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Abstract—In this note, we present a result on stabilization
of nonlinear strict-feedback systems affected by unknown
perturbations when a control based on the so-called twisting
algorithm, a second-order sliding mode controller, is applied.
The novelty of the note relies in the stability analysis of the
closed loop system. It follows along similar lines as for well-
established theorems for nonlinear time-varying systems in
cascade, with continuous right-hand sides. However, the class
of systems that we deal with are discontinuous and perturbed.
Although the presented analysis is aimed to perturbed second-
order systems in strict feedback form, the purpose of this note
is to settle the basis for a methodological stability analysis
approach for higher-order systems. An illustrative example is
provided.

I. INTRODUCTION

We study strict feedback systems affected by additive, possibly

unbounded disturbances. The control goal is to stabilize the ori-

gin in finite time. Roughly, the control method consists in a two-

loop design: an outer loop in which the control law is designed

following the standard backstepping method and an inner loop

in which a discontinuous sliding mode controller, called the

twisting algorithm –see [1], is used to exactly compensate for

the disturbances.

Backstepping makes our control approach methodological

while the use of sliding mode control enables high-accuracy

tracking and achieves exact compensation of matched pertur-

bations. Backstepping is particularly useful for systems with

unmatched perturbations i.e., parameter uncertainties and smooth

external disturbances appearing in dynamic equations where

there is no control input. ‘Classical’ sliding-mode controllers

have been applied combined with different robust techniques in

order to reduce the effect of such perturbations [2]–[3]. However,

such controllers could not ensure the exact tracking of output

unmatched variables. The controller proposed in [4], [5] which

utilizes the so-called quasi-continuous high-order sliding mode

algorithm of [6], ensures exact tracking of a smooth signal

despite the presence of unmatched perturbations. Nevertheless,

the scheme in [4] only guarantees local stability hence, nothing

is ensured about the transient phase before, the sliding mode

for each virtual control is reached. In [5], the transient stage is

handled by using integral HOSM [7] which increases the control

complexity.

Backstepping sliding mode control is certainly not original in

this note. Our main contribution strives rather in the method of
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stability analysis. As is well-understood now, at the core of strict-

feedback forms one find cascaded systems –[8]. These have been

thoroughly studied in the literature of (continuous) nonlinear

systems for the last 20 years or so. Cascaded systems consist

in two subsystems which independently, are stable and are in-

terconnected by a nonlinearity. Under such setting, a necessary

and sufficient condition for stability is that the trajectories of the

cascaded system remain bounded –see [9].

Backstepping sliding mode control leads to a complex cas-

caded system described by integral-differential equations and

equations with discontinuous right-hand sides. One way to an-

alyze the stability of the integral-differential equation one needs

to differentiate however, this leads to ever more complex equa-

tions and eventually, to restrictive conditions of boundedness

of trajectories, as is assumed in [6]. Backstepping also leads

naturally to the analysis of a cascaded system. Following that

train of thought, in the recent note [10] we relaxed the restrictive

hypotheses from [6].

Yet, the results available in the literature of cascaded systems

are inapplicable as such in the present setting. A fundamental,

common, assumption in the analysis of cascaded systems is

that one disposes of a Lyapunov function for the perturbed

system, taken independently. In the present setting, this is a true

stumbling block as it is tantamount to asking for a (converse)

Lyapunov function for an integral-differential equation, having

specific growth order properties.

This note continues and improves the main results in [10].

Firstly, we use the twisting controller for which a Lyapunov

function has been recently proposed in [11]. Then, a theorem

for stability of cascades of systems with discontinuous right-

hand sides is established. The direct outcome of the latter, is to

settle the basis for a backstepping-based high-order sliding mode

control approach for nonlinear systems in strict feedback form,

with unmatched uncertainties.

The rest of the paper is organized as follows. In the following

section we present the problem statement and our main result, in

Section III we revisit the finite-time stabilization of the double

integrator; in Section IV we present an illustrative example and

we conclude with some remarks in Section V.

