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Abstract— We consider the control of distributed systems
composed of subsystems communicating asynchronously; the
aim is to build local controllers that restrict the behavior of a
distributed system in order to satisfy a global state avoidance
property. We model our distributed systems as communicating
finite state machines with reliable unbounded FIFO queues
between subsystems. Local controllers can only observe their
proper local subsystems and do not observe the queues. To
refine their control policy, they can use the FIFO queues
to communicate by piggybacking extra information to the
messages sent by the subsystems. We define synthesis algorithms
allowing to compute the local controllers. We explain how
we can ensure the termination of this control algorithm by
using abstract interpretation techniques, to overapproximate
queue contents by regular languages. An implementation of our
algorithms provides an empirical evaluation of our method.

I. INTRODUCTION

In the framework of control of distributed systems, two
classes of systems are generally considered, depending on
whether the communications between subsystems are syn-
chronous or not. When the synchrony hypothesis [3] can
be made, the decentralized control problem and the modular
control problem address the design of coordinated controllers
that jointly ensure the desired properties for this kind of
systems [26], [22], [21], [9], [13]. When considering asyn-
chronous distributed systems, one have to take into account
some communication delays between the components of the
system, which renders the distributed control problem much
harder even undecidable [24].

We are here interested in the second problem i.e., the
distributed control problem. Our aim is to solve this problem
when the system to be controlled is composed of n sub-
systems that asynchronously communicate through reliable
unbounded FIFO channels (or queues). These subsystems are
modeled by communicating finite state machines [5] (CFSM
for short) that explicitly express the work and communi-
cations of a distributed system. This model appears to be
essential for concurrent systems in which components coop-
erate via asynchronous message passing through unbounded
buffers (they are e.g. widely used to model communication
protocols). We thus assume that the distributed system is
already built and the architecture of communication between
the different subsystems is fixed. Following the architecture
described in Figure 1, we assume that each subsystem is
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controlled by a local controller. A local controller observes
the actions fired by its subsystem but cannot observe the
contents of the queues. It communicates with its subsystem
synchronously (we assume that both reside on the same
site) and it is allowed to disable some of the actions of its
subsystem; note that the set of actions of a subsystem is
partitioned into the set of controllable (resp. uncontrollable)
actions that can (resp. cannot) be forbidden by its controller.
In our setting, we assume that each local controller keeps
its own estimate of the current global state of the system
and that some extra information can be piggybacked to
the messages normally exchanged by the subsystems. These
communications allow them to exchange information in order
to refine their knowledge about the global state of the system
by taking into account the estimates of the other controllers
and thus their local control policy.
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Fig. 1. Control architecture of a distributed system.

In this paper, we focus on the state avoidance control
problem that consists in preventing the system from reaching
some particular configurations. Note that, since the FIFO
channels are unbounded, the state space of the distributed
system to be controlled can be infinite and that the set of
states that need to be avoided by control, can involve the
contents of the channels that can not be observed by the
controllers. To solve our control problem, it is necessary on
one hand to compute offline, the set of states that leads to the
forbidden states by only taking uncontrollable transitions and
on the second hand to compute online, the states estimates
for each controller. Our computation is based on the use of
the (co-)reachability operator, which cannot always be done
in the CFSM model for undecidability reasons. To overcome
this obstacle, we rely on the abstract interpretation techniques
we presented previously in [14]. They ensure the termination
of the computations of our algorithm by overapproximating
in a symbolic way the possible FIFO channel contents (and
hence the state estimates) by regular languages.

Related Works. Over the past years a considerable re-
search effort has been done in decentralized supervisory
control [22], [26], [21], [11] that allows to synthesize in-
dividual controllers that have a partial observation of the
system’s moves and can communicate with each other [21],
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[1], [16]. In [8], Gastin et al. study the decidability of LTL
synthesis depending on the architecture of the distributed
system. However, in these works the authors consider a
synchronous architecture between the controllers.

In [24], Tripakis studies the decidability of the existence
of controllers such that a set of responsiveness properties is
satisfied in a decentralized framework with communication
delays between the controllers. He shows that the problem
is undecidable when there is no communication or when the
communication delays are unbounded. He conjectures that
the problem is decidable when the communication delays
are bounded. In [2], Bensalem et al. propose a knowledge-
based algorithm for distributed control. Their approach is
similar to our: each subsystem is controlled according to a
(local) knowledge. Moreover, one can add synchronizations
in order to get a better knowledge of the global system.
Compared to [2], the reachability problem is undecidable
in our framework and we do not add synchronizations.
Moreover, state estimates are a kind of knowledge that does
not depend on the property we have to ensure.

The control of concurrent systems is closely related to our
framework [11], [9], [13], [15]. In this setting, the system
is composed of several subsystems that communicate with
each other synchronously. Each controller only observes the
behavior of one subsystem and takes its control decision
according to this knowledge. Compared with our approach,
the different subsystems communicate synchronously as well
as the controllers when such communications are allowed.
In [7], Darondeau synthesizes distributed controllers for
distributed system communicating by bounded channels. He
states a sufficient condition allowing to decide if a controller
can be implemented by a particular class of Petri nets that
can be further translated into communicating automata.

Our problem differs from the synthesis problem (see e.g.
[17], [10]) where the problem is to distribute the actions of
a specification depending on the subsystem where they must
be executed, and to synchronize them in such a way that the
resulting distributed system is equivalent to the given global
specification.

