
A Memory-Efficient Representation of Explicit MPC Solutions

Alexander Szücs, Michal Kvasnica, and Miroslav Fikar

Abstract—Amount of memory needed to describe
explicit model predictive control (MPC) solutions is
an often neglected, but a very important factor which
decides whether it will be possible to implement such
a control strategy on a selected control platform. We
show how to exploit geometric properties of explicit
MPC controllers to obtain their memory-efficient rep-
resentation. The three-layer procedure first identifies
similarities between polytopic regions in form of an
affine transformation. If such a mapping exists, certain
regions can be represented using less data. The second
layer then applies data de-duplication to identify and
remove repeating sequences of data. Regions are then
described by integer pointers to such a unique set.
Finally, Huffman encoding is applied to compress such
integer pointers using prefix-free variable-length bit
encoding. Reduction in memory is traded for an in-
crease in evaluation time, which is quantified for each
layer. Main advantage of the overall procedure is that
it can be applied on top of most existing complexity
reduction schemes available in the literature.

I. Introduction

As shown in [2], the effort of implementing MPC in the
Receding Horizon fashion (RHMPC) can be substantially
reduced by pre-computing the optimal control action
for all possible initial conditions as a function κ. For
a large class of MPC problems, such a function can
be shown to take a form of a Piecewise Affine (PWA)
function, which is composed of a set of polytopic regions
and the associated affine feedback expressions. The main
benefit is that obtaining the optimal control input at each
sampling instance reduces to a mere function evaluation,
which can be performed efficiently even on simple control
devices in a matter of milli- and microseconds.

On the other hand, to achieve such a simple and fast
implementation, all pre-computed data have to be stored
in the memory of the target control hardware. Although
this aspect is often neglected in the literature, in fact it
plays a prominent role when implementing explicit MPC
solutions on devices with low available memory storage.
Typical examples include programmable logic controllers
(PLCs) and embedded microchips, which are one of the
most frequently used types of industrial control plat-
forms. Such devices usually only provide 2-8 kilobytes of
memory capacity, a figure which represents a significant
challenge in explicit MPC. Needless to say, unless all pre-
computed data can be fit into memory, the controller
cannot be implemented in practice. Therefore it is of

Authors are with Slovak University of Technology
in Bratislava; {alexander.szucs, michal.kvasnica,
miroslav.fikar}@stuba.sk

imminent importance to keep the memory footprint S(κ)
on an acceptable level.

The memory size of explicit MPC solutions is primarily
determined by the number of regions R and by their
complexity. The problem of reducing S(κ) is usually
tackled by approximating the optimal RHMPC feedback,
or the optimal value function in such a way that a
less complex, albeit suboptimal, feedback function κ̃ is
obtained, see e.g. [1], [11], [5], [7] and references therein.

In this paper, instead of decreasing S(κ) by reducing
the number of regions, we look for a memory efficient
representation of κ which requires less data. The pro-
cedure consists of three layers. The first one determines
a subset of regions which can be obtained by applying
affine transformation of the remaining regions. We show
how to formulate the search for such a mapping by
solving a mixed-integer problem, which is done off-line. If
the transformation exists, the corresponding regions can
then be represented using less data. The second layer
can either be applied on top of the first one, or inde-
pendently. Here, memory is saved by identifying positive
and negative duplicities in half-space representation of
several polytopic regions. The duplicate occurrences are
then represented as mere integer pointers to the unique
set of data. Compared to the first layer, the additional
computation to be performed on-line is much smaller.
Finally, in the last layer we propose to compress the
integer pointers by Huffman encoding [6]. Here, variable-
length bit codewords are assigned to each integer, de-
pending on its frequency of abundance. Main benefit of
the proposed strategies is that they can be applied on
top of all aforementioned complexity reduction schemes.
Saving in terms of memory is achieved at the price of an
increase of the implementation effort performed on-line.
Therefore the approach is mainly suited for situations
where the implementation device poses enough compu-
tational power, but has severe memory limitations.