II. PROBLEM STATEMENT AND ITS SOLUTION

Consider second order nonlinear systems of the form

ξ̇1 = f1(t, ξ1) + g1(t, ξ)ξ2 + ω1(t, ξ) (1a)

ξ̇2 = f2(t, ξ) + g2(t, ξ)u + ω2(t, ξ) (1b)

where ξ = [ξ1, ξ2]
T is the state vector and is assumed to be

known, ξ1, ξ2 ∈ R; u ∈ R is the control input. For simplicity we

assume that fi and gi are smooth functions; also, the unknown
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perturbation term ω1 is taken to be a bounded function, similarly

for ω2. Furthermore it is assumed that ω1 is once continuously

differentiable. For the application of backstepping control, we

also assume that gi(t, ξ) 6= 0 for all (t, ξ) ∈ R≥0 × R
2.

The control problem is to design a controller such that the

state ξ1 tracks a desired smooth reference t 7→ ξd in spite of

the presence of the unknown bounded perturbations ω1, ω2.

A. The algorithm

We assume that the solutions of a dynamical system involving

the sign function, are defined in Filippov’s sense. The control

algorithm is described next.

Step 1. The first sliding surface is defined as {σ1 = 0} with

σ1 = ξ1 − ξd. According to standard backstepping control, we

consider ξ2 in (1a) as the virtual control input,

φ1(t, ξ1) = g
−1

1
(t, ξ)[−f1(t, ξ1) + u11 + ξ̇d] (2a)

u̇11 = −α1sgn(σ1) − β1sgn(σ̇1) (2b)

The right hand side of (2b) is called twisting controller –see [1].

Step 2. The second sliding surface is defined as {σ2 = 0} with

σ2 = ξ2 − φ1. The control input is designed to make σ2 → 0:

u = g
−1

2
(t, ξ)[−f2 − α2sgn(σ2) + v] (3)

Now, using ξ2 = σ2 + φ1 and the expressions (2a), (3) in the

system’s equations (1) we obtain

σ̇1 = u11 + ω1 + g1(t, σ)σ2 (4a)

σ̇2 = −α2sgn(σ2) + ω2 − φ̇1 + v (4b)

where g1(t, σ)σ2 = g1(t, ξ(t, σ))σ2.

The additional control input v is left to be defined. If φ̇1 is

bounded, one can set v ≡ 0 and redefine ω2 to incorporate φ̇1 as

a perturbation in the second equation. Otherwise, v = φ̇1. The

resulting error system dynamics is

σ̇1 = −

Z

[α1sgn(σ1) − β1sgn(σ̇1)] dt + g1(t, σ)σ2 + ω1 (5a)

σ̇2 = −α2sgn(σ2) + ω2 (5b)

the integrand above is also to be considered to be evaluated along

the trajectories.

To study the stability of system (5) we rewrite (5a) in differen-

tial cascaded form. Let z1 = σ1, z2 = ω1 + u11. Then, provided

that z2(t0) = ω1(t0, x1(t0)), Equation (4a) is equivalent to

»
ż1

ż2

–

| {z }

ż

=

»
z2

ω̇1 − α1sgn(z1) − β1sgn(z2)

–

| {z }

F1(z)

+

2

4
g1(t,

»
z1

σ2

–

)σ2

Φ

3

5

| {z }

G(t, z, σ2)
(6)

where Φ = −β1sgn(ż1) + β1sgn(z2).

Notice that Φ ≤ 2β1 and that G(t, z, 0) = 0. Hence, system

(6) together with (5b) is in cascaded form.

B. Main result

Theorem 1: The origin of the system (1) in closed loop with

(2) and (3) is globally finite-time stable provided that α1−|ω̇1| >

β1 > |ω̇1|, α2 > |ω2| and that there exists a non-decreasing

function θ such that

˛
˛
˛
˛g1(t,

»
z1

σ2

–

)

˛
˛
˛
˛ ≤ θ(|σ2|)|z1|. (7)

Proof: The proof follows similar arguments as to infer

stability of cascaded nonlinear time-varying systems. See for

instance [12]. The proof is divided in two steps

1) global finite-time stability of the origin of system (5b). Let

V2 = σ
2
2 , its time derivative along the trajectories of (5b)

yields V̇2 ≤ −2(α2 − |ω2|)|σ2| i.e.,

V̇2 ≤ −2(α2 − |ω2|)V
1/2

2

choosing α2 such that α2 − |ω2| > 0 finite-time stability

follows integrating the previous expression.

