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Abstract— This paper addresses the issue of structure-
preserving discretization of open distributed-parameter sys-
tems with Hamiltonian dynamics. Employing the formalism
of discrete exterior calculus, we introduce simplicial Dirac
structures as discrete analogues of the Stokes-Dirac structure
and demonstrate that they provide a natural framework for
deriving finite-dimensional port-Hamiltonian systems that em-
ulate their infinite-dimensional counterparts. This approach
of discrete differential geometry, rather than discretizing the
partial differential equations, allows to first discretize the
underlying Stokes-Dirac structure and then to impose the
corresponding finite-dimensional port-Hamiltonian dynamics.
In this manner, we preserve a number of important topological
and geometrical properties of the system.

I. INTRODUCTION

The underlying structure of the distributed-parameter port-
Hamiltonian systems considered in this paper is a Stokes-
Dirac structure [24] and as such is being defined on a certain
space of differential forms on a smooth finite-dimensional
orientable, usually Riemannian, manifold with a boundary.
The Stokes-Dirac structure generalizes the framework of the
Poisson and symplectic structures by providing a theoretical
account that permits the inclusion of varying boundary
variables in the boundary problem for partial differential
equations.

For numerical integration, simulation and control synthe-
sis, it is of paramount interest to have finite approximations
that can be interconnected to one another or via the boundary
coupled to the other systems, be they finite- or infinite-
dimensional. Most of the numerical algorithms emanating
from the field of numerical analysis and scientific computing,
primarily finite difference and finite element methods, fail
to capture the intrinsic system structures and properties,
such as symplecticity, conservation of momenta and energy,
as well as differential gauge symmetry. Furthermore, some
important results, including the Stokes theorem, fail to apply
numerically and thus lead to spurious results [3], [27].

A notable previous attempt to resolve the problem of
structure-preserving discretization of port-Hamiltonian sys-
tems is [14], where the authors employ the mixed finite
element method. Their treatment is restricted to the one-
dimensional telegraph equations and the two-dimensional
wave equation. Although it is hinted that the same methodol-
ogy applies in higher dimensions and to the other distributed-
parameter systems, the results are not clear. The discretiza-
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tion scheme proposed in [14] has been successfully used
in structure-preserving discretization of one-dimensional dis-
tributed port-Hamiltonian systems in [20], [2], [29]. How-
ever, the choice of the basis functions can have dramatic
consequences on the numerical performance of the mixed
finite element method; as the mesh is being refined, it
easily may lead to an ill-conditioned finite-dimensional linear
system [1]. The other undertaking on discretization of port-
Hamiltonian systems can be found in [25], [26], but the
treatment is purely topological and is more akin to the graph-
theoretical formulation of conservation laws.

Our approach to structure-preserving spatial discretization
of port-Hamiltonian systems is based on discrete exterior
geometry and as such proceeds ab initio by mirroring the
continuous setting. Since many of the smooth elements in
exterior geometry have discrete analogues formally identical
to the continuous models, in this framework it is easy to
recognise the coordinate-independent nature of invariants
while maintaining a clear distinction between topological
and metric-dependent quantities. Discrete exterior calculus
[7], [8], [13], [27] has previously been applied to variational
problems naturally arising in mechanics and electromag-
netism. These problems, however, stem from a Lagrangian
rather than Hamiltonian modeling perspective and as such
they conform to multisymplectic structure [11], [21], [22],
rather than the Stokes-Dirac structure. The discrete exterior
literature, furthermore, seems mostly focused on discretiza-
tion of systems with infinite spatial domains, boundaryless
manifolds, and systems with zero boundary conditions. We
offer a treatment of the dynamical systems with nonzero
energy flow through the boundary.

