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Abstract— The Dielectrophoretic (DEP) force arises as a
result of the interaction between a nonuniform electric field
and a neutrally charged particle. As the effect of the electric
field is more dominant than other forces at the micro/nano
scale, this force can be effectively used to manipulate and
control particles on this scale. We consider the motion of a
particle on an invariant line with the suspending medium being
a fluid with low Reynolds number. The system is described
by a set of ordinary differential equations with a quadratic
term in the control variable (control being the applied voltage
on the electrodes which induces the electric field) making the
system non-affine. For this system, we address certain aspects
of existence and uniqueness of the time-optimal trajectories.

I. INTRODUCTION

An electrically neutral particle placed in a non-uniform
electric field gets polarized and experiences a translational
force that can cause the motion of the particle. This resultant
motion is termed as dielectrophoresis (DEP) by Pohl [1]. The
differential equations describing the dynamics of a neutrally
buoyant and neutrally charged particle in a DEP system were
derived in [2] as

ẋ = yu+ αu2, (1)
ẏ = −cy + u, (2)

with state (x, y) ∈ R2, the control u ∈ U ⊆ R and real
constant parameters α and c. The parameter c is always
positive, but the sign of the parameter α depends on the
electric characteristics of the particle and the suspending
medium. Notice that there exists a quadratic term in the
control making the system non-affine in control.

The differential equations in (1)-(2) describe the vertical
motion of a neutrally buoyant and neutrally charged particle
with the suspending medium being a fluid with low Reynolds
number. The variable x is a nonlinear function of the particle
position, while the variable y describes the exponentially
decaying part of the induced dipole moment. The control
u is the voltage on the electrodes which induces the electric
field. In this paper, we address certain issues of time-optimal
control for this system.

Earlier work [3] has addressed the time-optimal problem
for the case of y(0) = 0 with α < 0. This paper considers
the case y(0) 6= 0.
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Fig. 1. Front view of the arrangement of a linear electrode array with a
neutrally charged particle suspended in the medium.

II. PROBLEM STATEMENT

Consider the DEP system (1)-(2) with the boundary con-
straints:

x(0) = x0 = given , y(0) = y0 = given , (3)
x(T ) = xf = given , y(T ) = free , (4)
|u| ≤ 1, (5)

where the constant parameters α and c satisfy

α < 0, c > 0. (6)

From the system equations (1)-(2), it can be easily verified
that there exists a discrete symmetry with respect to the state
y and the control u. Therefore, in the rest of the paper we
assume the initial condition y0 > 0, as y0 < 0 follows from
symmetry.

In Section III, the original time-optimal problem is re-
duced to an equivalent problem with fewer variables for
the case when xf ≥ x0. We use Pontryagin’s maximum
principle (PMP) [4] to deduce the necessary conditions for
time-optimality of the system trajectory. This gives rise to the
following three sub-cases of α < 0: 1 +αc > 0, 1 +αc = 0
and 1 + αc < 0. In particular, we address in detail the
existence and uniqueness of the time-optimal trajectories for
the sub-case 1 +αc > 0. Similar analysis can be carried out
for the other two sub-cases which will be given in a journal
version of the paper. In Section IV, we extend our analysis
for the case when xf < x0.

III. CASE WHERE xf ≥ x0

For xf = x0, the control u = 0 with T = 0 is trivially the
time-optimal control. When xf > x0, we have x(0)−x(T ) =
−
∫ T
0
ẋdt = −

∫ T
0

(yu + αu2)dt. Therefore, reaching xf >

x0 in minimum time is equivalent to minimizing −
∫ T
0

(yu+
αu2)dt for a fixed T . Hence the original time-optimal control
problem with y0 > 0 is equivalent to the following:

minimize
u ∈ U

∫ T

0

(−yu− αu2)dt, (7)
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subject to

ẏ = −cy + u,

y(0) = y0 > 0, y(T ) = free, T > 0.

