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Abstract— We introduce the notion of incremental gener-
alized homogeneity, giving new results on observer design
for systems with bounded trajectories and putting into a
unifying framework constructive results for triangular (feed-
back/feedforward) and homogeneous systems. An asymptotic
state observer is designed by dominating the generalized homo-
geneity degree of the nonlinearities with the degree of the linear
approximation of the observation error system. Incremental
generalized homogeneity provides a high flexibility in the design
of the observer gains and gives a systematic tool for the
stabilization of systems with highly complex structures.

Index Terms— Generalized homogeneity, observers, O-
immersions.

I. INTRODUCTION

Homogeneity and homogeneous approximations have been
investigated by many authors for the analysis of the stability
of an equilibrium point: [12], [6] and [16] to cite few (see
[4] for a complete list of references). This theoretical setup
has been exploited in the design of homogeneous observers
([17], [14], [13], [3]): the idea is to design an observer for
the homogeneous approximation and convergence to zero
of the estimation error is preserved under any perturbation
which does not change the homogeneous approximation. The
most severe limitation of homogeneous observers is that their
gains cannot be varied one independently from the other
since the ratio between consecutive gains is constant. When
dealing with non-homogeneous systems, different restrictions
on the system structure have been adopted such as feedback
([18], [9]) or feedforward forms and strong observability
assumptions such as complete uniform observability ([15]).
The most general result on observers the author is aware
of is [1], which however is mainly an existence result.
The existence of a global observer has been proved for a
restricted class of systems (5) ([2]) under the additional
hypotheses that system (5) is output-to-state stable (OSS)
and uniformly completely observable. However, also in this
case the proof relies heavily on the information of the
Lyapunov function as well as the non-negative functions
which are used to characterize the output-to-state stability
of the nonlinear system (5). Recently, constructive results
have been obtained for uniformly completely observable and
feedback linearizable systems with bounded state trajectories
([11]). In this paper we prove some new results on observer
design by introducing the notion of generalized homogeneity,
which extends the notion of homogeneity and puts into a uni-
fying framework existing constructive results for triangular
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(feedforward/feedback) and homogeneous systems. Roughly
speaking, any system can be considered homogeneous in the
generalized sense with some degrees and weights, but the
basic idea is that only if degrees and weights are properly
related then the stabilization is feasible. An asymptotic state
observer is designed for systems with bounded trajectories
by dominating the generalized homogeneity degree of the
nonlinearities with the degree of the linear approximation
of the estimation error system. A novelty introduced by the
notion of generalized homogeneity is the mixed low/high-
gain observer structure, in combination with saturated state
estimates ([18]). A peculiarity of our notion is that it is
defined for increments of functions and this simplifies the
design of the observer.

Using generalized homogeneity and weak observability
properties such as incremental observability ([8]), we also
see how to design a globally convergent observer, in the
sense that it does not depend on the compact set containing
the system trajectories. Our result is rather along the direction
of the paper [11], in which the question of the constructive
design of a global observer is addressed for the same class
of systems considered in [2], and it can be straightforwardly
extended to OSS systems by a simple transformation of the
time scale (see also [2]) such that the system has bounded
trajectories in the new time scale.

II. NOTATION

• Rn (resp. Rn×n) is the set of n-dimensional real
column vectors (resp. n × n matrices). Rn

0 is the set
of n-dimensional real column vectors with non-zero
entries. R+ (resp. Rn

+, Rn×n
+ ) denotes the set of real

non-negative numbers (resp. vectors in Rn, matrices in
Rn×n, with real non-negative entries). R> (resp. Rn

>)
denotes the set of real positive numbers (resp. vectors
in Rn with real positive entries). Set

1 := (1, · · · , 1)T

with 1 · c := (c, · · · , c)T for any c ∈ R.
• For any G ∈ Rp×n we denote by Gij (or [G]ij to avoid

ambiguity) the (i, j)–th entry of G and by Gi (or [G]i
to avoid ambiguity) the i–th row of G. We retain similar
notations for functions.

• We denote by Cj(X,Y ), with j ≥ 0, X ⊂ Rn and
Y ⊂ Rp, the set of j-times continuously differentiable
functions f : X → Y . For any f ∈ C0(X,Y )
we write f = 0 to say that f(x) = 0 for all
x ∈ X . We denote by Dj(Rn) the set of func-
tions f ∈ Cj(Rn,Rn) with decoupled components,
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viz. f(x) = (f1(x1), · · · , fn(xn))T . L∞(R+,Rn) is
the set of bounded functions f ∈ C0(R+,Rn) and
L1(R+,Rn) is the set of f ∈ C0(R+,Rn) such that∫∞