Contribution and outline. We begin by recalling the definition
of the Stokes-Dirac structure and port-Hamiltonian systems.
In order to make this paper as self-contained as possible,
we present a brief overview of the elementary discrete
exterior geometry needed to define discretized Stokes-Dirac
structures and impose appropriate port-Hamiltonian dynam-
ics. The third section is a brief summary of the essential
definitions and results in discrete exterior calculus as devel-
oped in [7], [8], [13]. In this regard, the only novelty this
paper brings is a proper treatment of the boundary of the
dual cell complex. Namely, in order to allow the inclusion
of nonzero boundary conditions on the dual cell complex,
we offer a definition of the dual boundary operator that
differs from the standard one. Such a construction leads
to a discrete analogue of the integration by parts formula,
which is a crucial ingredient in establishing discrete (finite-
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dimensional) Stokes-Dirac structures on a primal simplicial
complex and its circumcentric dual. The main result is
presented in Section IV, where we introduce the notion of
simplicial Dirac structures on a primal-dual cell complex,
and in the following section define port-Hamiltonian systems
with respect to these structures. Finally, we demonstrate how
these simplicial Dirac structures relate to spatially discretized
telegraph equations on a bounded domain.

II. THE STOKES-DIRAC STRUCTURE AND
PORT-HAMILTONIAN DYNAMICS

Dirac structures were originally developed in [4], [5],
[10] as a generalization of symplectic and Poisson struc-
tures and were employed in modeling interconnected and
constrained dynamical systems. The Stokes-Dirac structure
is an infinite-dimensional Dirac structure that provides a
foundation for port-Hamiltonian formulation of a class of
distributed-parameter systems with boundary energy flow
[24].

Throughout this paper, let M be an oriented n-dimensional
smooth manifold with a smooth (n−1)-dimensional bound-
ary ∂M endowed with the induced orientation, representing
the space of spatial variables. By Ωk(M), k = 0, 1, . . . , n,
denote the space of exterior k-forms on M , and by Ωk(∂M),
k = 0, 1, . . . , n− 1, the space of k-forms on ∂M .

For any pair p, q of positive integers satisfying p + q =
n+ 1, define the flow and effort linear spaces by

Fp,q = Ωp(M)× Ωq(M)× Ωn−p(∂M)

Ep,q = Ωn−p(M)× Ωn−q(M)× Ωn−q(∂M) .

The bilinear form on the product space Fp,q × Ep,q is

〈〈( f1p , f1q , f1b︸ ︷︷ ︸
∈Fp,q

, e1p, e
1
q, e

1
b︸ ︷︷ ︸

∈Ep,q

), (f2p , f
2
q , f

2
b , e

2
p, e

2
q, e

2
b)〉〉

=

∫
M

e1p ∧ f2p + e1q ∧ f2q + e2p ∧ f1p + e2q ∧ f1q

+

∫
∂M

e1b ∧ f2b + e2b ∧ f1b .

(1)

Theorem II.1. Given linear spaces Fp,q and Ep,q , and the
bilinear form 〈〈, 〉〉, define the following linear subspace D
of Fp,q × Ep,q
D =

{
(fp, fq, fb, ep, eq, eb) ∈ Fp,q × Ep,q

∣∣(
fp
fq

)
=

(
0 (−1)pq+1d
d 0

)(
ep
eq

)
,(

fb
eb

)
=

(
1 0
0 −(−1)n−q

)(
ep|∂K
eq|∂K

)}
,

(2)

where d is the exterior derivative and |∂M stands for a trace
on the boundary ∂M . Then D = D⊥, that is, D is a Dirac
structure.

In order to define Hamiltonian dynamics, consider a
Hamiltonian density H : Ωp(M)×Ωq(M)→ Ωn(M) result-
ing with the Hamiltonian H =

∫
M
H ∈ R. Now, consider a

time function t 7→ (αp(t), αq(t)) ∈ Ωp(M)×Ωq(M), t ∈ R,

and the Hamiltonian t 7→ H(αp(t), αq(t)) evaluated along
this trajectory, then at any t

dH
dt

=

∫
M

δpH ∧
∂αp
∂t

+ δqH ∧
∂αq
∂t

,

where (δpH, δqH) ∈ Ωn−p(M) × Ωn−q(M) are the varia-
tional derivatives of H at (αp, αq).

Setting the flows fp = −∂αp

∂t , fq = −∂αq

∂t and the
efforts ep = δpH , eq = δqH , the distributed-parameter port-
Hamiltonian system is defined by the relation(

−∂αp
∂t

,−∂αq
∂t

, fb, δpH, δqH, eb

)
∈ D , t ∈ R .

For such a system, it straightaway follows that dH
dt =∫

∂M
eb ∧ fb, expressing the fact that the system is lossless.