Applying PMP to the problem in (7), the Hamiltonian
function is given by

H = αu2 + (y + λ)u− cyλ, (8)

where λ is the co-state corresponding to the state y. Due
to the free boundary condition on y(T ), the transversality
condition becomes

λ(T ) = 0. (9)

By PMP, the optimal trajectory should satisfy the ODE:

ẏ = −cy + u; λ̇ = cλ− u; (10)

where the optimal control u, which maximizes H at every
t, is given by

u(t) =


−1 if λ+ y ≤ 2α,
−λ+y

2α if |λ+ y| ≤ −2α,
1 if λ+ y ≥ −2α.

(11)

We now examine the phase portraits corresponding to each
of the regions in the yλ−plane to study the existence and
uniqueness of λ(0) = λ0 satisfying (10) and (9).
• λ+ y ≤ 2α: In this region u = −1 and hence the ODE
(10) has a saddle point at (y, λ) = (− 1

c ,−
1
c ).

• λ+ y ≥ −2α: In this region u = 1 and the ODE (10) has
a saddle point at (y, λ) = (1

c ,
1
c ).

• |λ+ y| ≤ −2α : In this region u = y+λ
−2α and hence the

(x, y, λ) dynamics are given by

ẋ =
y2 − λ2

−4α
, (12)[

ẏ

λ̇

]
=
[
−(c+ 1

2α ) − 1
2α

1
2α (c+ 1

2α )

] [
y
λ

]
:= A

[
y
λ

]
.

(13)

Note that trA = 0 and detA = c(1 + αc)/(−α). Also,
the equilibrium point corresponds to (y, λ) = (0, 0) and the
type of the equilibrium point depends on the sign of detA.
The qualitative phase portraits of the (y, λ)-dynamics can be
studied under following three different cases:

(1 + αc) > 0 (1 + αc) < 0 (1 + αc) = 0

In this paper, we restrict our analysis for the sub-case
(1 + αc) > 0. The same analysis can be extended for the
remaining two sub-cases.

When (1 + αc) > 0, (y, λ) = (0, 0) is a fixed point.
In this case, depending on the sign of (1 + 2αc) there are
two qualitatively different phase portraits: figure 2(a) (figure
2(b)) corresponds to the phase portrait when the λ intercept
of the switching line y+λ = −2α is greater (less) than 1

c . In
order to satisfy y0 > 0 and λ(T ) = 0, any optimal trajectory
should have its (y0, λ0) belonging to the shaded region in
the figure 2(a) (figure 2(b)). We will first show that for any

T > 0 and y0 > 0, there exists a unique λ0 in the shaded
region of the first quadrant such that T = T (y0, λ0). In
Section III-B, we will prove that there cannot be any time-
optimal trajectory with λ0 < 0. Finally in Section III-C,
we will further discuss the uniqueness of these time-optimal
trajectories.

Discrete symmetry: There exists a Z2 × Z2 symmetry
in the dynamics which is discussed in detail in [3]. The
consequences of this symmetry are summarized here for later
use in the paper. Define the following maps:

S1 : (x, y, λ) 7→ (x, λ, y)
S2 : (x, y, λ) 7→ (x,−λ,−y)
S3 := S1 ◦ S2 : (x, y, λ) 7→ (x,−y,−λ)

These mappings are illustrated in figure 3. For the trajectory
AB with u = (y + λ)/(−2α) in yλ−plane, we have for
i = 1, 2

∆tAB = ∆tSi(B)Si(A) and ∆xAB = −∆xSi(B)Si(A).

While the above symmetries are true when u = (y +
λ)/(−2α) (when the trajectory is in the linear region), the
following symmetry holds for the case when u = 1 or
u = −1:

∆tAB = ∆tS3(A)S3(B), ∆xAB = ∆xS3(A)S3(B).

Also, from (12) we have ẋ < 0 in the linear region whenever
|y| < |λ|. This region is shown shaded in figure 3.