0
‖f(τ)‖dτ < ∞. For any f ∈ C1(Rn,Rp) we

define (∇f)(x) := ((∂f1
∂x )T (x), · · · , (∂fp

∂x )T (x))T .
• the increment ∆f of f ∈ C0(Rn,Rp) (at x ∈ Rn)

is defined as (∆f)(x) := f(x + ∆x) − f(x) with
increments ∆x ∈ Rn. For any f ∈ C0(Rn,Rp),
g ∈ C0(Rn,Rn) and x ∈ Rn we have ∆(f ◦
g)(x) = f(g(x) + (∆g)(x)) − (f ◦ g)(x), where ◦
denotes composition of functions. When we consider
only increments [∆x]l ∈ R along the l-th coordinate xl,
l = 1, . . . , n, we replace ∆ by ∆l and define ∆lf(x) :=
f(x1, . . . , xl−1, xl + [∆x]l, xl+1, . . . , xn) − f(x) with
∆0f(x) := f(x).

• For any two vectors ε, r ∈ Rn, we define εr =
(εr1

1 , · · · , εrn
n )T and εr � x = (εr1

1 x1, · · · , εrn
n xn)T , viz.

the dilation of a vector x with weight r. Moreover,
we write x ≤ y (resp. x < y, x = y) if and only if
xi ≤ yi (resp. xi < yi, xi = yi) for all i = 1, . . . , n.
We retain a similar notation for pairs of vectors: we
write (x, y) ≤ (z, w) (resp. (x, y) = (z, w)) if and only
if xi ≤ zi and yi ≤ wi (resp. xi = zi and yi = wi) for
all i = 1, . . . , n.

III. INCREMENTAL GENERALIZED HOMOGENEITY
DEGREE

A. Definitions

Below we introduce the notion of generalized homogene-
ity which generalizes along several directions the classical
notion of homogeneity.

Definition 3.1: (Incremental generalized homogeneity
degree). A function φ ∈ C0(Rn,R) is said to have in-
cremental generalized homogeneity (i.g.h.) degree h ∈ Rn

with weights r ∈ Rn
> and limit function Φ if there exist

Φ ∈ C0(Rn ×Rn,R1×n) such that

∆φ(εr � x) =
∑ n

l=1Φl(x,∆x)εhl [∆x]l (1)

for all ε > 0 and x,∆x ∈ Rn. A function φ ∈ C0(Rn,Rn)
is said to have incremental generalized homogeneity (i.g.h.)
degree (d, h) ∈ Rn × Rn with weights r ∈ Rn

> and limit
function Φ if there exist Φ ∈ C0(Rn ×Rn,Rn×n) such that

∆φi(εr � x) = εdi+ri
∑ n

l=1Φil(x,∆x)εhl [∆x]l (2)

for all i = 1, . . . , n, ε > 0 and x,∆x ∈ Rn.
Remark 3.1: It is easy to see that the limit function Φx

retains the same generalized homogeneity properties of φ.
I.g.h. reduces to the notion of homogeneity when ∆x = −x,
φ(0) = 0, r ∈ Rn

> (viz. positive weights) and d = 1 ·d0 and
h = 1·h0 for some d0, h0 ∈ R. The function φ(x) := x1+x3

2

has i.g.h. degree h := (r1, 3r2)T with weights r := (r1, r2)T

and limit function
(

1, [∆x]22 + 3(x2[∆x]2 + x2
2)
)

. Note that
φ is homogeneous if and only if r1 = 3r2.

The function sinx is not homogeneous in the generalized
sense but its absolute value is bounded by the absolute value
of x which has i.g.h. degree (0, 0). Therefore, a function,

although not homogeneous in the generalized sense, may be
bounded by some other function which is homogeneous in
the generalized sense. This motivates the following defini-
tions.

Definition 3.2: (Incremental generalized homogeneity
degree in the upper bound). A function φ ∈ C0(Rn,R)
is said to have incremental generalized homogeneity in the
upper bound (i.g.h.u.b.) degree h ∈ Rn with weights r ∈
Rn

0 and bounding function Φ if there exist Φ ∈ C0(Rn ×
Rn,R1×n

+ ) and ε0 > 0 such that

|∆φ(εr � x)| ≤
∑ n

l=1Φl(x,∆x)εhl |[∆x]l| (3)

for all ε ≥ ε0 and x,∆x ∈ Rn. A function φ ∈ C0(Rn,Rn)
is said to have incremental generalized homogeneity in the
upper bound (i.g.h.u.b.) degree (d, h) ∈ Rn × Rn with
weights r ∈ Rn

0 and bounding function Φ if there exist
Φ ∈ C0(Rn ×Rn,Rn×n

+ ) and ε0 > 0 such that

|∆φi(εr � x)| ≤ εdi+ri
∑ n

l=1Φil(x,∆x)εhl |[∆x]l|(4)

for all i = 1, . . . , n, ε ≥ ε0 and x,∆x ∈ Rn.
Remark 3.2: Without loss of generality one can assume

ε0 = 1, otherwise rescale x and ∆x as z = εr0 � x and,
respectively, ∆z = εr0 �∆x and define new bounding func-
tions [Φ′]l(z,∆z) := εdi+ri−rl+hl

0 Φl(ε−r
0 �z, ε

−r
0 �∆z) (resp.