II. Explicit Model Predictive Control

We consider the class of constrained discrete-time,
stabilizable linear time-invariant systems

x+ = Γx + Ξu, x ∈ X , u ∈ U , (1)

where x ∈ R
nx is the state vector, x+ is the successor

state, u ∈ R
nu is the vector of control inputs, and

X ⊆ R
nx , U ⊆ R

nu are given polytopic sets. For
system (1) we define the constrained finite-time optimal

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 1916

control problem:

min
UN

N−1
∑

k=0

‖Qxxk+1‖p + ‖Quuk‖p (2a)

s.t. xk+1 = Γxk + Ξuk, xk+1 ∈ X , uk ∈ U (2b)

where xk and uk denote, respectively, the state and
input predictions at time instance k, initialized by the
measurements of the current state x0. The prediction
is carried out over a finite prediction horizon N . The
explicit representation of the receding horizon MPC
feedback u∗ = [I 0 · · · 0]U∗

N can be found as a PWA
function of the initial condition x by solving (2) as a
parametric program:

Theorem 2.1 ([2]): The RHMPC feedback u∗ for prob-
lem (2) with p ∈ {1, 2,∞} is given by

u∗ = κ(x) :=

F1x + G1 if x ∈ R1

...

FRx + GR if x ∈ RR,

(3)

where:

• κ : R
nx → R

nu is a continuous PWA function;
• Ri = {x | Hix ≤ Ki} are polytopes with Hi ∈

R
ci×nx , Ki ∈ R

ci , i = 1, . . . , R;
• the set of feasible initial conditions Ω :=
{x | ∃u0, . . . , uN−1 s.t. (2b) holds} is a convex poly-
tope;

• {Ri}
R
i=1 is a partition of Ω, i.e. ∪iRi = Ω and Ri ∩

Rj = ∅ for all i 6= j.

�

The advantage of such an explicit representation is
obvious: obtaining the optimal control action for a given
x reduces to a mere evaluation of the function κ, which
is a two-stage process. In the first step, index i of
the region which contains the state measurements is to
be identified. This problem is referred to as the point
location problem [10]. Then, in the second step, the
optimal control action is computed by evaluating u∗ =
Fix + Gi. The point location problem can be solved
e.g. by traversing the regions sequentially according to
Algorithm 1 (its output is ∅ if x /∈ ∪iRi, in which case
there is no feasible u which would guarantee satisfaction
of constraints in (2b)). The crucial downside of the

Algorithm 1 Point location

1: for i = 1, . . . , R do

2: if Hix ≤ Ki then

3: return i
4: end if

5: end for

explicit MPC approach, however, is that the number of
regions tends to be large, often above the limits of typical
control hardware implementation platforms. Specifically,
the amount of memory needed to execute Algorithm 1

on-line at each sampling instant, expressed as the number
of floating-point numbers, is

S(Ri) =
R

∑

i=1

ci(nx + 1), (4)

where R is the number of regions and ci is the number
of defining half-spaces of the i-th region. Clearly, as
R increases, and as the regions become more complex
(i.e. with growing ci), the memory footprint of κ can
easily exceed the provided memory capacity. Therefore,
when targeting implementation devices with low memory
storage, it is important to devise a more memory-efficient
representation of the feedback law κ.

III. Main Results

In this section we show how to represent regions Ri

more efficiently by exploiting their geometric properties.
Each of the proposed three layers can be viewed at as
a “compression” mechanism. Needless to say, additional
computational effort needs then to be performed on-line
to “decompress” the data. We provide quantification of
such an additional effort as a function of the problem
size. Decompression is performed on-the-fly on a region-
by-region basis.

Only the polytopic nature of regions Ri is exploited by
the proposed complexity reduction procedure. Continuity
of κ and convexity of the feasible set Ω are not required.
Therefore the approach is applicable to generic PWA
function κ defined over polytopes. The scope of this work
therefore extends to scenarios where tracking of a non-
zero reference is achieved by a suitable augmentation of
the state vector, or where linear hybrid systems are used
as prediction models. For the same reason the procedure
can be applied to post-process RHMPC feedback laws
generated by other complexity reduction schemes, e.g.
those reviewed in [7].

To quantify achievable reduction in memory, we will
assume that double-precision floating point numbers con-
sume 8 bytes, while integers can be represented by 2
bytes. Each individual mathematical operation on a float
or on an integer will be denoted as one FLOP.