A. The case when λ0 > 0

In this subsection and the next, we assume 1 + 2αc ≤ 0.
The analysis can be extended to the case of 1 + 2αc > 0.
In order to satisfy y0 > 0 and λ(T ) = 0, any optimal
trajectory originating from the shaded region of the first
quadrant should have its (y0, λ0) belonging to any one the
region R1 through R4 as in figure 4. The four regions in the
first quadrant are defined as follows:
R1 : y ≥ −2α, 0 < λ < 2α+y

−1+cy

R2 :

{
0 < λ < λup2(y) if 0 < y ≤ −α,
0 < λ < −2α− y if − α < y < −2α.

R3 : y > − 1+2αc
c , λ > 0,

max
{
−2α− y, 2α+y

−1+cy

}
≤ λ < 1

c .
R4 : 0 < y < −α,
λup2(y) ≤ λ < min {λup4(y),−2α− y} .
where λup2(y) and λup4(y) are respectively the upper bound-
aries of R2 and R4 in the linear region of the yλ−plane and
are given by

λup2(y) = −(1 + 2αc)y + 2
√
α(1 + αc)(α+ cy2),

λup4(y) = −(1 + 2αc)y + 2

√
α(1 + αc) (−1 + c2y2)

c
.

Trajectories starting from a point in region R1: Let
(y(t), λ(t)) be a trajectory starting from (y0, λ0) ∈ R1. Let
T1 be the time taken such that λ(T1) = 0 for the first time.
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(a) (1 + 2αc) ≤ 0.

(b) (1 + 2αc) > 0.

Fig. 2. Phase portrait in yλ−plane: With y0 > 0, any trajectory must
originate from the shaded region in order to satisfy the transversality
condition.

Fig. 3. Z2 × Z2 symmetry in the linear region.

Let X1 be the corresponding increase in state x. Then we
have

T1(y0, λ0) =
∫ 0

λ0

dλ

cλ− 1
= −1

c
log[1− cλ0].

It is straightforward from the expression for T1 that

lim
λ0→0+

T1(y0, λ0) = 0.

Since λ0 <
1
c , we have

∂

∂λ0
T1(y0, λ0) =

1
1− cλ0

> 0,

for (y0, λ0) ∈ R1. Therefore T1(y0, λ0) is a strictly increas-
ing continuous function of λ0 for each fixed y0 and is positive
valued.

Fig. 4. Regions R1−R4 in the phase portrait for the case when 1+2αc ≤
0.

Since u(t) = 1 and y(t) = e−cty0 + 1
c (1 − e−ct) in R1,

we have

X1(y0, λ0) =
∫ T1

0

(y(t) + α)dt

=
λ0(−1 + cy0)

c
− (1 + ac)

c2
log[1− cλ0].

Note that

lim
λ0→0+

X1(y0, λ0) = 0.

Since 0 < λ0 <
y0+2α
−1+cy0

and y0 ≥ 1
c , we have

∂

∂λ0
X1(y0, λ0) =

(1 + αc)
c(1− cλ0)

+
(−1 + cy0)

c
> 0,

for (y0, λ0) ∈ R1. Therefore the function X1(y0, λ0) is a
strictly increasing continuous function of λ0 for each fixed
y0 and is positive valued.

Trajectories starting from a point in region R2: Let
(y(t), λ(t)) be a trajectory with (y0, λ0) ∈ R2. Since, in this
region u(t) = y(t)+λ(t)

−2α , we obtain

y(t) = y0 cos (ωt)− (λ0 + y0 + 2αcy0) sin (ωt)
2αω

,

λ(t) = λ0 cos (ωt) +
(λ0 + 2αcλ0 + y0) sin (ωt)

2αω
,

where ω =
√
− c(1+αc)α . Then the expression for T2(y0, λ0)

is obtained by solving λ(T2) = 0:

T2(y0, λ0) =
1
ω

tan−1

(
−2αωλ0

λ0 + 2αcλ0 + y0

)
.