[Φ′]il(z,∆z) := εdi+ri−rl+hl
0 Φil(ε−r

0 � z, ε−r
0 � ∆z)). It is

convenient to compare our notion of generalized homogene-
ity in the upper bound with homogeneous approximations in
the ∞-limit ([3]). The comparison makes sense with ∆x =
−x, φ(0) = 0, r ∈ Rn

> (viz. positive weights) and d = 1 ·d0

and h = 1 ·h0 for some d0, h0 ∈ R in the above definitions.
First of all, in [3] the so-called approximating or limit
function φ0(x) is an approximation of φ(x) over compact
sets, while in our case φ0(x) :=

∑
n
l=1Φil(x,−x)|xl| is an

upper bound of the absolute value of φ(x). For this reason, in
[3] the approximating function φ0(x) is homogeneous with
the same degree and weights as φ(x). The function sinx
has i.g.h.u.b. degree (0, 0) with any weights and bounding
function 1 but it has no homogeneous approximation in the
∞-limit. The function φ(x) := (x2, x2 + xp

2)T , p > 1, is
homogeneous of degree p − 1 in the ∞-limit with weights
(2 − p, 1)T and limit function (x2, x

p
2)T only if p < 2. On

the other hand φ has i.g.h.u.b. degree ((r2 − r1, r2(p −
1))T , (0, 0)T ) with any weights r ∈ R2

> and bounding
function

(
(0, 0)T , (1, 1 + |(x2+[∆x]2)p−xp

2 |
|[∆x]2| )T

)
for all p > 1.

Moreover, in our definition the weights may be also
negative. This extension is useful for penalizing large values
of some arguments of a function. The function φ(x) := x1x2

has i.g.h.u.b. degree 0 with weights (1,−1)T and limit
function Φ := (x2, x1 + [∆x]1). The same function has
i.g.h.u.b. degree 2 with weights (1, 1)T .

The function φ = (x2, x
2
2 sinx1)T has i.g.h.u.b.

degree (h, 0), with h = (r2 − r1, r2 + r1)T ,
weights r = (r1, r2)T and bounding function
Φ :=

(
(0, x2

2
|(sin(x1+[∆x]1)−sin x1|

|[∆x]1| )T , (1, |2x2 + [∆x]2|)T
)

.
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B. Some related properties

Throughout the paper we assume ε0 ≥ 1 in the above
definitions. All the properties and rules listed below and
related to functions with i.g.h.u.b. degree can be stated and
proved for functions with i.g.h. degree by replacing the
inequalities with equalities and omitting the absolute values.
We give the following rules without proof. The generalized
homogeneity degree of the composition of two functions
behaves as follows.
(P1) (chaining rule) For any φ ∈ C0(Rn,Rn) with
i.g.h.u.b. degree (d, h), weights l and bounding functions Φ
and ψ ∈ C0(Rn,Rn) with i.g.h.u.b. degree (−h, p), weights
l and bounding function Ψ, if there exists ΦM ∈ C0(Rn ×
Rn,Rn×n

+ ) such that

Φ(ε−l � ψ(εl � x), ε−l � (∆ψ)(εl � x)) ≤ ΦM (x,∆x)

for all ε ≥ 1 and x,∆x ∈ Rn then φ ◦ ψ has i.g.h.u.b. degree
(d, p) with weights l and bounding function ΦMΨ.
(P2) (shifting rules) Let (A,B) be in Brunowski canonical
form. Note that AT is the Moore-Penrose pseudoinverse of
A, viz. ATAAT = AT , AATA = A, (ATA)T = ATA and
(AAT )T = AAT . Therefore I − AAT = BBT is the or-
thogonal projection onto (Im{A})⊥ = Im{I −AAT } while
I − ATA is the orthogonal projection onto (Im{AT })⊥ =
Im{I −ATA} (Im{W} denotes the vector space generated
by the columns of the matrix W ). It is easy to see that
(P2.1)for any w ∈ Im{I −AAT } (resp. w ∈ Im{I −ATA})
and φ ∈ C0(Rn,Rn), with i.g.h.u.b. degree (d, h), weights
r and bounding function Φ, Aφ (resp. ATφ) has i.g.h.u.b.
degree (A(d+ r)− r+w, h) (resp. (AT (d+ r)− r+w, h))
with weights r and bounding function AΦ (resp. AT Φ).