A. Complexity Reduction via Affine Transformations

First we show how to represent some regions using
less data by exploiting geometric similarities of such
polytopes. We remind that the memory footprint of a
region Rj = {x | Hjx ≤ Kj} with Hj ∈ R

cj×nx and
Kj ∈ R

cj is cj(nx + 1) real numbers with cj ≥ nx + 1.
Here, we look for affine transformations Ai,jx+ bi,j such
that

Ri = {Ai,jx + bi,j | x ∈ Rj}. (5)

If there exist Ai,j ∈ R
nx×nx and bi,j ∈ R

nx which map
Rj onto Ri, then the memory footprint of κ is reduced
as follows: for each i, j for which the mapping exists, the
half-space representation of the j-th region (i.e. matrices
Hj , Kj with variable number of rows cj) can be replaced

1917

by matrices Ai,j , bi,j with fixed number of rows nx. Then,
once x ∈ Rj is to be verified in Step 2 of Alg. 1, it suffices
to check whether Ai,jx + bi,j ∈ Ri, i.e.

x ∈ Rj ⇔ Ai,jx + bi,j ∈ Ri. (6)

It follows that memory footprint of region Rj is reduced
by (cj−nx)(nx+1) real numbers by only storing Ai,j , bi,j

instead of Hj ,Kj . Since cj ≫ nx + 1 in practice, a
significant reduction can be achieved.

Definition 3.1: Let the polytopic partition {Ri}
R
i=1 be

given. The index set IG ⊆ {1, . . . , R} is called the index
set of generating regions of the partition if for each j /∈ IG

there exists an i ∈ IG and the associated affine map
Ai,jx + bi,j such that (5) holds.

Fix any i–j combination with i 6= j. Then the param-
eters of the associated affine transformation in (5) can
be determined by solving a mixed-integer program, as
summarized by the following theorem, which is our first
main result.

Theorem 3.2: Let i, j be given and let Vi =
[vi,1, . . . , vi,nv

] and Vj = [vj,1, . . . , vj,nv
] denote, respec-

tively, the extremal vertices of Ri and Rj . Then an affine
transformation which guarantees (6) exists if there exist
Ai,j ∈ R

nx×nx , bi,j ∈ R
nx , and a binary permutation

matrix P ∈ {0, 1}nv×nv with
∑nv

m=1
Pm,k = 1, ∀k,

∑nv

m=1
Pk,m = 1, ∀k such that

[

Ai,j bi,j

]

[

Vj

1

]

= ViP. (7)

�

Problem (7) is a feasibility problem with real variables
Ai,j , bi,j and binary variables P , which can be solved by
off-the-shelf software, like GLPK [9] or CPLEX [4].

The index set of generating regions can be determined
by 2, which requires solving, at most, 1/2R(R − 1) MIP
problems (7) on Step 4. In practice, it will be less, since
only regions with the same number of vertices need to
be processed. The algorithm returns an auxiliary array
J which denotes feasible i–j combinations. If Jj 6= ∅
for some j, then Jj points to its associated generating
region. If Jj = ∅, then Rj is a generating region on its
own, i.e. IG = {j | Jj = ∅}.

Algorithm 2

1: Initialize Jj = ∅, Aj = ∅, Bj = ∅, j = 2, . . . , R
2: for i = 1, . . . , R− 1 do

3: for j = i + 1, . . . , R do

4: if Jj = ∅ and (7) is feasible then

5: Aj ← Ai,j , Bj ← bi,j , Jj ← i
6: end if

7: end for

8: end for

Given the arrays of affine transformationsA and B, the
point-location task can be implemented by Algorithm 3.

The size of its input arguments is

S(Ri) =
∑

i∈IG

ci(nx + 1) +
∑

i/∈IG

nx(nx + 1), (8)

a reduction by
∑

i/∈IG
(ci − nx)(nx + 1) floating point

numbers compared to the standard approach, cf. (4). The
memory saving is hence proportional to the number of
non-generating regions. The algorithm loops through re-
gions sequentially. If a generating region is encountered,
x ∈ Ri is checked directly. Otherwise, (6) is exploited
and Ajx + Bj ∈ Ri is checked instead. Saving in terms
of memory is traded for an increase in execution time.
Here, compared to Algorithm 1, one needs to evaluate the
affine transformations whenever a non-generating region
is encountered, which requires

∑

i/∈IG
(2n2

x) FLOPs in the
worst case.