There are also some works dealing with the computation
of a state estimate of a system with distributed controllers.
For example, in [25], Xu and Kumar propose a distributed
algorithm which computes an estimate of the current state
of a system. Local estimators maintain and update local
state estimates from their own observation of the system
and information received from the other estimators. In their
framework, the local estimators communicate between them
through reliable FIFO channels with delays, whereas the
system is monolithic, and therefore these FIFO channels are
not included into the global states of the system.

Outline. The remainder of this paper is as follows. In
section II, we define the formalism of communicating finite
state machines, that we use to model distributed systems. We
formally define, in section III, the control mechanisms and
the state avoidance control problem. We define, in section IV,
a control algorithm for our state avoidance control problem,

and we explain in section V, how we can ensure the termina-
tion of this control algorithm by using abstract interpretation
techniques. Section VI gives some experimental results.

II. COMMUNICATING FINITE STATE MACHINES AS
MODEL OF THE SYSTEM

We model a distributed system by the standard formalism
of communicating finite state machines [5] which use reliable
unbounded FIFO channels (also called queues below) to
communicate. A global state in this model is given by the
local state of each subsystem together with the content of
each queue. Therefore, since no bound is given neither in
the transmission delay, nor on the length of the queues, the
global state space is a priori infinite.

Definition 1: [Communicating Finite State Machines] A
communicating finite state machine (CFSM for short) T is
defined as a 6-tuple 〈L, `0, Q,M,Σ,∆〉, where (i) L is a
finite set of locations, (ii) `0 ∈ L is the initial location, (iii)
Q is a set of queues that T can use, (iv) M is a finite set of
messages, (v) Σ ⊆ Q×{!, ?}×M is a finite set of actions,
which are either an output i!m to specify that the message
m ∈ M is written on the queue i ∈ Q or an input i?m to
specify that the message m ∈M is read on the queue i ∈ Q,
and (vi) ∆ ⊆ L× Σ× L is a finite set of transitions.
An output transition 〈`, i!m, `′〉 indicates that, when the
system moves from the location ` to `′, a message m is added
at the end of the queue i. An input transition 〈`, i?m, `′〉
indicates that, when the system moves from ` to `′, a message
m must be present at the beginning of the queue i and is
removed from this queue. Moreover, throughout this paper,
we assume that T is deterministic, meaning that for all ` ∈ L
and σ ∈ Σ, there exists at most one location `′ ∈ L such
that 〈`, σ, `′〉 ∈ ∆. We assume that all queues are initially
empty. The occurrence of a transition is called an event and
given an event e, δe denotes the corresponding transition.
The semantics of a CFSM is defined as follows:

Definition 2 (Semantics): The semantics of a CFSM T =
〈L, `0, Q,M,Σ,∆〉 is given by an infinite Labelled Transi-
tion System (LTS) [[T ]] = 〈X,~x0,Σ,→〉, where (i) X

def
=

L× (M∗)|Q| is the set of states, (ii) ~x0
def
= 〈`0, ε, . . . , ε〉 is

the initial state (where ε is the empty word), (iii) Σ is the
set of actions, and (iv) →def

=
⋃
δ∈∆

δ−→⊆ X ×Σ×X is the

transition relation where δ−→ is defined by:

δ = 〈`, i!m, `′〉 ∈ ∆ w′i = wi ·m
〈`, w1, . . . , wi, . . . , w|Q|〉 δ→ 〈`′, w1, . . . , w

′
i, . . . , w|Q|〉

δ = 〈`, i?m, `′〉 ∈ ∆ wi = m · w′i
〈`, w1, . . . , wi, . . . , w|Q|〉 δ→ 〈`′, w1, . . . , w

′
i, . . . , w|Q|〉

where a.b denotes the concatenation of words a and b.
A global state of a CFSM T is thus a tuple

〈`, w1, ..., w|Q|〉 ∈ X = L× (M∗)|Q| where ` is the current
location of T and w1, ..., w|Q| are finite words on M∗ which
give the content of the queues in Q. At the beginning, all
queues are empty, so the initial state is ~x0 = 〈`0, ε, · · · , ε〉.
Given a CFSM T , two states ~x, ~x′ ∈ X and an event e,
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to simplify the notations we sometimes denote ~x δe→ ~x′ by
~x

e→ ~x′. An execution of T is a sequence ~x0
e1−→ ~x1

e2−→
. . .

em−−→ ~xm where ~xi
ei+1−−−→ ~xi+1 ∈−→ ∀i ∈ [0,m−1]. Given

a set of states Y ⊆ X , ReachT∆′(Y ) corresponds to the set
of states that are reachable in [[T ]] from Y only triggering
transitions of ∆′ ⊆ ∆ in T , whereas CoReachT∆′(Y ) denotes
the set of states from which Y is reachable only triggering
transitions of ∆′. They can be defined by the following
fixpoint equations:

ReachT∆′(Y )
def
= µB.Y ∪ PostT∆′(B) (1)

CoReachT∆′(Y )
def
= µB.Y ∪ PreT∆′(B) (2)

where µB.f(B) denotes the least fixpoint of the function
B 7→ f(B) and:

PostT∆′(Y )
def
= {~x′ ∈ X|∃~x ∈ Y, ∃δ ∈ ∆′ : ~x

δ→ ~x′} (3)

PreT∆′(Y )
def
= {~x′ ∈ X|∃~x ∈ Y, ∃δ ∈ ∆′ : ~x′

δ→ ~x} (4)

Since the function on the right hand side of equations (1) and
(2) are continuous, the Knaster-Tarski [23] theorem ensures
that the least fixpoint of this function actually exists. Al-
though there is no general algorithm that can exactly compute
the (co-)reachability set in our setting [5], there exists some
techniques that allow us to compute an overapproximation
of this set (see section IV).

