
  

  

Abstract—This paper deals with joint stiffness identification 

with only actual motor force/torque data instead of motor and 

load positions. The parameters are estimated by using the 

DIDIM method which needs only input data. This method was 

previously validated on a 6 DOF rigid robot and is now 

extended to flexible systems. The criterion to be minimized is 

the quadratic error between the measured actual motor 

force/torque and the simulated one. The optimal parameters are 

calculated with the Nelder – Mead simplex algorithm. An 

experimental setup exhibits the experimental identification 

results and shows the effectiveness of our approach.  

I. INTRODUCTION 

CCURATE dynamic robots models are needed to control 
and simulate their motions. Identification of rigid robots 

has been widely investigated in the last decades. The usual 
identification process is based on the inverse dynamic model 
and the ordinary or weighted least squares estimation. This 
method, called IDIM, has been performed on several 
prototypes and industrial robots with accurate results 
 [1] [2] [3] [4] [5]. 

Identification of flexibilities is more complex than the 
identification of rigid body dynamics. Indeed, only a subset 
of state variables is measured  [6] and one can not use 
directly linear regressions  [5]. This can be solved by adding 
sensors  [7] and/or external excitations  [8]. In  [9], the authors 
use the System Identification Toolbox for Matlab  [10] [11] to 
identify both joint and structural flexibilities of one axis of 
an industrial robot. The approach is interesting because 
inertia and stiffness parameters seem well identified. But, 
they do not discuss about the repartition of Coulomb friction 
and data filtering. In  [12] and  [13], the authors have 
developed some minimal identification models depending on 
the measurements availability. Furthermore, they have 
designed a data filtering process relevant for joint stiffness 
identification. The experimental results are convincing. 

Though these techniques provide good results, they need 
at least two measurements: actual torque/force data and 
motor position. 

Recently, a new identification process needing only actual 
force/torque data was first validated on a 2 DOF rigid 
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prototype  [19] and then validated on a 6 DOF rigid robot 
 [18]. Experimental results show the effectiveness of this 
method called DIDIM. Then it is extended to joint stiffness 
identification. 

This paper is divided into five sections. Section II 
describes the experimental setup and its modeling. Section 
III presents the classical identification method called IDIM 
while section IV presents the new identification method 
called DIDIM. Section V is devoted to the experimental 
identification based on IDIM method and DIDIM method 
extended to flexible systems. 

II. MODELING OF A FLEXIBLE JOINT ROBOT 

A. Experimental setup 

The EMPS is a high-precision linear Electro-Mechanical 
Positioning System (see Fig. 1). It is a standard configuration 
of a drive system for prismatic joint of robots or machine 
tools. 

 
Fig. 1. EMPS prototype to be identified 

 
Its main components are: 
- A Maxon DC motor equipped with an incremental 

encoder. This DC motor is position controlled with a PD 
controller. 

- A Star high-precision low-friction ball screw drive 
positioning unit. An incremental encoder at its extremity 
supplies information about the angular position of the screw. 

- A load in translation. 

 
Fig. 2. EMPS Components 

 
These components are presented Fig. 2. All variables and 

parameters are given in ISO units on the load side. 
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B. Rigid inverse dynamic model 

In this case, the system is modeled with one inertia and 
frictions. The inverse dynamic model (IDM) expressing the 
motor torque according to the state and its derivatives is: 

( )1 1 1 1 1 1 1R v R c RZZ q F q F sign qτ = + +&& & &  (1) 

Where, 1q , 1q& , 1q&&  are respectively the motor position, 

velocity and acceleration; 1τ  is the motor torque; RZZ1 is the 

total inertia; RvF 1  and RcF 1  are the total viscous and 

Coulomb friction parameters.  