Algorithm 3

1: for j = 1, . . . , R do

2: if j ∈ J then

3: i← Jj , x← Aix + Bi

4: else

5: i← j
6: end if

7: if Hix ≤ Ki then

8: return j
9: end if

10: end for

Example 3.3: Consider a double integrator sampled at
1 second, given by the following state-space representa-
tion:

x+ =

[

1 1
0 1

]

x +

[

1
0.5

]

u, (9)

where the states and inputs are constrained, respectively,
by |xi| ≤ 5, i = 1, 2, and |u| ≤ 1. With the choice of
p = 1, Qx = [1 0

0 1], Qu = 1, and N = 10 in (2), the
explicit RHMPC feedback law consists of 230 regions,
shown in Figure 1. Storing all regions would require
2466 floating point numbers, or 19 kilobytes. Algorithm 2
has found feasible affine transformations for 198 regions,
representation of which can be simplified by only storing
Ai,j and bi,j . Remaining 32 generating regions need to
be represented using the full data, i.e. by matrices Hi,
Ki. Here, the 198 affine transformations contribute by
1188 numbers, while the 32 regions require 402 floats. It
follows that the total required memory is decreased from
19 to 12 kilobytes. The worst-case number of FLOPs1

needed to perform point location via Algorithm 3 is 6143
compared to 4110 operations for Algorithm 1.

1It is worth noting that even slow CPUs typically found in
industrial control hardware are able to perform tens of millions of
FLOPs per second. With the reported computational figures the
control algorithm could therefore be executed at the sampling range
of hundreds of kilohertz.

1918

−5 0 5

−3

−2

−1

0

1

2

3

x
1

x
2

Fig. 1. Regions of the explicit MPC solution for Example 3.3. Each
of the 198 yellow regions can be obtained by applying a suitable
affine transformation (6) to one of the 32 generating regions, shown
in red.

B. Data De-Duplication

Instead of having to store all data (i.e. all matrices
Hi and Ki), one can use de-duplication to first identify
unique rows of H = [HT

1
··· HT

R]
T ∈ R

m×nx and K =
[KT

1
··· KT

R]
T ∈ R

m with m =
∑R

i ci. Denote the unique
rows by H and K. If cardinality of H (K) is smaller than
number of rows in H (K), then the amount of memory
can be significantly decreased by storing, for each region,
only the pointers to H and K. The saving is twofold.
First, memory size of a pointer is smaller than for a
floating point number. Second, since a single pointer is
assigned to each row of H (which is nx dimensional), the
amount of memory is decreased nx times for each entry.

As an example, consider three regions given in their
respective half-space representation by

H1 =

[

0 1
1 −0.5
0 −1
−1 0.5

]

, H2 =

[

0 1
1 −0.5
−1 0.5
0 −1

]

, H3 =

[

−1 0.5
0 −1
0 1
1 −0.5

]

,

K1 =

[

2.4
3.1
−1.5

0

]

, K2 =

[

2.4
5.0
−3.1

0

]

, K3 =

[

0
0

1.5
3.1

]

.

The sets of unique rows are

H = {[0 1] , [1 −0.5] , [0 −1] , [−1 0.5]},

K = {−3.1, −1.5, 0, 1.5, 2.4, 3.1, 5.0}.

The corresponding (unsigned) index set representation of
the polytopic regions is then

IH1
= {1, 2, 3, 4}, IK1

= {5, 6, 2, 3},

IH2
= {1, 2, 4, 3}, IK2

= {5, 7, 1, 3},

IH3
= {4, 3, 1, 2}, IK3

= {3, 3, 4, 6},

where each element of IH and IK points to the corre-
sponding entry in H and K.

Cardinality ofH and K, and hence the required storage
space, can be further reduced by eliminating entries
which are negations of others, i.e.

H = {[0 1] , [1 −0.5]}, K = {−3.1, −1.5, 0, 2.4, 5.0}.