It is easy to verify

lim
λ0→0+

T2(y0, λ0) = 0 and
∂

∂λ0
T2(y0, λ0) > 0.

Hence, the function T2(y0, λ0) is a strictly increasing contin-
uous function of λ0 for each fixed y0 and is positive valued.

The increment in x, due to the control u = y+λ
−2α is given

by

X2(y0, λ0) =
∫ T2

0

y(t)2 − λ(t)2

−4α
dt =

1
2
y0λ0.
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Notice that X2(y0, λ0) is a strictly increasing continuous
function of λ0 for each fixed y0 > 0. At boundary points
of R2, X2(y0, 0) = 0 and

lim
λ0→−2α−y0

X2(y0, λ0) = −1
2
y0(2α+ y0)

which is positive but finite.
Trajectories starting from a point in region R3: Let

(y(t), λ(t)) be a trajectory with (y0, λ0) ∈ R3. In this region
u(t) = 1 till trajectory hits the switching line y + λ = −2α
after which u(t) = y(t)+λ(t)

−2α till the transversality condition
is satisfied. Let (yS3, λS3) be the intersection of the orbit in
R3 and the switching line y + λ = −2α, which is given by

yS3(y0, λ0) = −α+

√
(1 + αc)2 − (−1 + cλ0)(−1 + cy0)

c
,

λS3(y0, λ0) = −α−
√

(1 + αc)2 − (−1 + cλ0)(−1 + cy0)
c

.

Let TS3(y0, λ0) be the switching time. Then we obtain the
expression for TS3(y0, λ0) as

TS3(y0, λ0) =
∫ λS3

λ0

dλ

cλ− 1
= −1

c
log
[
−1 + cλ0

−1 + cλS3

]
.

Then T3(y0, λ0) is given by

T3(y0, λ0) = TS3(y0, λ0) + T2(yS3, λS3).

Therefore, we have

∂

∂λ0
T3(y0, λ0) > 0.

Therefore, T3(y0, λ0) is strictly increasing continuous func-
tion of λ0. It is easy to verify that at the boundary points of
R3

T3

(
y0,

2α+ y0
−1 + cy0

)
= T1

(
y0,

2α+ y0
−1 + cy0

)
> 0,

T3(y0,−y0 − 2α) = T2(y0,−y0 − 2α) > 0,
lim
λ0→ 1

c

T3(y0, λ0) =∞.

Hence, T3(y0, λ0) > 0 for every (y0, λ0) ∈ R3.
Let X3(y0, λ0) be the distance traveled in time T3(y0, λ0).

Then X3(y0, λ0) is given by

X3(y0, λ0) =
∫ TS3(y0,λ0)

0

(y(t) + α)dt+X2(yS3, λS3)

= −1 + αc

c2
log
[
−1 + cλ0

−1 + cλS3

]
+

(−λ0 + λS3)(−1 + cy0)
c(−1 + cλS3)

+
1
2
yS3λS3.

A straightforward computation yield

∂

∂λ0
X3(y0, λ0) > 0.

Hence, X3(y0, λ0) is a strictly increasing continuous func-
tion of λ0. It can be verified that at the boundary points

X3

(
y0,

2α+ y0
−1 + cy0

)
= X1

(
y0,

2α+ y0
−1 + cy0

)
> 0,

X3 (y0,−2α− y0) = X2 (y0,−2α− y0) > 0,
lim
λ0→ 1

c

X3(y0, λ0) =∞.