C. The flexible dynamic model 

In this case, the mechanical system can be modeled with 
two inertias, frictions, a spring and a damping, Fig. 3. 
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Fig. 3. EMPS modeling and DHM frames 

 
With Newton – Euler equations  [5], we obtain the 

following inverse dynamic model: 

1 1 1 v1 1 c1 1 12 2 12 2

2 12 v2 12 c2 12 12 2 12 2

ZZ q F q F sign( q ) K q F q

0 ZZ q F q F sign( q ) K q F q

τ = + + − −

= + + + +

&& & & &

&& & & &
 (2) 

Where: 1q , 1q& , 1q&&  are respectively the motor position, 

velocity and acceleration; 1τ  is the motor torque; 12q , 12q& , 

12q&&  are respectively the load position, velocity and 

acceleration; 2q , 2q& , 2q&&  are respectively the elastic DOF 

position, velocity and acceleration with, 12 1 2q q q= + , 

12 1 2q q q= +& & &  and 12 1 2q q q= +&& && && ; 1ZZ  is the motor inertia, 1vF  

and 1cF  are respectively the viscous and Coulomb motor 

friction parameters; 2ZZ  is the load inertia, 2vF  and 2cF  are 

respectively the viscous and Coulomb load friction 
parameters; 12K  is the stiffness and 12F  the damping. 

The inverse dynamic model (2) can be written as follows: 

( ) ( ),idm M q q N q q Kq Bqτ = + + +&& & &  (3) 
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The direct dynamic model (DDM) is then described by: 

( ) ( ),idmM q q N q q Kq Bqτ= − − −&& & &  (4) 

The inverse dynamic model (2) can be written in a linear 
relation to the dynamic parameters as follows: 

idm ST STIDM χτ =  (5) 

With: ( )
T

i dm 1 0τ τ=  

( )
T

ST 1 v1 c1 2 v2 c2χ ZZ F F K B ZZ F F=  

1 1 1 2 2

STD

2 2 12 12 12

q q sign( q ) q q 0 0 0
D

0 0 0 q q q q sign( q )

− − 
=  
 

&& & & &

& && & &
 

There are 8 parameters to be identified called standard 
parameters. Because all the standard parameters are 
identifiable  [14] [15], the minimal identification model is in 
fact the standard model given by (5). So, we get: 

STIDM IDM= , STχ χ= and ( )
T

idm 1 0τ τ=  (6) 

III. IDIM: INVERSE DYNAMIC IDENTIFICATION METHOD 

Because of perturbations due to noise measurement and 
modeling errors, the actual force/torque τ  differs from idmτ  

by an error e , such that: 

( ), ,idm e IDM q q q χ eτ τ= + = +& &&  (7) 

The identification method developed for the manipulator 
robots is applied for flexible systems. The vector χ  is 

estimated with ordinary least squares (OLS) technique thanks 
to an over determined system built from the sampling of (7): 

Y = Wχ + ρ  (8) 

Where: Y  is the (rx1) measurement vector, W  the (rxb) 
regressor, χ is the (bx1) vector of parameters to be identified 

and ρ  is the (rx1) residual vector. We have ennr *= , 

where en  is the number of collected samples. 

The unicity of the OLS solution is ensured if W  is a full 

rank matrix i.e. if rank(W ) b= . To avoid rank deficiency, 

only the b  base parameters must be considered  [14] [15] and 
trajectories must be exciting enough  [16] [17]. 

The detailed calculation of the standard deviation ˆ
j

σχ and 

the relative standard derivation 
j

ˆ j
ˆ100* σ χχ  for 

jχ̂ 0≠ can be found in  [3] for instance. 

Calculating the OLS solution of (8) from noisy discrete 
measurements or estimations of derivatives may lead to bias. 
Indeed W  may be correlated to ρ . However, it has been 

shown that OLS estimation is as consistent as robust 
estimation methods such as instrumental variable method 
(see  [21] for instance) provided a well tuned bandpass 
filtering. Then, it is essential to filter data in Y  and W  
before computing the OLS solution. 

Velocities and accelerations are estimated by means of a 
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band pass filtering of the positions. This band pass filtering 
is obtained with the product of a low pass filter in both 
forward and reverse direction (Butterworth) and from a 
derivative filter obtained by central difference algorithm, 
without phase shift. To eliminate high frequency noises and 
torque ripples, a parallel decimation is performed on Y  and 
the columns of W . This low pass decimate filter resamples 
each signal at a lower rate. More details about data filtering 
can be found in  [3] [12] [13]. 