Then the (signed) index set representation becomes

IH1
= {1, 2, −1, −2}, IK1

= {4, −1, 2, 3},

IH2
= {1, 2, −2, −1}, IK2

= {4, 5, 1, 3}, (10)

IH3
= {−2, −1, 1, 2}, IK3

= {3, 3, −2, −1},

In this simple example, memory footprint of regions Ri

was reduced from 36 floating point numbers representing
matrices Hi, Ki to 9 floats for H, K, and 24 integer
pointers. Assuming that one float is represented by 8
bytes and an integer by 2 bytes, de-duplication reduces
required memory from 288 bytes to 120 bytes.

Algorithms 1 and 3 can be easily accommodated to
exploit the signed index set representation. Whenever
Hix ≤ Ki needs to be checked, one constructs, on-the-fly,
matrices Hi and Ki by Hi = {sign(j)H|j| | j ∈ IHi

} and
Ki = {sign(j)K|j| | j ∈ IKi

}. This involves negating the
corresponding rows, depending on the sign of the index.
Therefore execution of Algorithms 1 and 3 requires, at
most,

∑R
i=1

2ci additional FLOPs.
Example 3.4: We revisit Example 3.3 and remind that

the full set of 230 regions can be equivalently represented
by 32 generating regions and by 198 associated affine
transformations (5). The generating regions are described
by 134 half-spaces, which require 134(nx + 1) floating
point numbers (nx = 2 in this example). Here, the
sets of rows unique under unity scaling, i.e. H and K,
only contains 17 and 47 entries, respectively, which is
equivalent to 17nx + 47 floating point numbers. The
corresponding index sets IHi

and IKi
contribute by

2×134 integers. After de-duplication is applied to Aj and
Bj as well, the total memory footprint is reduced from 12
kilobytes reported in Example 3.3 to just 7.5 kilobytes.
This comes at the expense of performing additional 1644
FLOPs to reconstruct the regions on-the-fly using index
set representations.

C. Compression of Index Set Representations

Given are index set representations IH = ∪iIHi
and

IK = ∪iIKi
, whose entries point to corresponding rows

in the set of unique elements H and K. In traditional
implementation, each element of IH and IK would need
to be represented as a (signed) integer, i.e. by 16 bits
(provided that cardinality of H and K does not exceed
216). A more efficient representation can be obtained
by using a prefix-free variable-length encoding where bit-
wise codewords are assigned to each element of the index
sets. Length of a codeword is inverse-proportional to its
abundance, such that size of IK and IH is compressed
as much as possible.

Proposition 3.5 ([3]): Given an index set I and an
array of frequencies F , Algorithm 4 generates an optimal
coding tree T (I) as a full binary tree where the symbols
to encode are at the leaves, and where each codeword is
generated by a path from root to leaf, interpreting left
traversal as 0 and right as 1.

As an illustration, consider the index sets in (10)
and let IK = IK1

∪ IK2
∪ IK3

. Then the integers to

1919

TABLE I

Frequencies of integers to encode.

Integer −2 −1 1 2 3 4 5
Frequency 1 2 1 1 4 2 1

3

-14 1 -25 2

0 1

Fig. 2. Huffman tree for
IK = {4, −1, 2, 3, 4, 5, 1, 3, 3, 3, −2, −1}.

encode appear with frequencies reported in Table I. The
corresponding Huffman tree is shown in Figure 2. Here,
the optimal codewords are C(IK) = {[−2 : 111], [−1 :
001], [1 : 110], [2 : 101], [3 : 01], [4 : 000], [5 : 100]}. It
is easy to verify that such an encoding is prefix-free,
i.e. that no codeword is a prefix of another codeword.
Moreover, the most abundant integer 3 is encoded using
fewest number of bits as to minimize the total length of
binary representation of IK . Hence, instead of storing IK

as an array of 12 integers (i.e., 24 bytes), it suffices to
store the tree (7 integers or 14 bytes) and 12 codewords
of a total size 32 bits, or 4 bytes.