On the other hand,
(P2.2) for any w ∈ Im{I−ATA} (resp. w ∈ Im{I−AAT })
and φ ∈ C0(Rn,Rn) with i.g.h.u.b. degree (d, h), weights r
and constant bounding function Φ, φ ◦ A (resp. φ ◦ AT ) has
i.g.h.u.b. degree (d,AT (h− r) + r+w) (resp. (d,A(h− r) +
r + w)) with weights r and constant bounding function ΦA
(resp. ΦAT ).

IV. O-IMMERSIONS AND OBSERVER DESIGN

A. Statement of the main result

Consider the system

ẋ = Ax +Bu + φ(x), y = Cx + ψ(x), (5)

with state x ∈ Rn, inputs u ∈ Rm, output y ∈ R,
A in Brunowski canonical form with C = (1, 0, · · · , 0)T ,
φ ∈ C0(Rn,Rn), φ(0) = 0, and ψ ∈ C0(Rn,R), ψ(0) =
0. Throughout the paper we use the notations x,u,y for
the functions of time and x, y, u for their values. Also,
let x(·,u, x0) denote the state trajectory of (5) with input
u ∈ L∞(R+,Rm) and ensuing from x0. We limit ourselves
to single-output systems (5), leaving the straightforward
extension to multi-output systems to the reader. We say that
σ ∈ D0(Rn) is a saturation function with levels h ∈ Rn

> if,
for each i = 1, . . . , n, [σ]i(s) = s for all s : |s| ≤ hi and

[σ]i(s) = sign(s)hi for all s : |s| > hi. The main result of
this section is the following.

Theorem 4.1: Assume that
(D0) there exist two compact sets R,C ⊂ Rn such that
x(t,u◦, x0) ∈ C for all t ≥ 0, for all x0 ∈ R and for some
u◦ ∈ L∞(R+,Rm),
(D1) CTψ has i.g.h.u.b. degree (−g, g) with weights r ∈ Rn

>

and bounding function CT Ψ such that Ψ(0, 0) = 0,
(D2) φ has i.g.h.u.b. degree ((I−AAT )g+A(r−AT r−g), g)
with weights r and bounding function Φ such that Φ(0, 0) =
0,
(D3) A(2g −AT g) ≤ A(r −AT r − g) ≤ AAT g.

There exist K,hO > 0, diagonal positive definite ΓO ∈
Rn×n, ε ≥ 1 and a saturation function σ with levels hOε

r

such that

ξ̇ = Aξ +Bu◦ + φ ◦ σ(ξ) +K(n)(y − Cξ − ψ ◦ σ(ξ)),
ξ(0) = 0, (6)
K(i) := ε2g � {KCT +AT ΓOK

(i−1)}, i = 1, . . . , n,
K(0) := 0, (7)

is an asymptotic state observer for each state trajectory
x(·,u◦, x0) of (5) with x0 ∈ R.

Remark 4.1: Assumption (D0) is restrictive even for lin-
ear system (5), but it comes naturally into the picture if we
think of using the state observer (6) together with a stabiliz-
ing state feedback controller for semiglobally stabilizing (5)
by output feedback. The state observer (6) depends on C. In
section D we will see how to design a globally convergent
observer, in the sense that it does not depend on C.

Remark 4.2: Note that Φ(0, 0) = 0 and Ψ(0, 0) = 0 are
required. This is the simplest assumption which guarantees
that the linear approximation of (5) around the origin is
observable. Less restrictive assumptions can be considered
as well.

Remark 4.3: For lower triangular φ and CTψ we can
always make a choice of the weights r and degrees g which
satisfies (D1)-(D3) and corresponds to the “maximal” value
AAT g of A(r−AT r− g), the vector of the “gaps” between
each pair of consecutive weights (we do not prove this here
for lack of space). For example, φ(x) := (xp

1, x
q
2)T , p, q > 1,

satisfies (D1)-(D3) with any weights r and g := (r1p +
2qr2, qr2)T (positive degrees and high-gain observer (6)).

On the other hand, for strict upper triangular φ and CTψ
we can always make a choice of the weights r and degrees g
which satisfies (D1)-(D3) and corresponds to the “minimal”
value A(2g −AT g) of A(r −AT r − g) in (D3) (we do not
prove this here for lack of space). For example, φ(x) :=
(xq

3, 0, 0)T , q > 1, with r := (r1,
3q−1

2(2q−1)r1,
q

2q−1r1)T ,
g := (− q−1

4(2q−1)r1,− q−1
4(2q−1)r1, − q−1

4(2q−1)r1)T , any r1 > 0
satisfies (D1)-(D3) (decreasing weights, negative degrees and
low-gain observer (6)).