Asynchronous Product. A distributed system T is generally
composed of several subsystems Ti (∀i ∈ [1, n]) acting in
parallel. In fact, T is defined by a CFSM resulting from the
asynchronous (interleaved) product of the n subsystems Ti,
also modeled by CFSMs. This can be defined through the
asynchronous product of two subsystems.

Definition 3: The asynchronous product of 2 CFSMs Ti =
〈Li, `0,i, Qi,Mi,Σi,∆i〉 (i = 1, 2), denoted by T1||T2, is
defined by a CFSM T = 〈L, `0, Q,M,Σ,∆〉, where (i)

L
def
= L1 × L2, (ii) `0

def
= `0,1 × `0,2, (iii) Q

def
= Q1 ∪Q2,

(iv) M
def
= M1 ∪M2, (v) Σ

def
= Σ1 ∪ Σ2, and (vi) ∆

def
=

{〈〈`1, `2〉, σ1, 〈`′1, `2〉〉|(〈`1, σ1, `
′
1〉 ∈ ∆1) ∧ (`2 ∈ L2)} ∪

{〈〈`1, `2〉, σ2, 〈`1, `′2〉〉|(〈`2, σ2, `
′
2〉 ∈ ∆2) ∧ (`1 ∈ L1)}.

Note that in the previous definition, Q1 and Q2 are not nec-
essarily disjoint; this allows the subsystems to communicate
between them via common queues.

Definition 4: [Distributed system] A distributed system
T = 〈L, `0, Q,M,Σ,∆〉 is defined by the asynchronous
product of n CFSMs Ti = 〈Li, `0,i, Qi,M,Σi,∆i〉 (∀i ∈
[1, n]) acting in parallel and exchanging information through
FIFO channels.
Note that a distributed system is also modeled by a CFSM,
since the asynchronous product of several CFSMs is a
CFSM. To avoid the confusion between the model of one
process and the model of the whole system, in the sequel, a
CFSM Ti always denotes the model of a single process, and
a distributed system T = 〈L, `0, Q,M,Σ,∆〉 always denotes
the model of the global system. Below, T = T1|| . . . ||Tn is
the considered distributed system.

Communication Architecture of the System. We consider
an architecture for the system T = T1|| . . . ||Tn defined
in Definition 4 with point-to-point communication i.e., any
subsystem Ti can send messages to any other subsystem Tj
through a queue Qi,j . Thus, only Ti can write a message m
on Qi,j (this is denoted by Qi,j !m) and only Tj can read
a message m on this queue (this is denoted by Qi,j?m).
Moreover, we suppose that the queues are unbounded, that
the message transfers between the subsystems are reliable
and may suffer from arbitrary non-zero delays, and that
no global clock or perfectly synchronized local clocks are
available. With this architecture, the set Qi of Ti (∀i ∈ [1, n])
can be rewritten by Qi = {Qi,j , Qj,i | (1 ≤ j ≤ n)∧(j 6= i)}
and ∀j 6= i ∈ [1, n], Σi ∩ Σj = ∅. Let δi = 〈`i, σi, `′i〉 ∈ ∆i

be a transition of Ti, global(δi) def
= {〈〈`1, . . . , `i−1, `i, `i+1,

. . . , `n〉, σi, 〈`1, . . . , `i−1, `
′
i, `i+1, . . . , `n〉〉 ∈ ∆ |∀j 6=

i ∈ [1, n] : `j ∈ Lj} is the set of transitions of ∆ that can
be built from δi in T . We extend this definition to sets of
transitions D ⊆ ∆i of the subsystem Ti : global(D)

def
=⋃

δi∈D global(δi). By abuse of notation, we write ∆ \ ∆i

instead of ∆ \ global(∆i) to denote the set of transitions of
∆ that are not built from ∆i.
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Fig. 2. Running Example

Example 1: Let us illustrate the concepts of distributed
system and CFSM with our running example depicted in
Figure 2. It models a factory composed of three components
T1, T2 and T3. The subsystem T2 produces two kinds of
items, a and b, and sends these items to T1 to finish the
job. At reception, T1 must immediately terminate the process
of each received item. T1 can receive and process b items at
any time, but must be in a turbo mode to receive and process
a items. The subsystem T1 can therefore be in normal mode
modeled by the location A0 or in turbo mode (locations A1

and A2). In normal mode, if T1 receives an item a, an error
occurs (transition in location Aer). Since T1 cannot always
be in turbo mode, a protocol between T1 and T2 is imagined.
At the beginning, T1 informs (action Q1,2!c) T2 that it goes
in a turbo mode, then T2 sends a and b items. At the end
of a working session, T2 informs T1 (action Q2,3!d) that it
has completed its session, so that T1 can go back in normal
mode. However, this information has to transit through T3

via queues Q2,3 and Q3,1, as T3 must also record this end
of session. Since the message d can be transmitted faster
than some items a and b, one can easily find a scenario
where T1 decides to go back to A0 and ends up in the Aer
location by reading the message a. It is due to the fact that
the subsystems cannot observe the content of the queues and
thus T1 does not know if there is a message a in queue Q2,1

when it arrives in A0.
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III. STATE AVOIDANCE CONTROL PROBLEM

In the sequel, we are interested in the state avoidance
control problem which consists in preventing the system
from reaching some undesirable states.

