients α1 < 1 . . . αn < 1. Expression (9) implies
that: ||x(0)|| ≤ M

||K|| ⇒ ||x(k)|| ≤ M
||K|| , i.e. the set I is

invariant. In other words, if the initial state belongs to the set
I and fulfills the saturation constraints, the entire dynamics
satisfy the same constraint. Moreover, the deadbeat controller
ensures stabilization in finite time.

As already mentioned, a time varying sliding surface will
be introduced. As well known [1] [21], a vector C =
[C1 C2] ∈ IRn can be chosen such that, when a sliding
motion is achieved on the following sliding surface:

ŝ(k) = Cx(k) = C1x1(k) + C2x2(k) = 0 (10)

the corresponding reduced order system has assigned stable
eigenvalues, and, as a consequence, system (3) is stable, too.
It will be assumed here to choose C1 and C2 such that the
matrix N1 = A11−A12

C1

C2
has stable eigenvalues, and that,

without loss of generality, C2 > 0. Starting from the classical
sliding surface (10), always with reference to the transformed
plant (3), the following time varying sliding surface can be
introduced:

s(k) = Cx(k)− λkCAx(k − 1) = 0 (11)

where 0 < λ < 1 is a design parameter. It is straightforward
that when s(k) = 0, the system is asymptotically stable,
since for k → ∞ surface (11) tends to surface (10). The
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equivalent control ensuring the achievement of a sliding
motion on (11) can be obtained imposing the condition
s(k + 1) = 0, i.e.:

ueq(k) = −(CB)−1CAx(k)(1− λk+1) (12)

After the application of the controller (12), the closed loop
system for k ≥ 1 is described by:

x(k + 1) =
[
A− (1− λk+1)B(CB)−1CA

]
x(k)

= F(λ, k + 1)x(k) (13)

Due to the choice of C and λ in (11), the closed loop system
(13) is asymptotically stable. The following result can be
proved:

Theorem 3.1: It is given the discrete-time system (3)
preceded by the saturating device (2) under Assumption
2.1. The controller (12) guarantees that any initial condition
belonging to the set:

J =

x(0) ∈

k−1∏
j=0

Q(λ, k − j)

 I
 (14)

being Q(λ, k−j) = F(λ, k−j)−1, is driven to the set I in k
steps without violating the saturation constraints. Therefore,
finite time stabilization with saturating inputs is guaranteed
for any initial condition belonging to the set J by coupling
(6) and (12).

Proof: The proof consists in showing that a procedure
exists for selecting the parameter λ such that the control law
(12) drives the state into the invariant set I in a finite number
of steps k. Let’s consider x ∈ ∂I, hence ||x|| = M .
• Step 1 Consider the initial state x̂1

x̂1 := Q(λ, 1)x := [A− (1− λ)B(CB)−1CA]−1x.

Imposing that |ueq(0)| ≤M, one gets

||(1−λ)Q(λ, 1)|| ≤ ||K||
||(CB)−1CA||

=
M

M ||(CB)−1CA||
(15)

Denoting by λ1 = inf{λ ∈ (0, 1) : (15) is fulfilled},
one immediately gets that initial conditions belonging
to the set Q(λ, 1)I can be driven to the set I simply
setting 1 > λ > λ1 in (12), in fact

x(1) = Ax̂1 + Bueq(0) = F(λ, 1)x̂1 =

= F(λ, 1)Q(λ, 1)x = x. (16)

• Step 2 Define x̂2 as x̂2 := Q(λ, 1)Q(λ, 2)x. The
saturation constraints is fulfilled if the parameter λ in
(12) is chosen as 1 > λ > λ2, with λ2 solution of

1) ||(1− λ)Q(λ, 1)Q(λ, 2)|| < µ,
2) ||(1− λ2)Q(λ, 2)|| < µ,

having defined µ = ||K||
||(CB)−1CA|| . It follows that all

initial conditions belonging to Q(λ, 1)Q(λ, 2)I can be
driven to the set I in 2 steps.