III. DISCRETE EXTERIOR CALCULUS

In the discrete setting, the smooth manifold M is replaced
by an oriented manifold-like simplicial complex. An n-
dimensional simplicial complex K is a simplicial triangu-
lation of an n-dimensional polytope |K| with an (n − 1)-
dimensional boundary. Familiar examples of such a discrete
manifold are meshes of triangles embedded in R3 and
tetrahedra obtained by tetrahedrization of a 3-dimensional
manifold. It is worth noticing that in practical applications,
sometimes the smooth manifold is unknown and can only
be sampled by physical measurements. In such situations,
it makes sense to model the spatial domain as inherently
discrete. This is where discrete port-Hamiltonian theory in
the framework of discrete exterior calculus stands in its own
right.

A. Chains and cochains

The discrete analogue of a smooth k-form is a k-cochain, a
certain type of a function, on a k-chain representing a formal
sum of simplices. The role of integration in the discrete the-
ory is replaced by (simple) evaluation of a discrete form on
a chain. The discrete exterior derivative is defined by duality
to the boundary operator, rendering the Stokes theorem true
by definition.

Definition III.1. Let K be a simplicial complex. We denote
the free abelian group generated by a basis consisting of
oriented k-simplices by Ck(K;Z). Elements of Ck(K;Z)
are called k-chains.

Definition III.2. A primal discrete k-form α is a homo-
morphism from the chain group Ck(K;Z) to R. A dis-
crete k-form is an element of Ωkd(K) := Ck(K;R) =
Hom(Ck(K),R).

The natural pairing of a k-form α and a k-chain c is
defined as the bilinear pairing 〈α, c〉 = α(c). As previously
pointed out, a differential k-form αk can be thought of
as a linear functional that assigns a real number to each
oriented cell σk ∈ K. In order to understand the process of
discretization of the continuous problem consider a smooth
k-form f ∈ Ωk(|K|). The discrete counterpart of f on
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a k-simplex σk ∈ K is a discrete form αk defined as
α(σk) =

∫
σk f .

Definition III.3. The discrete exterior derivative d :
Ck(K) → Ck+1(K) is defined by duality to the boundary
operator ∂k+1 : Ck+1(K;Z) → Ck(K;Z), with respect to
the natural pairing between discrete forms and chains. For a
discrete form αk ∈ Ωkd(K) and a chain ck+1 ∈ Ck+1(K;Z)
we define d by

〈dαk, ck+1〉 = 〈αk, ∂k+1ck+1〉 .

Similar to the continuous theory, we drop the index of
the boundary operator when its dimension is clear from the
context. The discrete exterior derivative d is constructed
in such a manner that the Stokes theorem is satisfied by
definition. Thus, given a (k+1)-chain c and a discrete k-form
α, the discrete Stokes theorem states that 〈dα, c〉 = 〈α, ∂c〉.

B. Dual cell complex

An essential constituent of discrete exterior calculus is
the dual complex of a manifold-like simplicial complex.
The most popular notions of duality are barycentric and
circumcentric, also known as Voronoi, duality. In this paper
we employ the latter. Furthermore, we shall assume we are
always given a so-called well-centered simplicial complex,
that is a simplicial complex whose all simplices of all
dimensions are well-centered [13].

Given a simplicial well-centered complex K, we define
its interior dual cell complex ?iK (block complex in termi-
nology of algebraic topology [23]) as a circumcentric dual
restricted to |K|. An important property of the the Voronoi
duality is that primal and dual cells are orthogonal to each
other. The boundary dual cell complex ?bK is a dual to ∂K.
The dual cell complex ?K is defined as ?K = ?iK ∪ ?bK.

A dual mesh ?iK is a dual to K in sense of a graph dual,
and the dual of the boundary is equal to the boundary of the
dual, that is ∂(?K) = ?(∂K) = ?bK. This construction of
the dual is compatible with [27] and as such is very similar to
the use of the ghost cells in finite volume methods in order to
account for the duality relation between the Dirichlet and the
Neumann boundary conditions. Because of duality, there is
a one-to-one correspondence between k-simplices of K and
interior (n − k)-cells of ?K. Likewise, to every k-simplex
on ∂K there is a uniquely associated (n − 1 − k)-cell on
∂(?K). Fig. 1 illustrates the duality on a flat 2-dimensional
simplicial complex.