A. Control Architecture

The system to be controlled is composed of n subsystems
Ti (∀i ∈ [1, n]) (see Definition 4). Classically, we want
to associate a local controller Ci (∀i ∈ [1, n]) with each
subsystem Ti in order to satisfy some control requirements.
We suppose that the controllers can communicate with each
other by adding some information (e.g., their current state,
their state estimates, . . . ) to the messages exchanged by
the subsystems (see Figure 1, where C1 and C2 use the
queues Q1,2 and Q2,1 of T1 and T2 to exchange information
(we duplicate the queues in Figure 1 to emphasize the
fact that the controllers can exchange information). These
communications allow them to exchange information in order
to refine their knowledge about the global state of the system
and thus their control policy. Due to the communication
delay, the controllers cannot communicate between them
synchronously, but we assume that a local controller com-
municate synchronously with its subsystem. This assumption
is realistic, since both generally reside in the same site.

Each controller Ci interacts with Ti in a feedback man-
ner: the controller Ci observes the last action fired by Ti
and computes, from this observation and some information
received from the other controllers (corresponding to some
state estimates), a set of actions that the subsystem Ti
cannot fire in order to ensure the desired properties on
the global system. Following the Ramadge & Wonham’s
theory [20], the set of actions Σi of Ti is partitioned into
the set of controllable actions Σi,c, that can be forbidden
by Ci, and the set of uncontrollable actions Σi,uc, that
cannot be forbidden by Ci. The subsets Σ1,c, . . . ,Σn,c are
disjoint, because Σi ∩ Σj = ∅ (∀i 6= j ∈ [1, n]). In this
paper, we assume that inputs are uncontrollable, and outputs
are controllable. This is a classical assumption for reactive
systems. Our algorithm however does not depend on this
particular partition of the actions, since one of its parameters
is the set of uncontrollable actions. The set of actions, that
can be controlled by at least one controller, is denoted by
Σc and is defined by Σc

def
=
⋃n
i=1 Σi,c; the set of actions,

that cannot be controlled, is denoted by Σuc and is defined
by Σuc

def
= Σ \ Σc =

⋃n
i=1 Σi,uc. This cut also induces

a partition on the set of transitions ∆i into the sets ∆i,c

and ∆i,uc. The set of transitions ∆ is similarly partitioned
into the sets ∆c and ∆uc. Note that with our architecture,
each local controller Ci has only a partial observation of the
global system, since it can observe neither the subsystems
Tj (∀j 6= i ∈ [1, n]) nor the content of the FIFO channels.

B. Distributed Controller and Controlled Execution

We would like to base the control decision on the state
in which the global system T is (state-feedback control).
Unfortunately, a local controller does not generally know
the current state of the global system T , due to its partial

observation of the system. We therefore assume that a
controller must define its control policy from a state estimate
corresponding to its evaluation of the states the system T
can possibly be; this depends on the different observations
performed by the controller. It is formally defined as follows:

Definition 5: A local controller Ci is a function Ci : 2X →
2Σi,c which defines, for each estimate E ∈ 2X of the current
state of T according to Ci, the set of controllable actions
that Ti may not execute.
This definition of a controller does not explain how each
local controller can compute a state estimate. In section IV-
A, we outline an algorithm that allows Ci to compute this
state estimate during the execution of this system. Note that
besides the preciseness of the state estimate, one important
property that should be satisfied by the state estimate E
computed by a local controller is that the actual current state
of the system is contained in E.
Based on Definition 5, a distributed controller is defined by:

Definition 6: A distributed controller Cdi is defined by a
tuple Cdi def

= 〈Ci〉ni=1 where Ci (∀i ∈ [1, n]) is a local
controller.
The controlled execution characterizes the executions that
can occur in T under the control of Cdi.

Definition 7: Given a distributed controller Cdi = 〈Ci〉ni=1,
s = ~x0

e1−→ ~x1
e2−→ . . .

em−−→ ~xm is a controlled execution of
T under the control of Cdi if ∀k ∈ [1,m], whenever δek =
〈`i, σek , `′i〉 ∈ ∆i and the estimate of Ci of the current state
~xk−1 of T is E, σek 6∈ Ci(E).
Note that with this definition, the language of the controlled
system is controllable with respect to the language of the
original system. It is basically due to the fact that each local
controller is only able to disable the controllable actions that
can occur in its corresponding subsystem.

C. Definition of the Control Problem

The aim of control synthesis is to constraint a system to
satisfy a goal property. The goal properties we consider are
invariance properties, defined by a subset I ⊆ X of states,
in which any execution of the transition system should be
confined. Alternatively, it can be viewed as a state avoidance
property Bad = X \ I , which defines a set of states that no
execution should reach. Notice that the specification Bad
can involve the contents of the FIFO channels (recall that
X = L× (M∗)|Q|). We define the problem as follows:

Problem 1 (Distributed State Avoidance Control Problem):
Given a set of forbidden states Bad ⊆ X , the distributed
state avoidance control problem (the distributed problem
for short) consists in synthesizing a distributed controller
Cdi = 〈Ci〉ni=1 such that each controlled execution of the
system T under the control of Cdi avoids Bad.