2) In this step we invoke:

(2a) finite-time stability of system ż = F1(z);
(2b) forward completeness of system (6) and

(2c) finite-time stability of (5b)

to conclude finite-time stability of the cascade.

In [11] finite-time stability of ż = F1(z) is proved with a

strict Lyapunov function V (z). In Section III we provide an

alternative proof which consists in constructing a function V (z)
positive definite and proper, whose total time derivative along the

trajectories of ż = F1(z) satisfies

V̇ ≤ −c1V
c2 , c1 > 0, c2 ∈ (0, 1).

and for which there exist c3, c4, c5, c6 > 0 such that

|z1| ≥ c4 ⇒

˛
˛
˛
˛

∂V

∂z1

˛
˛
˛
˛ |z1| ≤ c3V (8)

‖z‖ ≥ c6 ⇒

˛
˛
˛
˛

∂V

∂z2

˛
˛
˛
˛ ≤ c5V. (9)

Now we use V (z) to prove forward completeness of (6); we

have

dV

dz
[ F1(z) + G(t, z, σ2) ] ≤ −c1V

c2

+

˛
˛
˛
˛

∂V

∂z1

g1(t,

»
z1

σ2

–

)σ2

˛
˛
˛
˛ +

˛
˛
˛
˛

∂V

∂z2

2β

˛
˛
˛
˛ .

(10)

Now, since σ2(t) converges to zero in finite time it is globally
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uniformly bounded hence, for σ2 = σ2(t) we have from (7)

˛
˛
˛
˛g1(t,

»
z1

σ2(t)

–

)

˛
˛
˛
˛ |σ2(t)| ≤ θ(|σ2(t)|)|z1||σ2(t)| (11)

≤ c7|z1| (12)

where c7 depends only on the size of σ2(t0). We conclude that

the trajectories z(t), σ2(t) satisfy

dV

dz
[ F1(z) + G(t, z, σ2) ] ≤ c3c7V (z(t)) + 2βc5V (z(t))

for all t such that |z1(t)| ≥ c4 and ‖z‖ ≥ c6. That is,

|z1(t)| ≥ c4, ‖z‖ ≥ c6 ⇒ V̇ (z(t)) ≤ (c3c7+2βc5)V (z(t)) .

Forward completeness follows by integrating the previous in-

equality to infinity.

Let tf < ∞ be the settling time for σ2(t). From forward

completeness, for all t such that t > tf and observing that

G(t, z, 0) = 0 we obtain, once more invoking (10)

dV

dz
[ F1(z) + G(t, z, σ2)] ≤ −c1V

c2

for all t ≥ tf . Finite-time stability follows integrating the latter.

III. FINITE-TIME STABILIZATION OF THE DOUBLE

INTEGRATOR

Consider the perturbed double integrator, given by

ẋ1 = x2

ẋ2 = δ(t, x) + u (13a)

with u = −αsgn(x1) − βsgn(x2) (13b)

where x1 and x2 ∈ R are scalar state variables, δ is a bounded

perturbation and u ∈ R is the previously mentioned twisting

controller; α, β > 0 are control parameters.

In [11] it was showed via a strict Lyapunov function that the

origin is finite-time stable for sufficiently large gains α and β.

The following proposition establishes an alternative proof with

the same Lyapunov function as in [11] which fits the backstep-

ping design method from the previous section. More precisely,

we provide a proof of inequalities (8) and (9) as well as the other

properties used in the previous section, which are not presented

in [11].

Proposition 1: Let |δ(t, x)| ≤ M for all (t, x) ∈ R≥0 × R
2,

γ1 > 0, γ2 > 0 and consider the function

V (x1, x2) = α
2
γ1x

2
1 + γ2|x1|

3/2
sgn(x1)x2

+ αγ1|x1|x
2
2 +

1

4
γ1x

4
2 . (14)

Then, we have the following.