• Step k As before define x̂k :=
(∏k−1

j=0 Q(λ, k − j)
)
x

and imposing that∥∥∥∥∥∥(1− λr)
k−r∏
j=0

Q(λ, k − j)

∥∥∥∥∥∥ < µ ∀r ≤ k (17)

one gets that, denoting λk := inf{λ ∈ (0, 1) :
(17) is fulfilled}, and choosing 1 > λ > λk in (12), any
initial condition belonging to the set J can be driven
to the set I in k steps. Therefore the statement follows.

IV. PRESENCE OF BOUNDED UNCERTAINTIES

The case when matched bounded disturbances or uncer-
tainties affect the plant will be now considered. As well
known, such class of disturbances is traditionally dealt with
by sliding mode control, though may be restrictive for some
plants. Reference is made here to the plant:

x(k + 1) = Ax(k) + B [u(k) + d(k)] =

=

[
A11 A12

A21 A22

]
x(k) +

[
0
b

]
[u(k) + d(k)]

(18)

under the following assumption:
Assumption 4.1: The uncertain term d(k) is such that:

|d(k)| ≤ ρ, being ρ a known constant. Moreover, ρ is such
that ρ < M

n||B||·||K|| .
It is straightforward to verify that Lemma 3.1 can be ex-
tended to cope with the uncertain plant (18) as follows:

Lemma 4.1: It is given the discrete-time system (18) pre-
ceded by the saturating device (2) under Assumptions 2.1,
4.1. The deadbeat controller (6) guarantees that for any initial
condition belonging to the set:

Iρ =

{
x(0) : ||x(0)|| ≤ M

||K||
− L def

= M∗
}

(19)

with L = nρ||B||, ultimate boundedness of the state trajec-
tories is ensured according to

lim
k→∞

||x(k)|| ≤ L (20)
Following the lines of the previous section, the following
result can be stated.

Theorem 4.1: It is given the discrete-time system (18)
preceded by the saturating device (2) under Assumptions
2.1, 4.1. For perturbing terms d(k) bounded by a constant
satisfying:

ρ < min

{
M

2n||K|| · ||B||
,

M

nρ||A||

}
. (21)

the control law u(k) = ueq(k) + v(k), with ueq(k) given by
(12) and v(k) of the form

v(k) =


0 if k = 0

−D̄F(λ, k + 1)(x(k)−
∏k
j=1 F(λ, j)x(0))

if k ≥ 1
(22)

with D̄ = [0 0 · · · 0 1
b ], guarantees that any initial condition

belonging to the set:

Jρ =

x(0) ∈

k−1∏
j=0

Q(λ, k − j)

 Iρ
 (23)

is driven to the set Iρ in k steps without violating the satu-
ration constraints. Therefore, ultimate boundedness of state
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trajectories is guaranteed for any initial condition belonging
to the set Jρ by coupling (6), (12) and (22).

Proof: The proof consists in showing that a procedure
exists for selecting the parameter λ such that the control
laws (12) and (22) drive the state into the invariant set Iρ in
a finite number of steps k. Noticing that (I−BD̄)F(λ, 1) =
(I−BD̄)A = N, since Nn = 0, the following expressions
can be easily derived:

x(1) = F(λ, 1)x(0) + Bd(0)

x(2) = F(λ, 2) (F(λ, 1)x(0)) + Bd(0)) + Bv(1) + Bd(1)

= F(λ, 2)F(λ, 1)x(0) + NBd(0) + Bd(1)

x(3) = F(λ, 3)F(λ, 2)F(λ, 1)x(0) + F(λ, 3)(Bd(1)

+ NBd(0)) + Bd(2) + Bv(2)

= F(λ, 3)F(λ, 2)F(λ)x(0) + Bd(2) + NBd(1) + N2Bd(0)

. . .

x(k) =

k∏
j=1

F(λ, j)x(0) +

n−1∑
i=0

NiBd(k − i)

Moreover, the control input (22) fulfills the following in-
equality

|v(k)| =

∣∣∣∣∣D̄F(λ, k + 1)

n−1∑
i=0

NiBd(k − i− 1)

∣∣∣∣∣
≤ nρ||D̄|| · ||B|| · ||A|| = nρ||A||.