IV. DIDIM: DIRECT AND INVERSE DYNAMIC 

IDENTIFICATION MODEL TECHNIQUE 

A. Theoretical approach for rigid systems 

In this section, DIDIM method is briefly recalled. A 
complete presentation of DIDIM can be found in  [18]. 
DIDIM is a closed loop output error (CLOE) method    
requiring only torque data. The output τ=y , is the actual 

joint force/torque τ , and the simulated output idmsy τ= , is 

the simulated joint force/torque. 

The signal ( ),ddmq χ t  is the result of the integration of the 

linear implicit differential equation. The optimal solution χ̂  

minimizes the following quadratic criterion: 

( )
2

SJ χ Y Y= −   (9) 

Where ( )Y τ  and ( )idmSY τ  are vectors obtained by filtering 

and downsampling the vectors of samples of the actual 
force/torque τ , and of the simulated force/torque idmτ , 

respectively. 
This non-linear LS problem is solved by the Gauss-

Newton regression. It is based on a Taylor series expansion 

of sy , at a current estimate k
χ̂ . Because of the same closed 

loop control for the actual and for the simulated robot and 
the gains tuning of the simulated controller, the simulated 
position, velocity and acceleration have little dependence 
on χ . Then the jacobian matrix can be approximated by: 

( )
( )

k

S k k k

ddm ddm ddm

χ̂

y
ˆ ˆ ˆIDM q ( χ ),q ( χ ),q ( χ )

χ

 ∂
≈  ∂ 

& &&  (10) 

Taking the approximation (10) of the jacobian matrix into 
the Taylor series expansion, it becomes: 

( ) ( )+1k k k k

ddm ddm ddm
ˆ ˆ ˆy IDM q ( χ ),q ( χ ),q ( χ ) χ o eτ= = + +& &&  (11) 

This is the Inverse Dynamic Identification Model, IDIM, 

(1), where ( )  q, q, q& &&  are estimated with ( )ddm ddm ddmq ,q ,q& && , got 

from the simulated direct dynamic model. The sampling of 
(11) and after a parallel decimation, we get an over-
determined linear system: 

( ) ( ), k

ddm ddm ddm
ˆY τ W q ,q ,q χ χ ρδ= +& &&  (12) 

The LS solution of  (12) calculates k 1χ̂ + , at iteration k+1. 

This process is iterated until: ( )k 1 k k tol1/ρ ρ ρ+ − ≤  

Where 1tol  is a value ideally chosen to be a small number to 

get fast convergence with good accuracy. 

B. Theoretical approach for flexible systems 

The approximation of the jacobian matrix given by (10) is 
violated for flexible systems because the load states (i.e. 12q , 

12q& ) are not controlled. Then, we can not ensure that the 

simulated position, velocity and acceleration have little 
dependence on χ . 

The optimal solution χ̂  still minimizes the quadratic 

criterion given by (9). We get always the simulated states 

from simulating (4); the matrices ( ),ddmM q χ  and 

( ), ,ddm ddmN q q χ&  being defined by (3). But, in this case, the 

non-linear LS problem is solved by using the Nelder – Mead 
simplex algorithm as described in  [20]. 

This algorithm is used by "fminsearch" MATLAB 
function and it is suitable for low dimensional problems. 
Since we have 8 base parameters to identify, this algorithm is 
adapted to our problem. 

C. Initialization of the algorithm 

In  [18], the authors have proposed an efficient way to 
initialize DIDIM algorithm. This initialization, called regular 
initialization, is based on gains tuning of the simulated 

controller according to k
χ̂ . 

Unfortunately, this initialization can not be applied to 
flexible systems (the load states are not controlled). So, we 
must find another way to initialize the DIDIM algorithm. 

Since it is always possible to identify the "rigid" values, 
we can use them for initializing our algorithm. Then, the 
simplest way is the following: 
- First, identify the "rigid" values with DIDIM method, 
- Second, divide them by 2 to get the initial values. 