• Given any α > 0 and β such that α − M > β > M

there always exist parameters γ1, γ2 such that V is a strict

Lyapunov function for the system (13) that is, it is positive

definite, proper and its derivative along the trajectories of

(13) is negative definite

• provided that β > M there always exist c1 > 0 and c2 ∈
(0, 1) such that

dV

dx1

ẋ1 +
dV

dx2

ẋ2 ≤ −c1V
c2 ; (15)

• (hence) for any pair (x1◦, x2◦) ∈ R
2 all generated solutions

satisfying (x1(t0), x2(t0)) = (x1◦, x2◦) converge to the

origin (x1, x2) = (0, 0) in finite time tf where

tf ≤
4

c1
V (x1◦, x2◦)

1/4
. (16)

A. V is positive definite and proper

We proceed to prove the previous statements. Let us show that

V is positive definite and proper without any restriction on the

control gains, other than α > 0. Let µ > 0 and observe that

V (x1, x2) = µ(|x1|
1/2 + |x2|)

4 + W (17)

W (x1, x2) ≥ (α2
γ1 − µ)|x1|

2 − (γ2 + 4µ)|x1|
3/2|x2|

+ (αγ1 − 6µ)|x1||x2|
2 − 4µ|x1|

1/2|x2|
3

+ (
1

4
γ1 − µ)|x2|

4
. (18)

We claim that for any given control gain α > 0, and an appro-

priate choice of the parameters γ1, γ2 we have W ≥ 0, thereby

implying that V is positive definite and radially unbounded. To

see that the claim holds true let

ηm = min



(α2
γ1 − µ),

1

6
(αγ1 − 6µ), (

1

4
γ1 − µ)

ff

.

If ηm > 0, which implies that γ1 > 0 and in turn α > 0, then

W (x1, x2) ≥ − (γ2 + 4µ)
h

|x1|
3/2|x2| + |x1|

1/2|x2|
3

i

+ ηm
ˆ
|x1|

2 + 6|x1||x2|
2 + |x2|

4
˜
. (19)

Furthermore, for any given parameters α, γ1, µ > 0 such that

ηm > 0, pick γ2 > 0 such that γ2 ≤ 4ηm − 4µ. Under such

conditions Inequality (19) implies that

W (x1, x2) ≥ ηm

h

|x1|
1/2 − |x2|

i4

≥ 0 .

We emphasize that there always exists γ2 > 0 satisfying γ2 ≤
4ηm − 4µ.

We proceed to compute an upper-bound for V . To that end we
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observe also from (18), that

W (x1, x2) ≤ (α2
γ1 − µ)|x1|

2 + (γ2 + 4µ)|x1|
3/2|x2|

+ (αγ1 − 6µ)|x1||x2|
2 + 4µ|x1|

1/2|x2|
3

+ (
1

4
γ1 − 4µ)|x2|

4 (20)

which together with (17), implies that

V (x1, x2) ≤ (µ + ηM )
h

|x1|
1/2 + |x2|

i4

(21)

with ηM =

max



(α2
γ1 − µ), (αγ1 − 6µ), (γ2 + 4µ), (

1

4
γ1 − 4µ)

ff

.

B. Derivative of V

Observing that |x1|
3/2sgn(x1) = x1|x1|

1/2 we compute

∂V

∂x1

= 2α
2
γ1x1 +

3

2
γ2|x1|

1/2
x2 + αγ1sgn(x1)x

2
2

∂V

∂x2

= γ2|x1|
3/2

sgn(x1) + 2αγ1|x1|x2 + γ1x
3

2 .

Furthermore, let c8 := max
n

2α2γ1, 3

2
γ2, αγ1

o

then,

˛
˛
˛
˛

∂V

∂x1

˛
˛
˛
˛ ≤ c8

“

|x1|
1/2 + |x2|

”2

⇒

˛
˛
˛
˛

∂V

∂x1

˛
˛
˛
˛ |x1| ≤ c8

“

|x1|
1/2 + |x2|

”4

.