Proposition 1: The existence of a solution for the dis-
tributed problem is an undecidable problem.
Intuitively, this result holds because even if we consider the
most trivial solution (i.e., each local controller forbids all
its controllable actions), we cannot determine if it prevents
from reaching Bad, as (co-)reachability is undecidable in
the model of CFSM [5]. According to Proposition 1, an
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algorithm cannot always compute a distributed controller
Cdi for the distributed problem (when a solution exists)
and ensure the termination of the computations. Hence, our
approach uses approximations to ensure the termination of
the computations and our aim is to find, in this way, solutions
that are correct and that restrict as less as possible the
behavior of the system T .

IV. COMPUTATION OF DISTRIBUTED CONTROLLERS FOR
THE DISTRIBUTED PROBLEM

In this section, we define a semi-algorithm for the distributed
control problem. But first, we outline the algorithm used by
the local controller allowing to compute the state estimates.

A. State Estimates Algorithm

As described in Definition 7, the local controllers Ci define
their control policy from an estimate of the current state of
the system T that they compute during its execution. In this
section, we informally explain the SE-algorithm that allows
each local controller to compute its own state estimate. More
details can be found in [12].
Vector Clocks. This algorithm is based on the use of vector
clocks that allow the controllers to have a better understand-
ing of the concurrent execution of the distributed system T
by determining the causal and temporal relationship between
the events occurring in the execution of T . To compute
these vector clocks, we use Mattern’s algorithm [18]. In this
algorithm, each subsystem Ti (∀i ∈ [1, n]) has a vector clock
Vi ∈ Nn of width n and each element Vi[j] (∀j ∈ [1, n]) is a
counter which represents the knowledge of Ti regarding the
past events of Tj : if Vi[j] = 3, it means that Ti knows that
at least 3 events occurred in Tj . Each time an event occurs
in a subsystem Ti, the vector clock Vi is updated to take
into account the occurrence of this event (see [18] for more
details). When Ti sends a message to some subsystem Tj , this
vector clock is piggybacked and allows Tj , after reception,
to update its own vector clock.
Online State Estimates. The local controllers compute
their state estimates online: each time an event occurs in
Ti, its controller Ci updates its state estimate Ei and its
vector clock Vi from the information received from Ti. In
order to have better state estimates, we also assume that
the controllers can communicate with each other by adding
some information (vector clocks and state estimates) to the
messages exchanged by the subsystems.
State Estimates Based on Reachability Sets. Now, we
explain how the SE-algorithm allows the local controllers to
maintain online their state estimates. At the beginning of the
execution of T , each FIFO channel is empty and each Ti is in
its initial location `i,0. So, ~x0 is known by each Ci. However,
a subsystem Tj may start its execution, while Ti is still in its
initial location, and therefore Ci must take into account all
the global states that are reachable by taking the transitions
of the other subsystems Tj . So, the initial estimate Ei of Ci is
this set of reachable global states i.e., Ei = ReachT∆\∆i

(~x0).
Next, each time a subsystem Ti executes a transition δ, its
controller Ci updates Ei as follows:

• Output: if δ sends message m to Tj , the new estimate of
Ci is given by the set of states that are reachable from Ei
by firing the transition δ followed by transitions in ∆ \
∆i i.e., Ei = ReachT∆\∆i

(PostTδ (Ei)). Indeed, after the
occurrence of δ, the other subsystems Tk (∀k 6= i ∈ [1, n])
could read and write on their queues. Next, Ci updates its
vector clock according to Mattern’s algorithm. Finally, m
is sent to Tj with Ei and Vi.
• Input: if δ reads message m sent by Tj and tagged with Ej

and Vj , then the new state estimate of Ci is computed from
its state estimate Ei and from Ej in the following way.
First, Ei is updated to take into account the occurrence of
δ; this update corresponds to the set of states reachable
from Ei by δ i.e., Ei = PostTδ (Ei). Next, the estimate
Ej (sent by Tj) is updated by Ci to contain the current
state of T . This update actually depends on the values
of the vector clocks Vi and Vj that allow Ci to guess
the possible behaviors of T between the sending and the
reception of m. For example, if Vi[i] = Vj [i], then Ci
knows that Ti has executed no action between the sending
and the reception of m and hence it updates Ej in the
following way: Ej = PostTδ (ReachT∆\∆i

(Ei)). In [12], we
give the various updates of Ej w.r.t. the values of Vi and
Vj . Then, the new estimate of Ci is given by the intersection
of the updates of Ei and Ej . Finally, the vector clock Vi
is updated according to Mattern’s algorithm.

One can note that the SE-algorithm is based on the compu-
tation of reachability sets that cannot always be computed
for undecidability reasons. In section V, we explain how to
overcome this obstacle by using abstract interpretation tech-
niques to compute an overapproximation of the reachability
sets in a finite number of steps. Moreover, the SE-algorithm
satisfies the important property of completeness [12], which
means that the current global state of T is always included
in the state estimates computed by the local controllers Ci.