Finally, it comes: 2/0
2

0
1 TZZZZZZ == , 0 0

1 2 / 2v v vTF F F= =  

and 2/0
2

0
1 cTcc FFF ==   (13) 

This initialization is called "pseudo regular initialization" 
and it is dedicated to joint stiffness identification. 

V. EXPERIMENTAL VALIDATION 

A. Data acquisition 

Motor and load positions are measured by means of high 
precision encoders working in quadrature count mode 
(accuracy of 100000 counts per revolution). The sample 
acquisition frequency for joint position and current reference 
(drive force) is 1 KHz. 

We calculate the motor torque using the relation: 

1 G vτ ττ =  (14) 
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where vτ  is the current reference of the amplifier current 

loop, and Gτ  is the gain of the joint drive chain, which is 

taken as a constant in the frequency range of the robot 
because of the large bandwidth (700 Hz) of the current loop. 

The first natural frequency, nω , is of 30Hz. This was 

verified with appropriate mechanical experiments such as 
blocked output test (see  [4] for instance). 

The system is position controlled with a PD controller and 
the bandwidth of the closed loop is tuned at 30Hz to identify 
the dynamic parameters. 

Exciting trajectories consist of trapezoidal velocity with 
pulses. Trapezoidal velocity excites very well inertia and 
friction parameters while pulses excite flexibility. We have 

( ) 30=Wcond . The parameters are well excited and can be 

identified  [16] [17]. 

B. Identification of the rigid dynamic model 

The rigid dynamic model is valid at low frequencies (less 
than 10Hz). Hence, the cut-off frequency of band pass and 
decimate filter is fixed at 5Hz. DIDIM is performed (only the 
actual motor force/torque is needed). Because we identify the 
rigid model, the algorithm is initialized with the regular 
initialization and the gains of the simulated controller are 
updated (see  [19] for more details). The algorithm converges 
in only 2 steps and the "rigid" DIDIM identified values are 
given in Table 1. 

 
TABLE 1. DIDIM IDENTIFIES VALUES WITH THE RIGID MODEL 

Parameter 
jχ̂  

j
ˆ2* χσ  

j
ˆ j

ˆ100* χχσ  

ZZ1R 106 0.44 0.21 
Fv1R 208 3.5 0.84 
Fc1R 20.0 0.35 0.88 

 

C. Identification of the flexible model with no additional 

mass on the load 

The cut-off frequency of band pass and decimate filter is 
fixed at 60Hz. We keep one sample over 12. 

With the identification model described by (4), the 
maximum derivatives order is 2. Hence, according to  [12], 
the order of Butterworth filter is fixed at 4. IDIM is 
performed. Motor, load positions and actual motor 
force/torque are measured. The results are given in Table 2. 
In addition, the estimated natural frequency and 

( )ˆY Wχ Y− , the relative norm of the residue, are given. 

Cross tests validations have been performed. They consist 
in simulating the EMPS with the identified values. The 
estimated torque follows closely the measured one (see Fig. 
4). Furthermore, the relative norm of the error between the 

measured torque and the simulated one, ( )S
ˆY Y Y− , is 

computed and given in Table 3. 
Now, DIDIM is performed and only the actual motor 

force/torque is needed. We get the simulated states by 

simulating (4); the matrices ( ),ddmM q χ  and 

( ), ,ddm ddmN q q χ&  being defined by (3). The motor 

force/torque is computed with (14). The columns of the 
observation matrix are decimated. The optimal values are 
estimated with "fminsearch" MATLAB function. The 
algorithm is initialized with the pseudo regular initialization 
(13). The algorithm converges in 25 iterations. The results 
are given in Table 3. In addition, the estimated natural 

frequency and ( )S
ˆY Y Y− , the relative norm of the 

residue, are given. 
Direct validation has been performed. The estimated 

torque follows closely the measured one as illustrated Fig. 5. 
Since both motor and load positions are measured, the 

identification results provided by IDIM are the most accurate 
and can be thus considered as the referee values. By adding 
inertia, viscous and Coulomb friction parameters, we retrieve 
practically the "rigid" values. 

DIDIM provides excellent results although only one 
measurement is used (see Table 3). All parameters are well 
identified and they are very close to those given in Table 2, 
excepted for 1vF and 2vF . These values are permutated. 