Algorithm 4 Huffman encoding [3]

1: Let Q be a priority queue, ordered by positive fre-
quencies F = [f1, . . . , fn]

2: for k = n + 1, . . . , 2n− 1 do

3: i← deletemin(Q), j ← deletemin(Q)
4: Create a node k with children i, j
5: Fk ← Fi + Fj

6: insert(Q, k)
7: end for

Size of the tree is proportional to the number of unique
elements of the encoded set of integers I. Decoding of
a particular sequence of bits boils down to traversing
the tree until a leaf is reached, whereupon the tree
returns to its root. Decompression effort is therefore
proportional, in the worst case, to the length m of the
longest codeword. In total,

∑R
i=1

2cim operations are
required to reconstruct regions Ri on-the-fly from their
respective encoded index set representations.

Remark 3.6: Traversing the tree only requires per-
forming bit-wise operations, which are much cheaper
than multiplications or additions on floating point num-
bers. Therefore a mere increase in FLOPs by a factor of
n does not necessarily mean that evaluation speed would
drop n times. In practice, it will be less.

Example 3.7: We continue with Example 3.4 where it
was shown that 134 signed integers IH pointing to one of
the 17 unique rows of H, and 134 signed integers IK for
the 47 unique elements of K are required for the index

set representation of generating regions. The trees T (IH)
and T (IK) were build by Algorithm 4 in 0.05 seconds.
The trees had 26 and 63 leave nodes, respectively. Each
element of IH , IK was encoded as a prefix-free sequence
of bits. For IH , the minimal codeword length was 3, the
maximal was 6. For IK , the minimal and maximal code
lengths were 4 and 7, respectively. It follows that the
index sets IH and IK , which originally required 2× 134
integers, can be equivalently represented by the two trees
(which need 89 integers) and 2×134 bit sequences, which
in total attribute by 527 bits, or 66 bytes. Therefore
memory footprint of the index set representations is re-
duced from 536 bytes to 244 bytes. Decompression of the
bit codewords in a suitable modification of Algorithm 3
would require additional 3570 FLOPs, in the worst case.

IV. Efficiency Evaluation

To asses efficiency of the proposed three-layer pro-
cedure on generic data, we have analyzed randomly-
generated explicit RHMPC feedback laws for dimensions
2 ≤ nx ≤ 5. For each dimension, 20 random RHMPC
feedback laws were generated by the MPT Toolbox [8].
Each controller was then processed by applying, consec-
utively, the similarity transformation of Section III-A,
then de-duplication of Section III-B, followed by data
compression of Section III-C.

For various state dimensions, Figure 3 shows achieved
memory reduction factors, i.e. the ratios between mem-
ory size of the original solution and the corresponding
compression layer. Note that the figures show accumu-
lated data, i.e. improvement of a particular layer upon
a previous one. The unity basis corresponds to size of
the original, uncompressed, RHMPC solution. As can be
observed, reduction of memory size by a factor of 20 is
not unusual. The average values are also summarized in
Table II. As expected, the compression factors increase
with growing number of states. This trend is mostly
notable for the de-duplication and compression methods.

Results in Figure 4 then quantify the factor by which
the number of floating point operations increases in order
to “decompress” a particular layer, with Algorithm 1
being the basis. However, as noted in Remark 3.6, this
factor is not directly proportional to a slowdown in
evaluation speed when the Huffman encoding layer is
concerned. Although the evaluation effort is substantially
increased, it is always out-weighted by a more substantial
reduction in terms of memory. With growing problem
dimension and number of regions, complexity of Algo-
rithm 1 naturally increases. It is due to this fact that
the relative factors in Figure 4 actually tend to improve
when nx is enlarged.

V. Conclusions

We have shown how to decrease memory requirements
for implementation of explicit MPC solutions by applying
three compression-like approaches. First, mixed-integer

1920

TABLE II

Average accumulated compression factors.

nx Sec. III-A Sec. III-B Sec. III-C

2 1.5 4.3 8.2
3 1.3 5.9 13.7
4 1.7 8.1 24.6
5 1.5 10.4 43.2

200 400 600 800
1

2

4

6

8

10

12

of regions

C
o

m
p

re
s
s
io

n
 f

a
c
to

r

(a) nx = 2

1000 1500 2000
1

5

10

15

of regions

C
o

m
p

re
s
s
io

n
 f

a
c
to

r

(b) nx = 3

2000 3000 4000 5000 6000 7000
1

5

10

15

20

25

of regions

C
o

m
p

re
s
s
io

n
 f

a
c
to

r

(c) nx = 4

8000 9000 10000 11000
1

10

20

30

40

50

of regions

C
o

m
p

re
s
s
io

n
 f

a
c
to

r

(d) nx = 5

Fig. 3. Accumulated reduction in memory storage achieved by
individual layers (blue is for the similarity transformation, green
for de-duplication, and red for compression). Note that individual
figures have different scales on the y axis.