B. Semi-Algorithm for the Distributed Problem

Our algorithm, which synthesizes a distributed controller Cdi
for the distributed problem, is composed of two parts:
• Offline part: we compute the set I(Bad) of states of

the global system T that can lead to Bad by a sequence
of uncontrollable transitions. Next, we compute, for each
local controller Ci, a control function Fi which gives, for
each action σ of Ti, the set of states of T that can lead to
I(Bad) by a transition labeled by σ. This information is
used by Ci, in the online part, to define its control policy.
• Online part: During the execution of the system T , each

local controller Ci uses the SE-algorithm to obtain its own
state estimate Ei and computes from this information the
actions to be forbidden.

These two parts are formalized as follows.

Offline Part. The set I(Bad) of states of T leading un-
controllably to Bad is given by CoReachT∆uc

(Bad) which
cannot always be computed, because coreachability is unde-
cidable for CFSM. So, we make the use of abstract interpre-
tation techniques to overapproximate it (see section V).
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Next, we define, for each local controller Ci, the control
function Fi : Σi × 2X → 2X , which gives, for each action
σ ∈ Σi and set B ⊆ X of states to be forbidden, the
set Fi(σ,B) of global states in which the action σ must
be forbidden. This set corresponds, more precisely, to the
greatest set O of states of T such that, for each state ~x ∈ O,
there exists a transition labeled by σ leading to B from ~x:

Fi(σ,B)
def
=

{
PreTTrans(σ)(B) if σ ∈ Σi,c
∅ otherwise

(5)

where Trans(σ) denotes the set of transitions labeled by
σ. We compute, for each transition σ ∈ Σi, the set
Fi(σ, I(Bad)) (∀i ∈ [1, n]). This information is used, during
the execution of the system T , by the local controller Ci to
compute the actions to be forbidden.
Online Part. The local controller Ci is formally defined, for
each state estimate E ∈ 2X , by:

Ci(E)
def
= {σ ∈ Σi | Fi(σ, I(Bad)) ∩ E 6= ∅} (6)

Thus, if E is the state estimate of Ci, it forbids an action
σ ∈ Σi if and only if there exists a state ~x ∈ E in which the
action σ must be forbidden in order to prevent the system T
from reaching I(Bad) (i.e., ∃~x ∈ E : ~x ∈ Fi(σ, I(Bad))).

During the execution of the system, when the subsystem
Ti (∀i ∈ [1, n]) executes a transition δ = 〈`i, σ, `′i〉, the local
controller Ci receives the following information:
• if σ = Qj,i?m (with j 6= i ∈ [1, n]), it receives the action
σ, and the pair 〈Ej , Vj〉 tagging m.
• if σ = Qi,j !m (with j 6= i ∈ [1, n]), it receives σ.
In both cases, since Ci knows that Ti was in the location `i
before triggering σ, this controller can infer the fired tran-
sition. Ci then uses the SE-algorithm with this information
to update its state estimate Ei and computes, from this state
estimate, the set Ci(Ei) of actions that Ti cannot execute.

The following theorem proves that this algorithm synthe-
sizes correct controllers for the distributed problem.

Theorem 1: Given a set of forbidden states Bad ⊆ X ,
our distributed controller Cdi = 〈Ci〉ni=1 solves the distributed
problem if ~x0 /∈ I(Bad).

Proof: We prove by induction on the length m of the
sequences of transitions (these sequences begin in the initial
state) that I(Bad) is not reachable in the system T under
the control of Cdi, which implies that Bad is not reachable,
because Bad ⊆ I(Bad):
Base case (m = 0): Since ~x0 6∈ I(Bad), the execution of
the system T under the control of Cdi starts in a state which
does not belong to I(Bad).
Induction step: we suppose that the proposition holds for the
sequences of transitions of length less than or equal to m and
we prove that this property remains true for the sequences
of transitions of length m+1. By induction hypothesis, each
state ~x1 reachable by a sequence of transitions of length m
does not belong to I(Bad) and we show that each transition
δ ∈ ∆, which can lead to a state ~x2 ∈ I(Bad) from this
state ~x1 in T , cannot be fired from ~x1 in the system T
under the control of Cdi. For that, we consider two cases and
we suppose that δ is executed by Ti and is labeled by σ:

• if δ is controllable, then σ is forbidden by Ci in ~x1 and
hence δ cannot be fired from ~x1. Indeed, the estimate Ei
of Ci contains ~x1, because the SE-algorithm is complete.
Moreover, we have that ~x1 ∈ Fi(σ, I(Bad)), because
~x1 ∈ PreTδ (~x2) and ~x2 ∈ I(Bad). Therefore, σ ∈ Ci(Ei)
(by (6)), which implies that δ cannot be fired from ~x1.
• if δ is uncontrollable, since ~x2 ∈ I(Bad), so is ~x1

because of the definition of I(Bad), which is impossible
by hypothesis.

Hence, in the system T under the control of Cdi, the forbid-
den state ~x2 cannot be reached from ~x1 by the transition δ.

Q1,2!cT1

T2

T3

Q1,2?c Q2,1!a Q2,3!d

Q2,3?d Q3,1!d

Q3,1?d Q2,1?a

Fig. 3. An execution of the running example.