Perhaps it is quite difficult to dissociate properly the viscous 
friction (motor side and load side) with only torque data. 
Finally, by adding inertia, viscous and Coulomb friction 
parameters, we retrieve practically the "rigid" values. The 
relative errors between IDIM and DIDIM identified values 
have been computing and summed in Table 7 

 The relative errors are given by the following simple 
formula: 

( ) ( )ˆ ˆ ˆ% 100 IDIM DIDIM DIDIM

j j j je χ χ χ χ= −  (15) 

Where ˆ IDIM

jχ  is the IDIM identified value of the jth 

parameter and ˆ DIDIM

jχ  is the DIDIM identified value of the 

jth parameter. 
 

TABLE 2: OLS IDENTIFIED VALUES WITH THE FIRST MINIMAL 

IDENTIFICATION MODEL 

Parameter 
jχ̂  

j
ˆ2* χσ  

j
ˆ j

ˆ100* χχσ  

ZZ1 70.2 0.20 0.14 
Fv1 92.0 1.89 1.03 
Fc1 10.0 0.47 2.35 
K12 8.0 105 3.0 103 0.19 
Fv12 126.0 36.0 14.3 
ZZ2 34.8 0.19 0.27 
Fv2 110.0 1.69 0.76 
Fc2 10.4 0.15 0.72 

Estimated natural frequency: 29.0Hz 

( )ˆY Wχ Y 8%− = , ( )S
ˆY Y Y 8%− =  

1 2ZZ ZZ 105Kg+ = , 
v1 v2F F 202Ns / m+ = , 

c1 c2F F 20.4N+ =  
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Fig. 4. Cross test validation with IDIM method. Blue: measurement, Red: 

simulated torque, Black: error. 

 
TABLE 3: DIDIM IDENTIFIED VALUES AFTER 10 ITERATIONS 

Parameter 
jχ̂  

j
ˆ2* χσ  

j
ˆ j

ˆ100* χχσ  

ZZ1 69.6 0.18 0.13 
Fv1 127.0 1.86 0.73 
Fc1 10.0 0.45 2.25 
K12 8.1 105 3.0 103 0.18 
Fv12 136.0 35.0 12.86 
ZZ2 35.5 0.19 0.26 
Fv2 76.0 1.67 1.09 
Fc2 10.0 0.15 0.75 

Estimated natural frequency: 29.0Hz 

( )S
ˆY Y Y 9%− =  

1 2ZZ ZZ 105.1Kg+ = , 
v1 v2F F 203Ns / m+ = , 

c1 c2F F 20.0N+ =  
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Fig. 5. Direct validation with DIDIM method. Blue: measurement, Red: 

simulated torque, Black: error. 

 
The parameter 12vF  has no influence on the dynamics. It 

posses large standard relative deviation compared with 
others and when removed from the flexible dynamic model, 
the norm of the residue and the identified values of the other 
parameters do not vary significantly (less than 1%). 

The standard deviations obtained with DIDIM are slightly 
different from those obtained with IDIM. This is due to the 
fact that the observation matrix is built with simulated data 
instead of measured one as stated in section  IV.A. Hence, 

SW  is perfectly noise free compared with W . 

D. Experimental results with an additional mass of 10Kg 

on the load 

Now, as a final test, IDIM and DIDIM are performed 
while an extra mass of 10Kg is added on the load. If 
identification methods are well designed and accurate 
enough, variations close to 10Kg must be observed on 2ZZ  

whereas insignificant variations must be observed on the 
other parameters. The estimated values and natural 
frequency nω obtained with IDIM are given in Table 4. The 

relative norm of the residue and the relative norm of the error 
between the measured torque and the simulated one are 
added. The results obtained with DIDIM are given in Table 5 
The algorithm converges after 25 iterations. The variations 
observed on the estimations are given in Table 6. 

With IDIM and DIDIM, the variations observed on 2ZZ  

are close to 10Kg whereas the variations observed on the 
other parameters are practically insignificant (excepted for 

12vF  but it has no influence on the dynamic model). The 

experimental variations can not fit perfectly the theoretical 
expected one because of noises and experiment conditions. 