Hence, X3(y0, λ0) > 0 for every (y0, λ0) ∈ R3.
Trajectories starting from a point in region R4: Let

(y(t), λ(t)) be a trajectory with (y0, λ0) ∈ R4. In this region
u(t) = y+λ

−2α till trajectory hits the switching line y + λ =
−2α at (yS4, λS4) for the first time, after which trajectory is
same as that in R3 with y0 = yS4 and λ0 = λS4. Expression
for (yS4, λS4) is given by

yS4(y0, λ0) = −α−

√
α

(
α+

1
c

)
− λ0y0 −

(λ0 + y0)2

4αc
,

(14)

λS4(y0, λ0) = −α+

√
α

(
α+

1
c

)
− λ0y0 −

(λ0 + y0)2

4αc
.

(15)

Let TS4(y0, λ0) be the switching time. Because of S1 sym-
metry, we obtain the expression for T4(y0, λ0) as

T4(y0, λ0) = TS4(y0, λ0) + T3(yS4, λS4)

=
1
ω

(
tan−1

(
2y0αω

2cy0α+ y0 + λ0

)
+ 2 tan−1

(
yS4ω

1− cyS4

))
+

1
c

log
(

1− cyS4

cyS4 + 2cα+ 1

)
.

Straightforward computation yields

∂

∂λ0
T4(y0, λ0) > 0.

Therefore T4(y0, λ0) is a strictly increasing continuous func-
tion of λ0. It can be verified at the boundary points of R4

that

T4

(
y0, λup2(y0)

)
= T2 (y0, λup2(y0)) > 0, (16)

T4(y0,−2α− y0) = T3 (y0,−2α− y0) > 0, (17)
lim

λ0→λup4(y0)−
T4(y0, λ0) =∞.

The positive monotonicity of T4 together with (16) and (17)
implies that T4(y0, λ0) > 0 for every (y0, λ0) ∈ R4.

Let X4(y0, λ0) be the distance traveled in time T4(y0, λ0).
Then X4(y0, λ0) is given by

X4(y0, λ0) = X2(λ0, y0)−X2(λS4, yS4) +X3(yS4, λS4)

=
λ0y0

2
+

(−λS4 + yS4)
c

− (1 + αc)
c2

log
[
−1 + cλS4

−1 + cyS4

]
.

Straightforward computation yields

∂

∂λ0
X4(y0, λ0) =

y0
2

+
(λ0 + y0 + 2αcy0)(α+ yS4)
2α(−1 + cλS4)(−1 + cyS4)

> 0.
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Therefore X4(y0, λ0) is a strictly increasing continuous
function of λ0. It can be verified at the boundary points of
R4

X4

(
y0, λup2(y0)

)
= X2 (y0, λup2(y0)) > 0, (18)

X4(y0,−2α− y0) = X3 (y0,−2α− y0) > 0. (19)
lim

λ0→λup4(y0)−
X4(y0, λ0) =∞.

The positive monotonicity of X4 together with (18) and (19)
implies that X4(y0, λ0) > 0 for every (y0, λ0) ∈ R4.

We now put together the analysis in the four separate
regions R1, R2, R3 and R4 for the case when 1 + 2αc ≤ 0.
Let us define λup(y) for y > 0 as follows

λup(y) =

{
λup4(y) if 0 < y ≤ − 1+2αc

c ,
1
c if y > − 1+2αc

c .

Note that the λup(y) is the upper λ boundary of the region
R1 ∪ R2 ∪ R3 ∪ R4. Define the time function and the
corresponding distance function as follows:

T (y0, λ0) = Ti(y0, λ0) if (y0, λ0) ∈ Ri i = 1, 2, 3, 4.
X(y0, λ0) = Xi(y0, λ0) if (y0, λ0) ∈ Ri i = 1, 2, 3, 4.

We have shown that in each region, the time T and the
corresponding distance function X are positive continuous
functions and are strictly increasing functions of λ0 ∈
(0, λup(y0)) for each fixed y0 > 0. Also, we have shown
that lim

λ0→0+
T (y0, λ0) = lim

λ0→0+
X(y0, λ0) = 0, while

lim
λ0→λup(y0)−

T (y0, λ0) =∞,

lim
λ0→λup(y0)−

X(y0, λ0) = X(y0, λup(y0)) =∞.