In what follows, we shall abuse notation and use the
same symbol ?σk for both the interior circumcentric and
the boundary star operator when the meaning is clear from
the context. We adopt the convention that all symbols related
to the dual cell complex are labeled by a caret. Everything
that has been said about the primal chains and cochains can
be extended to dual cells and dual cochains. We do not
elaborate on this since it can be found in the literature [13],
[8], however, in order to properly account for the behaviours
on the boundary, we slightly need to change the definition
of the boundary dual operator as presented in [13], [8]. We
propose the following definition.

Fig. 1. A 2-dimensional simplicial complex K and its circumcentric dual
cell complex ?K indicated by dashed lines. The boundary of ?K is the
dual of the boundary of K.

Definition III.4. The dual boundary operator ∂k :
Ck(?K;Z)→ Ck−1(?K;Z) is a homomorphism defined by
its action on a dual cell σ̂k = ?σn−k = ?[v0, . . . , vn−k],

∂σ̂k = ∂ ? [v0, . . . , vn−k]

= ∂i ? [v0, . . . , vn−k] + ∂b ? [v0, . . . , vn−k]
(3)

where the internal boundary operator is ∂i?[v0, . . . , vn−k] =∑
σn−k+1�σn−k ?(sσn−k+1σn−k+1) for ?σn−k+1 ∈ ?iK

and the boundary operator associated with ∂(?K) is
∂b ? [v0, . . . , vn−k] =

∑
σn−k+1�σn−k ?(sσn−kσn−k+1) for

?σn−k+1 ∈ ∂(?K).

The boundary of the dual cell complex as defined in [13] is
equal to ∂i. The dual boundary operator ∂b extends the def-
inition from [13] in such a manner that the boundary of the
extended dual cell complex ?K is the geometric boundary.
The dual exterior derivative d : Ck(?K) → Ck+1(?K) is
defined by duality to the dual boundary operator, and as such
can be decomposed into the internal di and the boundary part
db (see Remak III.1).

C. Discrete wedge and Hodge operator

There exists a natural pairing, via the so-called primal-
dual wedge product, between a primal k-cochain and a dual
(n − k)-cochain. The resulting discrete form is the volume
form. In order to insure anticommutativity of the primal-dual
wedge product, we take the following definition.

Definition III.5. Let αk ∈ Ωkd(K) and β̂n−k ∈ Ωn−kd (?iK).
We define the discrete primal-dual wedge product ∧ :
Ωkd(K)× Ωn−kd (?iK)→ Ωnd (Vk(K)) by

〈αk ∧ β̂n−k, Vσk〉 =

(
n

k

)
|Vσk |

|σk|| ? σk|
〈αk, σk〉〈β̂n−k, ?σk〉

= 〈αk, σk〉〈β̂n−k, ?σk〉
= (−1)k(n−k)〈β̂n−k ∧ αk, Vσk〉 ,

where Vσk is the n-dimensional support volume obtained by
taking the convex hull of the simplex σk and its dual ?σk.

Here we note the advantage of employing circumcentric
dual since one needs to store only volume information about
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primal and dual cells, and not about the primal-dual convex
hulls.

The proposed definition of the dual boundary operator
ensures the validity of the evaluation by parts relation that
parallels the integration by parts formula for smooth differ-
ential forms.

Proposition III.1. Let K be an oriented well-centered
simplicial complex. Given a primal (k − 1)-form αk−1 and
a dual (n− k)-discrete form β̂n−k, then

〈dαk−1 ∧ β̂n−k,K〉+ (−1)k−1〈αk−1 ∧ dβ̂n−k,K〉
= 〈αk−1 ∧ β̂n−k, ∂K〉 ,

where in the boundary pairing αk−1 is a primal (k−1)-form
on ∂K, while β̂n−k is a dual (n− k)-cochain taken on the
boundary dual ?(∂K).

Proof: Follows from direct calculation.