From this and (21) we obtain

˛
˛
˛
˛

∂V

∂x1

˛
˛
˛
˛ |x1| ≤

c8
µ + ηM

V (x1, x2)

That is, (8) holds for V with z = (x1, x2)
⊤. In a similar manner

let c9 := max {γ2, 2αγ1, γ1} then,

˛
˛
˛
˛

∂V

∂x2

˛
˛
˛
˛

≤ c9

“

|x1|
1/2 + |x2|

”3

which for sufficiently large ‖x‖ fulfills

˛
˛
˛
˛

∂V

∂x1

˛
˛
˛
˛ ≤ c9

“

|x1|
1/2 + |x2|

”4

⇒

˛
˛
˛
˛

∂V

∂x1

˛
˛
˛
˛ ≤

c9
µ + ηM

“

|x1|
1/2 + |x2|

”4

.

That is, (9) holds for V with z = (x1, x2)
⊤.

Next, we compute the total time derivative of V along the

trajectories of (13). We have

V̇ (x1, x2) = 2α
2
γ1x1x2

+ γ2|x1|
3/2

“

−α − βsgn(x1x2) + δ
”

+
3

2
γ2|x1|

1/2
x
2
2 + αγ1x

2
2sgn(x1)x2

+ 2αγ1|x1|x2

“

−αsgn(x1) − βsgn(x2) + δ
”

+ γ1x
3
2

“

−αsgn(x1) − βsgn(x2) + δ
”

. (22)

and after straightforward algebraic simplifications we obtain

V̇ (x1, x2) ≤ − 2αγ1(β − M) |x1||x2| − γ1(β − M)|x2|
3

− γ2 (α − β − M) |x1|
3/2 +

3

2
γ2x

2
2|x1|

1/2

(23)

Let κ > 0 and add κ times

(|x1|
1/2+|x2|)

3−[|x1|
3/2+3|x1||x2|+3|x1|

1/2|x2|
2+|x2|

3] = 0

to the right hand side of (23). We obtain

V̇ (x1, x2) ≤ − [γ2 (α − β − M) − κ]|x1|
3/2

+
3

2
[γ2 + 3κ]x2

2|x1|
1/2

+ [3κ − 2αγ1(β − M)]|x1||x2|

− [γ1(β − M) − κ]|x2|
3 − κ(|x1|

1/2 + |x2|)
3

.

which implies that

V̇ (x1, x2) ≤ − [γ2 (α − β − M) − κ]|x1|
3/2

− |x2|

»
|x1|

1/2

|x2|

–⊤

N

»
|x1|

1/2

|x2|

–

(24)

where

N =

»
2αγ1(β − M) − 3κ − 3

2
[γ2 + 3κ]

− 3

2
[γ2 + 3κ] γ1(β − M) − κ

–

is positive semidefinite for sufficiently large values of γ1 and β >

M . Additionally from (24) we obtain the next restriction γ2(α −
β − M) − κ > 0. Combining the above inequalities we obtain

α − M > β > M .

C. Tuning and settling time

Next, we proceed to find c1 and c2 such that (15) holds.

V̇ (x1, x2) ≤ −κ(|x1|
1/2 + |x2|)

3
.
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Using (20) we obtain

−V (x1, x2)
3/4 ≥ −(µ + ηM )3/4

h

|x1|
1/2 + |x2|

i3

hence

V̇ (x1, x2) ≤ −
κ

(µ + ηM )3/4
V (x1, x2)

3/4
. (25)

In particular, (15) holds for α − M > β > M , with γ1 > 0 and

c1 =
κ

(µ + ηM )c2

, c2 =
3

4
.

Finally, an upper bound for time convergence of the trajectories

to zero, for the perturbed case, may be computed by integrating

(25) along the trajectories generated by (13) from any pair of

initial conditions (x1◦, x2◦) ∈ R
2

tf ≤
4

c1
V (x1◦, x2◦)

1/4
. (26)

Remark 1: It is clear from the previous proof that the con-

vergence rate or, more precisely the settling time tf is directly

related to the control parameters. Indeed c1 = O(γ
1/4

1
) that is,

c1 is “slowly” increasing for large values of γ1. Yet, as µ and ηM

are independent of β, the settling time is inversely proportional

to this control gain.

Hence, not only the previous stability proof for the twisting

algorithm provides a strict Lyapunov function but it provides a

simple rule of thumb relating the control gains to the settling

time. Otherwise, there exist no restrictions on the gains, other

than to dominate over the disturbance.