 
TABLE 4: IDIM IDENTIFIED VALUES WITH ADDITIONAL MASS 

Parameter 
jχ̂  

j
ˆ2* χσ  

j
ˆ j

ˆ100* χχσ  

ZZ1 70.1 0.22 0.15 
Fv1 95.0 1.90 1.0 
Fc1 10.0 0.46 2.3 
K12 8.2 105 3.0 103 0.18 
Fv12 210.0 40.0 9.5 
ZZ2 45.0 0.20 0.22 
Fv2 110.0 1.67 0.76 
Fc2 10.0 0.16 0.80 

Estimated natural frequency: 27.0Hz 

( )ˆY Wχ Y 8%− = , ( )S
ˆY Y Y 8%− =  

1 2ZZ ZZ 115.1Kg+ = , 
v1 v2F F 205Ns / m+ = , 

c1 c2F F 20.0N+ =  
 

TABLE 5: DIDM IDENTIFIED WITH ADDITIONAL MASS 

Parameter 
jχ̂  

j
ˆ2* χσ  

j
ˆ j

ˆ100* χχσ  

ZZ1 68.5 0.20 0.14 
Fv1 128.0 1.90 0.74 
Fc1 11.0 0.45 2.0 
K12 8.2 105 3.0 103 0.18 
Fv12 50.0 20.00 20.0 
ZZ2 45.7 0.18 0.24 
Fv2 80.0 1.67 1.04 
Fc2 10.0 0.15 0.75 

Estimated natural frequency: 27.0Hz 

( )S
ˆY Y Y 9%− =  

KgZZZZ 2.11421 =+ , mNsFF vv /20821 =+ , 
c1 c2F F 21.0N+ =  
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TABLE 6: VARIATIONS OF ESTIMATIONS 

Parameter 
jχ̂ : IDIM jχ̂ : DIDIM 

∆ZZ1 -0.2 -1.1 

∆Fv1 3.0 1.0 
∆Fc1 0.0 -1.0 
∆K12 0.1 105 -0.1 105 

∆Fv12 84.0 -86.0 
∆ZZ2 9.8 10.2 

∆Fv2 0.0 4.0 
∆Fc2 -0.4 0 

 
TABLE 7: RELATIVE ERRORS BETWEEN IDIM AND DIDIM 

Parameter First test Second test 
%e(ZZ1) 1.0% 2.3% 
%e(Fv1) 38.0% 35.0% 
%e(Fc1) 0.0% 0.0% 
%e(K12) 1.28% 0.0% 
%e(Fv12) 9.0% 76.0% 
%e(ZZ2) 2.0% 1.6% 
%e(Fv2) 31.0% 27.3% 
%e(Fc2) 4.0% 0.0% 

 
Direct and cross test validations have been performed. As 

done for the previous experiments, cross test validations 
consist in simulating the EMPS. The results are very close to 
those illustrated Fig. 4. 

The experimental results prove that we can identify joint 
stiffness with only one measurement, the actual motor 
force/torque. The results presented along this paper have 
shown the effectiveness of our approach. Indeed, the results 
obtained with DIDIM are comparable with those obtained 
with IDIM. Remember that three measurements are used to 
perform IDIM: motor torque, motor and load positions. 

VI. CONCLUSION 

This paper has described a methodology to identify joint 
stiffness from only actual force/torque data. To make it 
possible, the DIDIM method previously validated on a 6 
DOF rigid robot  [18] has been extended to flexible systems. 
To highlight the effectiveness of our approach, results 
obtained with DIDIM were compared with those obtained 
with IDIM performed with three measurements (actual 
force/torque data, motor and load positions). The 
experimental results show that DIDIM results are 
comparable with IDIM results. This is quite remarkable. 

Future works concern the use of DIDIM method to 
identify a multi DOF robot possessing joint flexibilities. 
They concern also the calculation of the optimal solution. At 
this time, the algorithm converges slowly (25 iterations). 
Others non linear programming optimizers will be analyzed 
and tested. 
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