Remark III.1. Decomposing the dual form β̂n−k into
the internal and the boundary part as β̂n−k ={
β̂i ∈ Ωn−kd (?iK) on ?iK

β̂b ∈ Ωn−kd (?bK) on ∂(?K)
and decomposing the dual

exterior derivative in the same manner, the summation by
parts formula can be written as

〈dαk−1 ∧ β̂i,K〉+(−1)k−1〈αk−1∧(diβ̂b+dbβ̂i),K〉
= 〈αk−1 ∧ β̂b, ∂K〉 .

(4)

The support volumes of a simplex and its dual cell are the
same, which suggests that there is a natural identification
between primal k-cochains and dual (n−k)-cochains. Since
the Hodge star operator is metric-dependent, in the discrete
theory, it is defined as an equality of averages between primal
and their dual forms [16]. The discrete Hodge star maps
primal cochains into dual forms, and vice versa [13], [16].

IV. DIRAC STRUCTURES ON A SIMPLICIAL COMPLEX

As discrete analogue of the Stokes-Dirac structure, we
introduce Dirac structures with respect to the bilinear pairing
between primal and duals forms on the underlying discrete
manifold. We call these Dirac structures simplicial Dirac
structures. The flow and the effort spaces will be the spaces
of complementary primal and dual forms. The elements of
these two spaces are paired via the discrete primal-dual
wedge product. One of the two possible choices is

Fdp,q = Ωpd(?iK)× Ωqd(K)× Ωn−pd (∂(K)) ,

Edp,q = Ωn−pd (K)× Ωn−qd (?iK)× Ωn−qd (∂(?K)) .

The primal-dual wedge product ensures a bijective relation
between the primal and dual forms, between the flows and
efforts. A natural discrete mirror of the bilinear form (1) is
a symmetric pairing on the product spaceFdp,q×Edp,q defined
by
〈〈( f̂1p , f1q , f1b︸ ︷︷ ︸

∈Fd
p,q

, e1p, ê
1
q, ê

1
b︸ ︷︷ ︸

∈Edp,q

), (f̂2p , f
2
q , f

2
b , e

2
p, ê

2
q, ê

2
b)〉〉d

= 〈e1p ∧ f̂2p + ê1q ∧ f2q + e2p ∧ f̂1p + ê2q ∧ f1q ,K〉
+ 〈ê1b ∧ f2b + ê2b ∧ f1b , ∂K〉 .

(5)

A discrete analogue of the Stokes-Dirac structure is a finite-
dimensional Dirac structure constructed in the following
theorem.

Theorem IV.1. Given linear spaces Fdp,q and Edp,q , and the
bilinear form 〈〈, 〉〉d. The linear subspace Dd ⊂ Fdp,q × Edp,q
defined by

Dd =
{

(f̂p, fq, fb, ep, êq, êb) ∈ Fdp,q × Edp,q
∣∣(

f̂p
fq

)
=

(
0 (−1)pq+1di

d 0

)(
ep
êq

)
+(−1)pq+1

(
db

0

)
êb ,

fb = (−1)pep|∂K
} (6)

is a Dirac structure with respect to the pairing 〈〈, 〉〉d .

Proof: In order to show that Dd ⊂ D⊥d ,
let (f̂1p , f

1
q , f

1
b , e

1
p, ê

1
q, ê

1
b) ∈ Dd, and consider any

(f̂2p , f
2
q , f

2
b , e

2
p, ê

2
q, ê

2
b) ∈ Dd. Substituting (6) into (5) yields

〈(−1)pq+1e1p ∧
(
diê

2
q + dbê

2
b

)
+ ê1q ∧ de2p

+(−1)pq+1e2p ∧
(
diê

1
q + dbê

1
b

)
+ ê2q ∧ de1p,K〉

+(−1)p〈ê1b ∧ e2p + ê2b ∧ e1p, ∂K〉
(7)

By the anticommutativity of the primal-dual wedge product
on K

〈ê1q ∧ de2p,K〉 = (−1)q(p−1)〈de2p ∧ ê1q,K〉
〈ê2q ∧ de1p,K〉 = (−1)q(p−1)〈de1p ∧ ê2q,K〉 ,

and on the boundary ∂K

〈ê1b ∧ e2p, ∂K〉 = (−1)(p−1)(q−1)〈e2p ∧ ê1b , ∂K〉
〈ê2b ∧ e1p, ∂K〉 = (−1)(p−1)(q−1)〈e1p ∧ ê2b , ∂K〉 ,

the expression (7) can be rewritten as

(−1)q(p−1)〈de2p ∧ ê1q + (−1)n−pe2p ∧
(
diê

1
q + dbê

1
b

)
,K〉

+(−1)q(p−1)〈de1p ∧ ê2q + (−1)n−pe1p ∧
(
diê

2
q + dbê

2
b

)
,K〉

+(−1)p+(p−1)(q−1)〈ê1b ∧ e2p + ê2b ∧ e1p, ∂K〉 .