D. Extension to unbounded perturbations

For the sake of clarity, we have assumed that the disturbance

terms contained in δ(t, x) are bounded. However, this assumption

may be relaxed if we admit modifications to the control law.

Consider again the system (13) and assume that there exist a

positive constant M and a continuous non-decreasing function

∆ such that

|δ(t, x)| ≤ ∆(|x|) + M (27)

then, the control algorithm (13b) may be modified to the follow-

ing

u = −αsgn(x1) − β
′[∆(|x|) + M ]sgn(x2) (28)

For which all claims of Proposition 1 hold with β′ > 1 and β =
β′[∆(|x|) + M ].

As the setting of the double integrator (13) is reminiscent

of control of mechanical systems under bounded perturbations

(modulo a prior feedback linearizing feedback) the latter setting

may be related to the problem of mechanical systems under the

influence of non-dissipative forces, as for instance in the early

work [13] where a result of semiglobal asymptotic stability was

obtained.

IV. EXAMPLE

q2

τ

q1

Fig. 1. Inertial

wheel pendulum

Consider the inertia-wheel pendulum il-

lustrated in Figure IV. The parameters Ji

of the inertia matrix and parameter h of

the gravitational term –see Eqs. (29) be-

low, are computed from an experimental

benchmark manufactured by Quanser Inc.

We have J1 = 4.572 × 10−3, J2 = 2.495 ×
10−5, and h = 0.3544. A global coordinate

transformation reported in [14] is applied to

change the Lagrangian equations

»
J1 J2

J2 J2

– »
q̈1
q̈2

–

−

»
h sin(q1)

0

–

=

»
0
1

–

τ (29)

into a system in strict-feedback form,

ż1 = −h sin(q1)

q̇1 = J
−1

1
z1 − J

−1

1
J2z2 + ω1 (30)

ż2 =
h sin(q1)

J1 − J2

+
J1

J2(J1 − J2)
τ + ω2

q̇2 = z2

into which we introduced the disturbances ω1, ω2 after the

transformation. These ‘disturbances’ (may) account for unmod-

elled dynamics and parametric uncertainties. The controller is

constructed according to Section II –cf. [4].

Step 1. The first sliding surface is σ1 = q1 − qd and the virtual

controller is

φ1(q1) = J1J
−1

2
{J−1

1
z1 + u1,1}

u̇1,1 = −α1sgn(σ1) − β1sgn(σ̇1)

The derivative σ̇1 is calculated by means of the next robust

differentiator [15]

ṡ0 = −λ2L
1/2|s0 − σ1|

1/2sgn(s0 − σ1) + s1

ṡ1 = −λ1Lsgn(s0 − ṡ0)

Step 2. Now for state z2, σ2 = z2 − φ1(q1)

u = J2J
−1

1
{h sin(q1) + (J1 − J2)u2,1}

u2,1 = −α2sgn(σ2)

As mentioned in previous section, in order to compensate the

state norm bounded φ̇, the gain α2 should be variable, the next

4590



error-dependent gain was chosen

α2(σ2) = α2ae
α2b|σ2|
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Fig. 2. Position q1, qd (red line) (top) and q2 (bottom)
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Fig. 3. Errors σ1 (top) and σ2 (bottom)
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Fig. 4. Control signal u

We ran some simulations to test the performance of our

algorithm on this academic set-up. The desired position is set to

0.1 sin(4t), the initial conditions for the inertia wheel pendulum

where all set to zero i.e., the pendulum is assumed to start

off from the downward position. The disturbances are ω1 =
0.1 cos(40t) and ω2 = 0.1 sin(40t). The controller parameters

are set to α1 = 5, β1 = 3, α2a = 3000 and α2b = 0.1 while for

the differentiator λ1 = 1.1, λ2 = 1.5, L = 10. The graphs of

the system’s responses and control input are depicted in Figures

2-4.

V. CONCLUSION

We set preliminary basis for a methodological approach to

control systems in strict feedback form, via a backstepping-

like design and high-order sliding modes. The method relies on

regarding the closed-loop system as a cascade. This consider-

ably simplifies the analysis. On one hand, the authors have no

knowledge of any previous result involving finite-time stability

in cascade systems using Lyapunov methods. Further research is

being carried out to extend the method beyond the second-order.
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