With this analysis we can conclude the following :

Theorem III.1 Given any T > 0 and y0 > 0, there
exists a unique one-shot extremal with λ0 ∈ (0, λup(y0))
such that T = T (y0, λ0). Also, given any y0 > 0 and
0 < x < ∞, there exists a unique one-shot extremal with
λ0 ∈ (0, λup(y0)) such that x = X(y0, λ0).

For formal definitions of one-shot and multi-shot extremals,
we refer [3].

B. The case when λ0 < 0
In this section we will show that the trajectories with

λ0 < 0 are not time-optimal. This will allow us to extend
the validity of Theorem III.1 for λ0 < 0. Before we claim
this and prove, we will state a lemma which will be used
later in the proof.

Lemma III.2 Let (x1(t), y1(t)) and (x2(t), y2(t)) be two
solutions for the states x and y in (1)-(2) with the control u =
1 and initial conditions (x0, y01) and (x0, y02) respectively,
such that y01 > y02. Then x1(T ) > x2(T ), for any T > 0.

Proof: The result follows from the fact that y1(t) >
y2(t), ∀t ≥ 0.

Fig. 5. λ0 < 0: Type-I and Type II trajectories for the case when 1+2αc ≤
0.

Claim III.1 There cannot be any time-optimal extremal with
y0 > 0 and λ0 < 0.

Proof: With λ0 < 0, we can have qualitatively two
different types of trajectories for the case when 1+2αc ≤ 0,
based on the region from which the trajectory originates.This
has been illustrated in figure 5 .
Type-I trajectories: A type-I trajectory originates from the

linear region of the fourth quadrant in the yλ−plane and
continue to remain in the linear region until it satisfies the
transversality condition (see figure 5). Note that by S1 and
S2 symmetries, the total increment in x is negative. Hence,
type-I trajectories cannot be time-optimal.

Type-II trajectories: A type-II trajectory originates from
the linear region of the fourth quadrant in the yλ−plane,
but switch to the nonlinear region in the third quadrant and
then switches back to the linear region in the same quadrant
before it satisfies the transversality condition (see figure 5).
Let ABCDE be a typical type-II trajectory with the initial
condition (y0, λ−0 ), as in figure 6(a) or figure 6(b). Assume
that this trajectory is time-optimal with the control u in (11)
for xf > x0. Let B′C ′D′E′ be the trajectory such that
S3(BCDE) = B′C ′D′E′. Hence, the increment in x due
to control u is given by

∆xABCDE = ∆xAB + ∆xBCDE
= ∆xAB + ∆xB′C′D′E′ < ∆xB′C′D′E′ , (20)

where the inequality is true because ∆xAB < 0 (as illus-
trated in figure 3). Let yC′ be the value of the state y when the
trajectory is at C ′ (we will use this convention in the rest of
the paper to denote the value of a state at any particular point
on the trajectory). Then we have two possibilities: y0 < yC′

or y0 ≥ yC′ . The phase portraits for these two cases are
shown in figure 6(a) and figure 6(b).

Suppose y0 < yC′ (see figure 6(a)). Let A′ be the point on
the trajectory B′C ′D′E′ when the trajectory intersects with
y = y0 line. Since ẋ < 0 along B′C ′,

∆xB′C′D′E′ < ∆xA′C′D′E′ . (21)

From (20) and (21), we have

∆xABCDE < ∆xA′C′D′E′ . (22)
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(a) y0 < yC′ .

(b) y0 ≥ yC′ .

Fig. 6. λ0 < 0: Type-II trajectories are not time-optimal.

It is also straightforward to show that

∆tABCDE = ∆tAB + ∆tB′C′D′E′ > ∆tA′C′D′E′ . (23)

From (22) and (23), the trajectory A′C ′D′E′ with λ0 = λA′

reaches xf before the trajectory ABCDE, which contradicts
the time-optimality of the trajectory ABCDE with λ0 =
λ−0 . Hence, type-II trajectories with y0 < yC′ cannot be
time-optimal.