Example 2: We consider the sequence of actions
of our running example (see Example 1) depicted in
Figure 3. A state of the global system is denoted
by 〈`1, `2, `3, w1,2, w2,1, w2,3, w3,1〉 where `i is the
location of Ti (for i = 1, 2, 3) and w1,2, w2,1, w2,3

and w3,1 denote the content of the queues Q1,2, Q2,1,
Q2,3 and Q3,1. The set Bad is given by the set of
global states where the location of T1 is Aer. Thus,
I(Bad) = Bad ∪ {〈`1, `2, `3, w1,2, w2,1, w2,3, w3,1〉|(`1 =
A0) ∧ (w2,1 = a.M∗)}. At the beginning of
the execution of T , the state estimates of the
subsystems are E1 = {〈A0, B0, D0, ε, ε, ε, ε〉},
E2 = {〈A0, B0, D0, ε, ε, ε, ε〉, 〈A1, B0, D0, c, ε, ε, ε〉},
and E3 = {〈A0, B0, D0, ε, ε, ε, ε〉, 〈A1, B0, D0, c, ε, ε, ε〉,
〈A1, B1, D0, ε, b

∗, ε, ε〉, 〈A1, B2, D0, ε, b
∗(a + ε), ε, ε〉,

〈A1, B3, D0, ε, b
∗(a + ε), d, ε〉}. After the first transition

〈A0, Q1,2!c, A1〉, the state estimate of the controller C1 is not
really precise, because a lot of things may happen without the
controller C1 being informed: E1 = {〈A1, B0, D0, c, ε, ε, ε〉,
〈A1, B1, D0, ε, b

∗, ε, ε〉, 〈A1, B2, D0, ε , b∗a, ε, ε〉,
〈A1, B3, D0, ε, b

∗(a+ε), d, ε〉, 〈A1, B3, D1, ε, b
∗(a+ε), ε, ε〉,

〈A1, B3, D0, ε, b
∗(a + ε), ε, d〉}. However, after the second

transition 〈B0, Q1,2?c,B1〉, the controller C2 has an
accurate state estimate: E2 = {〈A1, B1, D0, ε, ε, ε, ε〉}. We
skip a few steps and consider the state estimates before
the sixth transition 〈D1, Q3,1!d,D0〉: E1 is still the same,
because the subsystem T1 did not perform any action,
E3 = {〈A1, B3, D1, ε, b

∗(a + ε), ε, ε〉}, and we do not
give E2, because T2 is no longer involved. When T3 sends
message d to T1, it tags it with E3. Thus, C1 knows, after
receiving this message, that there may be a message a in
the queue Q2,1. It thus disables the action A2

Q1,2!d→ A0, as

long as this message a is not read (action A2
Q2,1?a→ A2),

to prevent the system from reaching the forbidden states.
Note that if we consider the sequence of actions of Figure 3
without the sending and the reception of the message a,
then when T1 reaches the location A2 by executing the
action Q3,1?d, its controller C1 enables the actions Q1,2!d,
because it knows that there is no message a in Q2,1. �
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V. EFFECTIVE ALGORITHM FOR THE DISTRIBUTED
PROBLEM

The algorithms described in the previous sections require the
computation of (co-)reachability operators. Those operators
cannot be computed exactly because of undecidability rea-
sons. Abstract interpretation-based techniques [6] allows us
to compute, in a finite number of steps, an overapproximation
of the (co-)reachability operators and thus of the set I(Bad)
and of the state estimates Ei.
Computation of Reachability Sets by the Means of
Abstract Interpretation. For a given set of global states
X ′ ⊆ X and a given set of transitions ∆′ ⊆ ∆, the
reachability set from X ′ can be characterized by the least
fixpoint ReachT∆′(X

′) = µY.F∆′(Y ) with F∆′(Y ) = X ′ ∪
PostT∆′(Y ) (see (1)). Abstract interpretation provides a the-
oretical framework to compute efficient overapproximation
of such fixpoints. The concrete domain i.e., the sets of
states 2X , is substituted by a simpler abstract domain Λ,
linked by a Galois connection 2X −−−→←−−−α

γ
Λ [6], where α

(resp. γ) is the abstraction (resp. concretization) function.
The fixpoint equation is transposed into the abstract domain.
So, the equation to solve has the form: λ = F ]∆′(λ), with
λ ∈ Λ and F ]∆′ w α ◦ F∆′ ◦ γ where w is the comparison
operator in the abstract lattice. In that setting, a standard way
to ensures that this fixpoint computation converges after a
finite number of steps to some overapproximation λ∞, is to
use a widening operator ∇. The concretization c∞ = γ(λ∞)
is an overapproximation of the least fixpoint of the function
F∆′ .
Choice of the Abstract Domain. In abstract interpretation-
based techniques, the quality of the approximation we obtain
depends on the choice of the abstract domain Λ. In our
case, the main issue is to abstract the content of the FIFO
channels. Since the CFSM model is Turing-powerful, the
language which represents all the possible contents of the
FIFO channels may be recursively enumerable. As discussed
in [14], a good candidate, to abstract the contents of the
queues is to use the class of regular languages, which can
be represented by finite automata. Let us recall the main
ideas of this abstraction.
Finite Automata as an Abstract Domain. We first assume
that there is only one queue in the distributed system T ;
we explain later how to handle a distributed system with
several queues. With one queue, the concrete domain of
the system T is defined by X = 2L×M

∗
. A set of states

Y ∈ 2L×M
∗

can be viewed as a map Y : L 7→ 2M
∗

that associates a language Y (`) with each location ` ∈ L;
Y (`) therefore represents the possible contents of the queue
in the location `. In order to simplify the computation,
we substitute the concrete domain 〈L 7→ 2M