The rationale behind (D1)-(D3) can be explained as fol-
lows. If the state trajectories of (5) remain for all times in
C, any Luenberger-like state observer of (5) has the form
ξ̇ = Aξ + Bu + φ ◦ σ(ξ) + L(y − Cξ − ψ ◦ σ(ξ)) with
L ∈ Rn and σ ∈ D0(Rn) a saturation function with levels
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such that the restriction of σ to C is the identity function.
If ∆x := ξ − x then the observation error system is ∆̇x =
g(∆x,x) := (A−LC)∆x + ∆(φ ◦ σ)(x)−L∆(ψ ◦ σ)(x).
For semiglobally stabilizing the observation error system
for some choice of L it is sufficient to stabilize the linear
approximation (A− LC)∆x of g(∆x,x) around the origin
∆x = 0 with some L and dominate the incremental degree
of ∆(φ◦σ)(x)−L∆(ψ◦σ)(x) by the incremental degree of
(A−LC)∆x. Theorem 4.1 states that this is possible if the
degree of φ is in between ((I −AAT )g +A(2g −AT g), g)
(which corresponds to a “minimal” gap between each pair of
weights) and (g, g) (which corresponds to a “maximal” gap
between each pair of weights). (D1)-(D3) can be interpreted
as a trade-off condition for non-triangular φ and CTψ. For
example, φ(x) = (xq

1x3, 0, 0)T , p > 1, is non-triangular
and satisfies (D1)-(D3) with r := (r1, (p + 1)r1, r1)T ,
g := ( 3pr1

2 ,−pr1
2 ,−pr1

2 )T and any r1 > 0 (negative/positive
degrees and low/high-gain observer (6)).

Remark 4.4: The observer gain matrix K(n)C in (6) is
homogeneous with weights r only if gj = g01, which,
since AAT 1 = A1, corresponds to the choice 2A1 · g0 =
A(r−AT r) in (A2). Therefore, the gaps between each pair
of consecutive weights are all equal to 2g0. Under this re-
striction, (D2) simply says that φ (resp. ψ) be homogeneous
(in the upper bound) with degree 2g0 (resp. 0) and weights r,
which is the condition required in [13] under the additional
assumption that ψ = 0. Under this regard, it is important to
say that the saturation function σ is a crucial design issue
only when φ and ψ are not homogeneous in the classical
sense and the saturation levels are directly proportional to
the maximal gap between two consecutive weights. If φ and
ψ are homogeneous the saturation function can be set equal
to the identity function and (6) is linear and homogeneous.

B. Constructive procedure for the observer (6)

The construction of the state observer (6) is accomplished
according to the following steps:
(iv) Find a diagonal positive definite ΓO ∈ Rn×n and K > 0
such that

TO := −2(KCTC +AT ΓOA) + (A+AT Γ2
O) ·

·(I −AT ΓO)−1 − (I −AT ΓO)−T (A+AT Γ2
O)T < 0. (8)

It is easy to see by direct calculations that the matrix ΓO

always exists.
(v) Find hO > 0 such that

RO := −2(KCTC +AT ΓOA) + ΩO + ΩT
O < 0 (9)

where

ΩO :=
(

2(I +AT ΓO){ max
z:‖z‖≤

√
nhO,

∆z:‖∆z‖≤2
√

nhO

Φ(z,∆z)}

+2KC T { max
z:‖z‖≤

√
nhO,

∆z:‖∆z‖≤2
√

nhO

Ψ(z,∆z)}+A+AT Γ2
O

)
·

·(I −AT ΓO)−1. (10)

This hO always exists on account of (8) and since Φ and Ψ
are continuous and Φ(0, 0) = 0 and Ψ(0, 0) = 0.

(vi) Pick ε ≥ 1 such that maxx:x∈C |xi| ≤ hOε
ri for all

i = 1, . . . , n.

C. Proof of the main result

We prove theorem 4.1 by showing how steps (iv)-(vi) of
section IV-B lead to establish that (6) is an asymptotic state
observer for the state trajectories of (5). A key point of the
proof relies on the following notion of O-immersion, which
is per se a useful tool for observer design.