Suppose y0 ≥ yC′ (see figure 6(b)). From (20), we have

∆xABCDE < ∆xB′C′D′E′ = ∆xC′D′ . (24)

Let us construct another control v as follows

v(t) = 1, t ∈ [0,∆tC′D′ ],

where ∆tC′D′ is the time taken by the trajectory to reach
point D′ from C ′. Let AD′′ be the trajectory corresponding
to the control v. Let ∆xAD′′ be the corresponding increment
in x . Since y0 ≥ yC′ , we have from Lemma III.2

∆xAD′′(v) ≥ ∆xC′D′ . (25)

From (24) and (25), we have ∆xABCDE < ∆xAD′′(v).
Also, we have ∆tABCDE > ∆tCD = ∆tC′D′ . Therefore,
the trajectory AD′′ with control v reaches xf before the
trajectory ABCDE, which contradicts the time-optimality
of the trajectory ABCDE. Hence, type-II trajectories with
y0 ≥ yC′ cannot be time-optimal.

C. Multi-shot trajectories and uniqueness
By the discussions in Section III-A and Section III-B, it

is clear that for a given xf > x0 and y0 > 0, there is a
unique one-shot extremal with (y0, λ0) ∈ R1∪R2∪R3∪R4

such that xf − x0 = X(y0, λ0). When 1 + 2αc > 0, we can

similarly show that there exists a unique one-shot extremal
with λ0 > 0 for a given xf > x0 and y0 > 0. Here we
do not discuss this in detail since the methodology is very
similar to that of the case when 1 + 2αc ≤ 0. In either
case (1 + 2αc ≤ 0 or 1 + 2αc > 0), we can show that no
multi-shot extremals are time-optimal if 3 + 4αc ≥ 0. The
proof is similar to the case when y0 = 0 discussed in [3].
If 3 + 4αc < 0 we have no general proof that only one-shot
extremals are time-optimal. With this we state the following
result for the time-optimal control problem stated in Section
II for the DEP system with 1 + αc > 0:

Theorem III.3 If 3 + 4αc ≥ 0, then given y0 > 0, a one-
shot extremal with 0 < λ0 < λup(y0) as stated in Theorem
III.1 is the unique time-optimal trajectory.

IV. CASE WHERE xf < x0

Similar to the case when xf > x0, by application of the
PMP, one can solve the time-optimal control problem for the
case where xf < x0 and y0 > 0 as follows:

Theorem IV.1 Let

T (y0, λ0) =
1
c

ln
( 1

1− cλ0

)
,

X(y0, λ0) =
1 + αc

c2
ln

(
1

1− cλ0

)
− 1 + cy0

c
λ0,

where λ0 ∈ (0, λup(y0)), with λup(y) = y
cy+1 . If xf − x0 <

X(y0, λup(y0)), then there is no optimal control. If xf−x0 ≥
X(y0, λup(y0)), then there is a unique optimal control given
by

u(t) =

{
−1 if λ− y ≤ 0,
1 if λ− y ≥ 0.

where y and λ are the solutions of the ODE

ẏ = −cy + u; λ̇ = cλ+ u.

with λ0 ∈ (0, λup(y0)) uniquely computed by solving xf −
x0 = X(y0, λ0) . Then the optimal time T = T (y0, λ0).

V. CONCLUSIONS AND FUTURE WORK
We addressed certain aspects of existence and uniqueness

of the time-optimal trajectories of a particle in a dielec-
trophoretic system for the case where α < 0 and c > 0
with non-zero y0. Original time-optimal control problem was
reduced to an equivalent problem with fewer variable which
simplified our analysis. Discrete symmetry in the dynamics
further simplified the analysis. As a future work, we plan
to consider the time-optimal control of several particles
suspended in a medium.
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