∗
,⊆〉 by the

abstract domain 〈L 7→ Reg(M),v〉, where Reg(M) is the
set of regular languages over the alphabet M and v denotes
the natural extension of the set inclusion to maps. This
substitution consists thus in abstracting, for each location,
the possible contents of the queue by a regular language.
Regular languages have a canonical representation given by

finite automata, and each operation (union, intersection, left
concatenation,...) in the abstract domain can be performed
on finite automata.
Widening Operator. With our abstraction, the widening op-
erator we use to ensure the convergence of the computation,
is also performed on a finite automaton, and consists in
quotienting the nodes1 of the automaton by the k-bounded
bisimulation relation ≡k; k ∈ N is a parameter which
allows us to tune the precision, since increasing k improves
the quality of the abstractions in general. Two nodes are
equivalent w.r.t. ≡k if they have the same outgoing path
(sequence of labeled transitions) up to length k. While we
merge the equivalent nodes, we keep all transitions and we
obtain an automaton recognizing a larger language. Note
that for a fixed k, the class of automata which results from
such a quotient operation from any original automaton, is
finite and its cardinality is bounded by a number which is
only function of k. This is the reason why when we apply
this widening operator regularly, the fixpoint computation
terminates (see [14] for more details).

0 1 2 3 4
b b b a

a

aa
{0, 1, 2} {3} {4}b

b

a

a

Fig. 4. Illustration of the 1-bounded bisimulation relation ≡1 for A.

Example 3: We consider A depicted in Figure 4, whose
recognized language is a + ba + bba + bbba. We consider
the 1-bounded bisimulation relation i.e., two nodes of the
automaton are equivalent if they have the same outgoing
transitions. So, nodes 0, 1, 2 are equivalent, since they all
have two transitions labeled by a and b. Nodes 3 and 4 are
equivalent to no other node since 4 has no outgoing transi-
tion whereas only a is enabled in node 3. When we quotient
A by this equivalent relation, we obtain the automaton on
the right of Figure 4, whose recognized language is b∗a. �
When the system contains several queues Q =
{Q1, . . . , Qr}, their content can be represented by a
concatenated word w1] . . . ]wr with one wi for each queue
Qi and ], a delimiter. With this encoding, we represent a set
of queue contents by a finite automaton of a special kind,
namely a QDD [4]. Since QDDs are finite automata, classical
operations (union, intersection, left concatenation,...) in the
abstract domain are performed as previously. We must only
use a slightly different widening operator not to merge the
different queue contents [14].
Effective Algorithm. The Reach and CoReach operators are
computed using those abstract interpretation techniques: we
proceed to an iterative computation in the abstract domain
of regular languages and the widening operator ensures
that this computation terminates after a finite number of
steps [6]. So the Reach and CoReach operators always give
an overapproximation of the (co-)reachable states, whatever
the distributed system is. Finally, we define the distributed
controller as in section IV-B by using the overapproximations
I ′(Bad) and E′i instead of I(Bad) and Ei.

1The states of an automaton representing the queue contents are called
nodes to avoid the confusion with the states of a CFSM.
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VI. EXPERIMENTS

The control algorithm of this paper is implemented and is
available as a module of the McScM tool [19]. This tool
accepts a CFSM model of the system as input. The set Bad is
given by a set of locations and regular expressions describing
what the queues should not contain. Our tool first computes
an overapproximation of I(Bad) according to the algorithms
of sections IV and V. Then it starts an interactive simulation
of the system. At each step, it displays the current state of
the system, the transitions forbidden by the controller and
asks the user to choose a transition among the allowed ones.
Then, it updates the current state of the system and the state
estimates as in section IV-B and thus enables or disables the
controllable transitions.
Experiment on the Running Example. On this example,
our software computes the exact set I(Bad) (see Example 2)
if we set the widening parameter k = 1. We considered the
sequences of events of Example 2 and the software gave the
same results as the theory. The computation of I(Bad) and
execution of each sequence of events took less than 0.4s of
run time and required 1.22 MB of memory on a standard
laptop.
Experiment on the Connection/disconnection Protocol. In
this example taken from [14], an error occurs when the client
and the server send close/disconnect message at the same
time. Our controller solves the problem by not allowing the
server to send disconnection messages. This experiment took
less than 0.1s of run time and required 1.22 MB of memory.
Simulation. Instead of asking the user what transitions
should be taken, our software can randomly choose them.
We give here the results on the two previous examples, for
a 100-steps random run of the system.

example # subsystems # channels time [s] memory [MB]
running example 3 4 7.13 5.09
c/d protocol 2 2 0.76 1.22

VII. CONCLUSION AND FURTHER WORKS

We propose in this paper a novel framework for the control
of distributed systems modeled as communicating finite
state machines with reliable unbounded FIFO channels. In
this framework, each local controller can only observe its
subsystem but can communicate with the other controllers
by piggybacking extra information, such as state estimates,
to the messages sent in the FIFO channels. Our algorithm
synthesizes the local controllers that restrict the behavior
of a distributed system in order to satisfy a global state
avoidance property, e.g. to ensure that an error state is no
longer reachable or to bound the size of the FIFO channels.
We abstract the content of the FIFO channels by the same
regular representation as in [14]; this abstraction leads to
a safe effective algorithm. Our experiments show that our
approach is tractable and allows a precise control.

As a further work, more elaborate examples must be taken
and other techniques must be proposed to minimize the in-
formation transmitted for our estimate evaluation algorithm.
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