Definition 4.1: A system Σ(x,u,y) : ẋ = F (x,u,y),
with state x ∈ Rn, input u ∈ U ⊂ Rm and output y ∈ Rp,
is said to be O-immersed under mappings (XO,ΠO, Y

u
O ) into

ΣO(xO,u,yO) : ẋO = FO(xO,u,yO), with state xO ∈ Rn,
input u ∈ U and output yO ∈ Rp̂, p̂ ≥ p, if there exist XO ∈
C1(Rn,Rn), ΠO ∈ C0(Rn,Rp̂×p) and Y u

O ∈ C0(Rn,Rp̂)
such that
(E1) the mapping xO 7→ x = XO(xO) is a diffeomorphism
and rank{ΠO(xO)} = p for each xO,
(E2) FO(·, u, Y u

O (·)) and F (·, u, (ΠT
OY

u
O ) ◦X−1

O (·)) are XO-
related for each u ∈ U .
The meaning of an O-immersion is the following: the state x
of Σ is mapped diffeomorphically by XO onto the state xO

of ΣO and, for each xO, ΠO(xO) is (up to isomorphisms)
the canonical immersion of Rp (the output space of Σ) into
Rp̂ (the output space of ΣO). A particular O-immersion of
ẋ = Ax + φ(x), y = Cx + ψ(x) corresponds to consider
CT y + AT ẋ = x + ATφ(x) as the new outputs. The idea
of using an augmented output vector for stabilizing a lower
triangular system is not new ([18]) but our O-immersion can
be defined also for non-triangular systems.
Proof of theorem 4.1 (Sketch). The proof relies on the
following fact which is a consequence of the notion of O-
immersion: for a given O-immersion ΣO of Σ under map-
pings (XO,ΠO, Y

u
O ), if for each fixed input u the outputs

yO := Y u
O (xO) are such that the equilibrium xO = 0 of

ẋO = FO(xO,u,yO) is locally (resp. globally) stable then
for each fixed input u the outputs y := (ΠT

OY
u
O ) ◦X−1

O (x)
are such that the equilibrium x = 0 of ẋ = F (x,u,y) is
locally (resp. globally) stable. By virtue of the augmented
number of outputs in ΣO, we easily construct the outputs
yO := Y u

O (xO) from which we obtain the outputs y :=
(ΠT

OY
u
O ) ◦X−1

O (x).
Let I ∈ Rn×n be the identity matrix, GO ∈ Rn×n a

diagonal positive definite matrix and H ∈ R> and identify
(whenever necessary) GO, I,HC

TC and A with linear maps
GO, I,HC

TC ∈ D1(Rn) and A ∈ C1(Rn,Rn). In
particular, select GO with i.g.h. degree (Ag,Ag), weights
r and diagonal positive definite limit ΓO ∈ Rn×n and H
such that HCTC has i.g.h. degree (g, g), weights r and
constant limit function KCTC, where K and ΓO are chosen
as pointed out in (8) (constructive step (iv)). On account
of (8) and using continuity of Φ and Ψ and the fact that
Φ(0, 0) = 0 and Ψ(0, 0) = 0, find hO > 0 as pointed out in
(9) (constructive steps (v)). Moreover, for each ε ≥ 1 let σ
be a saturation function σ with levels hOε

r.
For each ε ≥ 1 satisfying the constructive step (vi) of

section IV-B we have σ(x) = x for all x ∈ C and on account
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of (D0) the trajectories x(·,u◦, x0) of (5) with x0 ∈ R satisfy

ẋ = Ax +Bu◦ + (φ ◦ σ)(x), y = Cx + (ψ ◦ σ)(x).(11)

With (6), the observation error ∆x := ξ − x satisfies

∆̇x = A∆x + ∆(φ ◦ σ)(x)−K(n)∆y (12)

with ∆y := C∆x+∆(ψ◦σ)(x) and K(n) defined in (7). By
straightforward calculations we find out that K(n) = (I −
ATGO)−1HCT . It easy to see that the system (12) with
state ∆x, input x ∈ C and output ∆y is O-immersed under
mappings (XO,ΠO, Y

x
O ):

XO := (I −ATGO)−1, Y x
O := I + ∆ψO(xO), ΠO := CT ,

(13)

where

ψO := [CT (ψ ◦ σ) +AT (φ ◦ σ +GO)] ◦XO,

xO := X−1
O (x), (14)

into the system

˙∆xO = ∆φO(xO)−KO∆yO, (15)

with state ∆xO ∈ Rn, input x ∈ C and output ∆yO ∈ Rn,
where

φO = [A+ (φ ◦ σ)] ◦XO, KO := HCTC +ATGOA.(16)

We will prove that, for each fixed state trajectory x(·,u◦, x0)
of (11) with x0 ∈ R, (15) with outputs ∆yO := Y u

O (∆xO)
is globally asymptotically stable and therefore, by the O-
immersion property, (12) with outputs ∆y := (ΠT

OY
u
O ) ◦

X−1
O (∆x) = C∆x+∆(ψ ◦σ)(x) is globally asymptotically

stable, viz. the observation error ∆x tends to zero as t tends
to infinity. By repeated use of properties (P1), (P2) and (P3)
it can be established that
(F1) KO has i.g.h. degree (g, g) with weights r+1·(g1−gn)
and limit function KCTC +AT ΓOA,
(F2) φO −KOψO has i.g.h.u.b. (g, g) with weights r + 1 ·
(g1 − gn) and bounding function ΩO defined as in (10).