and accounting for the saturation constraint requires that
ρ < M

n||A|| therefore the condition (21) is found coupling
the previous inequality and Assumption 4.1. Following the
same approach of the proof of Theorem 3.1, it is now enough
to impose ∀r ≤ k∥∥∥∥∥∥(1− λr)

k−r∏
j=0

Q(λ, k − j)

∥∥∥∥∥∥ < M − nρ||A||
||(CB)−1CA||(M∗ − nρ||B||)

(24)
Denoting by λk = inf{λ ∈ (0, 1) :
condition (24) is fulfilled}, one can conclude that choosing
1 > λ > λk in (12) any initial condition belonging to the
set Jρ can be driven to the set Iρ in k steps using a control
law satisfying |ueq(k)| ≤M − nρ||A|| < M .

In fact, if x̄ ∈ Iρ, then for the initial condition x(0) :=(∏k−1
j=0 Q(λ, k − j)

)
x̄ it holds

x(k) =

k∏
j=1

F(λ, j)x(0) +

n−1∑
i=0

NiBd(k − i)

=

k∏
j=1

F(λ, j)

k−1∏
j=0

Q(λ, k − j)

 x̄ +

n−1∑
i=0

NiBd(k − i)

= x̄ +

n−1∑
i=0

NiBd(k − i)

hence ||x(k)|| ≤ ||x̄||+nρ||B|| < M∗−nρ||B||+nρ||B|| =
M∗.

V. EXPERIMENTAL RESULTS

Previous theoretical results have been experimentally val-
idated on the twin rotor shown in Fig.1. The plant has
been built in our laboratory for educational purposes, and
is constituted of two metal arms: the first is locked to the
ground, while the second is linked to the first one, and
can move with two degrees of freedom. The movements
are generated by two brushless D.C. motors (produced by
AIRPAX c©), placed on the two ends of the free arm. More-
over, two potentiometers are in charge of measuring the
angular displacements of the free arm. The controller code
is written in MATLAB/SIMULINK c©, running on a Personal
Computer (PC). The PC is equipped with a Plug-and-
Play general purpose board, namely NI-PCI6024e, produced
by NATIONAL INSTRUMENTS c©, which is connected to
MATLAB/SIMULINK c© by means of Real Time Workshop
and Real Time Windows Target MATLAB c© packages. The
NI-PCI6024e allows data exchange between PC and the
plant, but it is not directly connected to the potentiometers
and to the motors. An interface board, made in our Lab, is
in charge to filter and to adapt signals coming from (and
to) the sensors, before (and after) passing them to the NI-
PCI6024e board i.e. to the PC. The power board, made in our
Lab, too, mounts a PWM modulator and drives the motors
with suitable voltages, corresponding to the control actions
produced by the control law implemented in SIMULINK c©.
The maximum range that the power board can supply is
±12V . Nevertheless, the safer voltage saturation limit of
±7V was chosen, because of the problems we encountered
during the testing phase of the overall control system. Indeed
sudden changes in the control variables caused damages to
the boards (microchips and capacitors, for example), and,
more seldom, a risk occurred to burn the motors. Finally, note
that the angular velocities, required by the state feedback
control law, were obtained by filtering and differentiating the
signals coming from the potentiometer. The chosen sampling
time was Tc = 0.05 s. The mathematical model of the
plant can be derived using well known theoretical physics
results. Making reference to Fig.2, and introducing the state
vector x =

[
x1 x2 x3 x4

]T
=
[
θ φ θ̇ φ̇

]T
,

where θ and φ are the pitch and yaw angles, respectively, the
twin rotor is described by the following nonlinear equation
ẋ = f(x) + h(x)u, with:

f(x) =


x3

x4

−mglc cosx1 − JLx2
4 cosx1 sinx1 − αθx3

JL
2JLx3x4 cosx1 sinx1 − αφx4

(cos2 x1JL + JA)


(25)

h(x) =


0 0
0 0
l1p1

JL

p2

JL
p3cos(x1)

(cos2 x1JL + JA)

l2p4cosx1

(cos2 x1JL + JA)