200 400 600 800
1

2

4

6

of regions

F
L
O

P
s

(a) nx = 2

1000 1500 2000
1

2

4

6

of regions

F
L
O

P
s

(b) nx = 3

2000 3000 4000 5000 6000 7000
1

2

4

6

of regions

F
L
O

P
s

(c) nx = 4

8000 9000 10000 11000
1

2

4

6

of regions

F
L

O
P

s

(d) nx = 5

Fig. 4. Accumulated increase in on-line computation needed to im-
plement a particular layer (blue is for the similarity transformation,
green for de-duplication, and red for compression).

programming was used to derive suitable affine transfor-
mations which allow certain regions to be represented
using fixed amount of data. Then, de-duplication was
utilized to identify a unique subset of data and converting
the regions into index set representations. Finally, the
integer indices were compressed by Huffman encoding.
By means of a large case study we have demonstrated
that a significant memory saving can be achieved. This
reduction comes at the price of having to perform ad-
ditional computation on-the-fly, amount of which was
quantified for each level. Efficiency of de-duplication and
compression increases with growing problem dimension,
which is due to the fact that regions become more
complex.

Acknowledgments

The authors are pleased to acknowledge the financial
support of the Scientific Grant Agency of the Slovak
Republic under the grant 1/0095/11. This work was sup-
ported by the Slovak Research and Development Agency
under the contracts No. VV-0029-07 and No. LPP-0092-
07. Supported by a grant (No. NIL-I-007-d) from Iceland,
Liechtenstein and Norway through the EEA Financial
Mechanism and the Norwegian Financial Mechanism.
This project is also co-financed from the state budget of
the Slovak Republic and from the internal grant of the
Slovak University of Technology in Bratislava for support
of young researchers.

References

[1] A. Bemporad and C. Filippi. Suboptimal explicit RHC via ap-
proximate multiparametric quadratic programming. Journal
of Optimization Theory and Applications, 117(1):9–38, April
2003.

[2] A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos.
The explicit linear quadratic regulator for constrained sys-
tems. Automatica, 38(1):3–20, January 2002.

[3] S. Dasgupta, Ch. Papadimitriou, and U. Vazirani. Algorithms.
McGraw-Hill Science/Engineering/Math, 1 edition, Septem-
ber 2006.

[4] ILOG, Inc. CPLEX User Manual. Gentilly Cedex, France.
http://www.ilog.fr/products/cplex/.

[5] C.N. Jones and M. Morari. Approximate Explicit MPC
using Bilevel Optimization. In European Control Conference,
Budapest, Hungary, August 2009.

[6] Donald E. Knuth. Dynamic huffman coding. J. Algorithms,
6(2):163–180, 1985.

[7] M. Kvasnica. Real-Time Model Predictive Control via Multi-
Parametric Programming: Theory and Tools. VDM Verlag,
Saarbruecken, January 2009.

[8] M. Kvasnica, P. Grieder, and M. Baotić. Multi-Parametric
Toolbox (MPT), 2004. Available from http://control.ee.ethz.
ch/˜mpt/.

[9] A. Makhorin. GLPK - GNU Linear Programming Kit, 2001.
http://www.gnu.org/directory/libs/glpk.html.

[10] J. Snoeyink. Point Location. In J. E. Goodman and
J. O’Rouke, editors, Handbook of Discrete and Computational
Geometry, chapter 30, pages 558–574. CRC Press, Boca Ra-
ton, New York, 1997.

[11] A. Ulbig, S. Olaru, D. Dumur, and P. Boucher. Explicit solu-
tions for nonlinear model predictive control: A linear mapping
approach. In S. G. Tzafestas and P. J. Antsaklis, editors, Proc.
of of the European Control Conference 2007, pages 3295–3302,
2007.

1921