From (9) (constructive step (v)) it follows that
(F3) there exists αO > 0 such that

∆xT
O[ωO(∆xO)− (KCTC +AT ΓOA)∆xO]

≤ −αO‖∆xO‖2 (17)

for each ∆xO ∈ Rn and for all

ωO(∆xO) ∈ FO(∆xO)

:=
{
w ∈ Rn : |wj | ≤

∑ n
l=1[ΩO]jl|[∆xO]l|

}
. (18)

Let ε ≥ 1 and VO(∆xO) := 1
2‖ε
−s � ∆xO‖2. By virtue of

(F1)-(F3)

∇VO(∆xO)
(

∆φO(xO)−KOY
x
O (∆xO)

)
≤ −αO‖εg−s �∆xO‖2 (19)

for each x ∈ C, xO = X−1
O (x) and for all ∆xO. As a

consequence of the definition of O-immersion, ∆φO(xO)−

KOY
x
O and A+ ∆(φ ◦ σ)(x)−K(n)ΠT

OY
x
O ◦X

−1
O are XO-

related for each x ∈ C. Let W := VO ◦ X−1
O . It follows

that

∇W (∆x)
(
A∆x+ ∆(φ ◦ σ)(x)

−K(n)[C∆x+ ∆(ψ ◦ σ)(x)]
)

= (∇VO) ◦X−1
O (∆x)

(
∆φO ◦X−1

O (x)

−KOY
x
O ◦X−1

O (∆x)
)
≤ −αO‖εg−s �X−1

O (∆x)‖2

for all ∆x ∈ Rn and x ∈ C. By selecting ε ≥ 1 as in the
constructive step (iv) of section IV-B and on account of (D0)
it follows that (7) is an asymptotic state observer for each
state trajectory x(·,u◦, x0) of (5) with x0 ∈ R.

D. Globally convergent observers

The state observer (6) depends on C. In this section we
will see how to design a globally convergent observer, in
the sense that it does not depend on C. This can be achieved
at the price of an additional “incremental” observability
condition on (5). Denote by x(·, x0) (or simply x(·) when
there is no ambiguity) and y(·, x0) (or simply y(·)) the
state and, respectively, the output trajectory of (5) with input
u = 0 and ensuing from x0 (resp. y0 := Cx0 + ψ(x0)).

Theorem 4.2: Assume (D1)-(D3) and, in addition,
(G1) x(·, x0) ∈ L∞(R+,Rn) for all x0 ∈ Rn,
(G2) (5) with u = 0 is incrementally observable, viz. for
any x0, z0 ∈ Rn we have y(t, x0) = y(t, z0)∀t ≥ 0 ⇒
x(t, x0) = x(t, z0)∀t ≥ 0.

There exist K,hO > 0, diagonal positive definite ΓO ∈
Rn×n and a saturation function σ such that

ξ̇ = Aξ + φ ◦ σ(ξ) +K(n)(y − Cξ − ψ ◦ σ(ξ)),
ξ(0) = 0, (20)
ε̇ = ε{|ε−s1+g1 [σ]1(y − Cξ − ψ ◦ σ(ξ))|2

+‖ε−s+g � σ(ξ − σ(ξ))‖2}, ε(0) = 1, (21)

with K(n) defined in (7) and s := r + 1 · (g1 − gn), is an
asymptotic state observer for each state trajectory x(·, x0) of
(5).

Remark 4.5: The matrix ΓO and K > 0 are selected as
in (iv) and, with ΩO defined in (10):
(v’) hO > 0 is such that

−2(KCTC +AT ΓOA) + [AT ΓO(I −AT ΓO)−1

+(I −AT ΓO)−T ΓOA]2nh2
O + ΩO + ΩT

O < 0. (22)

Moreover, the saturation function σ has levels hOεr, where
ε is provided by (21).
The Van Der Pol oscillator ẋ1 = x2, ẋ2 = −x1+x2(1−x2

1)
with output y = β(x1), β ∈ C0(R,R) any injective globally
Lipschitz continuous function, satisfies the assumptions of
theorem 4.2.