 (26)
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where u =
[
u1 u2

]T
is the input vector, i.e. the voltages

of the two motors driving the twin-rotor system; JL and JA
are the inertia moments of the free arm and of locked one,
respectively; lc is the centre of gravity of the free arm; l1
and l2 are the distances between the ends and the centre of
the free arm; g is the gravity acceleration; αφ and αθ are
the damper coefficients for angles φ and θ, respectively; p1,
p2, p3, p4 are suitable coefficients, correlating the voltages
and the moments supplied by the motors. The non-linear
model has been linearised with respect to the equilibrium
point

[
xTe uTe

]T
=
[
0T4x1 1.24 −0.21

]T
, obtaining the

following continuous time linear time invariant state space

representation:
d

dt
(∆x) = A∆∆x + B∆∆u, being ∆u =

u− ue, ∆x = x− xe, and with:

A∆ =


0 0 1 0
0 0 0 1
0 0 −0.46 0
0 0 0 −0.46

 B∆ =


0 0
0 0
0.276 0.046
0.046 0.276


Considering θ and φ as the system output, i.e. y =[
φ θ

]T
, the corresponding input-output transfer matrix

is given by:

F(s) =

 0.276

s2 + 0.46s

0.046

s2 + 0.46s
0.046

s2 + 0.46s

0.276

s2 + 0.46s


Since F(s) is a diagonally dominant matrix, the coupling
terms between θ and φ dynamics have been neglected in the
linearised plant. The twin rotor has been considered as made
of two independent SISO plants, characterized by the same

transfer function F11(s) = F22(s) =
0.276

s2 + 0.46s
. In order to

apply the proposed control law, the above transfer functions
have been discretized with a sampling time Tc = 0.05 s,
obtaining two equal subsystems of the form (1), with: Â =[

1 0.0494
0 0.9773

]
, B̂ =

[
0.0003
0.0136

]
. Successively, Â and B̂

have been transformed as in (3), (4), (5), obtaining: A =[
0 0.8
−1.22 1.98

]
, B =

[
0
1.25

]
. Finally, two controllers

have been built according to the approach described in
Theorem 3.1, with K =

[
0.98 −1.58

]
, C =

[
1 1.2

]
and λ = 0.999988. The saturation threshold of actuators is
M = 7 V , as explained at the beginning of this section.
With reference to the theoretical development presented in
Sections III, the sets of initial conditions from which the state
can be steered to the set I is reported in Fig.3. Accordingly,
the initial conditions have been chosen as −31 deg for the
pitch angle θ and 24 deg for the yaw angle φ, with null initial
velocities, in order to drive the state to the set I in just one
sampling time. Two experiments have been performed. In
the first one, the control law based on (11), and given by
(12), (6), has been implemented for each subsystem. In the
second one, a standard equivalent control law based on (10)
has been implemented for each subsystem, i.e.

ueq(k) = −(CB)−1CAx(k) (27)

Results of the first experiment have been reported in Fig.4,
showing the experimental pitch angle (the yaw angle has not
been reported due to space limitations), and Fig.5 displaying
the control input u1. The corresponding variables for the
second experiment are reported in Figs.6-7. It can be noticed
that when using control law (12), (6), the initial value of
the control variables is always 0, regardless of the initial
state, while using control law (27) the initial control effort
depends on the initial state (the farther the initial state is from
the origin, the larger will be the initial control effort). This
fact can be seen comparing Fig.5 with Fig.7. However, after
few time instants, control variables produced by (27) assume
values comparable with signal produced by control law (12),
(6). Anyway, the smaller initial control activity produced
by (12), (6) is paid by the presence of some overshoots in
the case of the behavior of the pitch angle, arising when
controlled by the same controller (12), (6).
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Fig.1 - The twin rotor

Fig.2 - The twin rotor model
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Fig.3 - Sets of initials conditions from which the
state can be steered to the set I (the circle) in 1

(black), 2 (red), 3 (purple), 4 (green) steps

Fig.4 - Pitch angle θ (control law (12), (6))

Fig.5 - Contr. input u1 (control law (12), (6))

Fig.6 - Pitch angle θ (control law (27))

Fig.7 - Contr. input u1 (control law (27))
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