(Proof of theorem 4.2) (Sketch). Let GO, ΓO, H , K, ΓO,
hO > 0 and σ be as in the proof of theorem 4.1. Denote
by x(t), ε(t), ξ(t) (resp. y(t)) or simply x, ε, ξ (resp. y) the
state (resp. output) trajectories of (5)-(20)-(21) with input
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u = 0 and initial conditions x0, ε0 := 1, ξ0 := 0 (resp. y0 :=
Cx0 +ψ(x0)). Let s := r+1 · (g1−gn) and VO(∆xO, ε) :=
1
2‖ε
−s � ∆xO‖2. Note that ATGOXO has i.g.h.u.b. degree

(−g, g) with weights s and b.f. AT ΓO(I − AT ΓO)−1 and
|ε−s1+g1 [σ]1(v)|2 + ‖ε−s+g � σ(w)‖2 ≤ ε2gn2nh2

O for all
v, w and ε ≥ 1 (since σ is a saturation function with levels
hOε

r and {gj}j=1,...,n is a decreasing sequence). Using the
constructive step (v’) and following the same steps for the
proof of (19) with ∆yO := Y x

O ◦XO(∆xO)

V̇O ≤ −
αO

2
‖εg−s �∆xO‖2 −min

i
{si}VO(∆xO, ε)

ε̇

ε

+
2
αO
‖ε−s−g � {(I −KOA

T )((φ ◦ σ − φ) ◦XO)(xO)

−KOC
T ((ψ ◦ σ − ψ) ◦XO)(xO)}‖2. (23)

Claim #1. ε ∈ L∞(R+,R). Since the right-hand part
of ε̇ is non-negative, ε(·) is monotonically increasing and
there exists T ∈ (0,∞] such that limt↑T ε(t) = ε∞ ≤ ∞
and [0, T ) is the maximal right extension interval of ε(·).
Assume that ε∞ = ∞. By (G1) there exists T ′ < T
such that |xi(t)| ≤ hOεri(t) for all i = 1, . . . , n and
for all t ∈ [T ′, T ). Therefore, along such trajectories (σ ◦
XO)(xO(t)) = σ(x(t)) = x(t) = XO(xO(t)) for all
t ∈ [T ′, T ). Since ε̇(t) and ε(t) are non-negative for all
t ∈ [T ′, T ), by integrating the equation of ε̇ over [T ′, t] and
on account of (23),

ln ε(t) ≤ ln ε(T ′) +
k0

αO
VO(∆xO(T ′), ε(T ′)) <∞ (24)

for all t ∈ [T ′, T ) and for some k0 > 0 which is a
contradiction since limt↑T ε(t) =∞. This proves the claim.
Claim #2. limt→∞(y(t) − Cξ(t) − ψ ◦ σ(ξ(t))) = 0 and
limt→∞(σ(ξ(t))− ξ(t)) = 0. By integrating (21) over [0, t],
t ≥ 0, on account of (23) and since x ∈ L∞(R+,Rn) (by
(G1)) and ε ∈ L∞(R+,R) (by claim #1) , it follows that
VO(∆xO, ε) ∈ L∞(R+,R) and, therefore,

ξ, ε−s+g � σ(ξ − σ(ξ)) ∈ L∞(R+,Rn),
ε−s1+g1 [σ]1(y − Cξ − ψ ◦ σ(ξ)) ∈ L∞(R+,R). (25)

Moreover, ε−s1+g1 [σ]1(y−Cξ−ψ◦σ(ξ)) and ε−s+g�σ(ξ−
σ(ξ)) are uniformly continuous on R+, since ẋ,x, ξ̇, ξ ∈
L∞(R+,Rn), ε̇, ε ∈ L∞(R+,R) by (G1), claim #1 and
(25) and ψ ◦ σ, σ and ψ are uniformly continuous on
any compact set of Rn. Our claim follows from Barbalat’s
lemma.

Since x, ξ ∈ L∞(R+,Rn) (by (G1) and (25)) and ε ∈
L∞(R+,R) (by claim #1) the Ω-limit set of (x, ξ, ε) is
non-empty, compact and invariant and, by virtue of claim
#2, it is contained in the set of points (x, ξ, ε) such that
Cx + ψ(x) = Cξ + ψ ◦ σ(ξ) and σ(ξ) = ξ. Inside this set
we have ẋ = Ax + φ(x), ξ̇ = Aξ + φ(ξ) and Cx +ψ(x) =
Cξ + ψ(ξ), which by (G2) implies that x = ξ. Therefore,
limt→∞(x(t)− ξ(t)) = 0, viz the observation error tends to
zero as t→∞ whatever is x0.

V. CONCLUSIONS

We introduced a notion of incremental generalized homo-
geneity, giving new constructive results on observer design.
Using incremental generalized homogeneity, we also point
out the procedure for designing a globally convergent ob-
server for systems with bounded trajectories. Future work
will be devoted to the global observer design for systems
with unbounded trajectories.
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