According to the discrete summation by parts formula (4),
the following holds

〈de2p ∧ ê1q+(−1)n−pe2p ∧
(
diê

1
q + dbê

1
b

)
,K〉=〈e2p ∧ ê1b , ∂K〉

〈de1p ∧ ê2q+(−1)n−pe1p ∧
(
diê

2
q + dbê

2
b

)
,K〉=〈e1p ∧ ê2b , ∂K〉 .

Hence (7) is equal to 0, and thus Dd ⊂ D⊥d .
Since dimFdp,q = dim Edp,q = dimDd, and 〈〈, 〉〉d is a non-

degenerate form, Dd = D⊥d .

Remark IV.1. As with the continuous setting [24], the
simplicial Dirac structure is spatially compositional. Since
the underlying spaces are finite-dimensional linear spaces,
the simplicial Dirac structure Dd is integrable.

The other possible discrete analogue of the Stokes-Dirac
structure is defined on the spaces

F̃dp,q = Ωpd(K)× Ωqd(?iK)× Ωn−pd (∂(?K))

Ẽdp,q = Ωn−pd (?iK)× Ωn−qd (K)× Ωn−qd (∂K) .
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Theorem IV.2. The linear space D̃d defined by

D̃d =
{

(fp, f̂q, fb, ep, eq, eb) ∈ F̃dp,q × Ẽdp,q
∣∣(

fp
fq

)
=

(
0 (−1)pq+1d
di 0

)(
êp
eq

)
+

(
0
db

)
f̂b ,

eb = (−1)peq|∂K
} (8)

is a Dirac structure with respect to the bilinear pairing
between F̃dp,q and Ẽdp,q .

In the following section, the simplicial Dirac structure (6)
will be used as terminus a quo for the geometric formulation
of spatially discrete port-Hamiltonian systems. In the similar
manner we can define port-Hamiltonian systems with respect
to the Dirac structure (8).

V. PORT-HAMILTONIAN DYNAMICS ON A SIMPLICIAL
COMPLEX AND ITS CIRCUMCENTRIC DUAL

In the discrete framework one can define an open Hamil-
tonian system with respect to the simplicial Dirac structure
Dd or the simplicial structure D̃d. The choice of the structure
has immediate consequence on the open dynamics since
it restricts the choice of freely chosen boundary efforts or
flows. We define dynamics with respect to (6), and note
that in the similar fashion port-Hamiltonian systems can be
defined with respect to D̃d what we illustrate by an example
in the following section.

Given a discrete Hamiltonian density n-volume form H :
Ωpd(?iK)×Ωqd(K)→ Ωd(V (K)), the Hamiltonian functional
is H(α̂p, αq) = 〈H(α̂p, αq), V (K)〉 for α̂p ∈ Ωpd(?iK) and
αq ∈ Ωqd(K). A time derivative of H along an arbitrary
trajectory t → (α̂p(t), αq(t)) ∈ Ωpd(?iK) × Ωqd(K), t ∈ R,
is

d

dt
H(α̂p, αq) = 〈 ∂H

∂α̂p
∧ ∂α̂p

∂t
+

ˆ∂H
∂αq

∧ ∂αq
∂t

,K〉 . (9)

The relations between the simplicial-Dirac structure (6) and
time derivatives of the variables are: f̂p = −∂α̂p

∂t , fq =

−∂αq

∂t , while the efforts are: ep = ∂H
∂α̂p

, êq = ∂̂H
∂αq

.
This allows us to define time-continuous port-Hamiltonian

system on a simplicial complex K (and its dual ?K) by(
−∂α̂p

∂t

−∂αq

∂t

)
=

(
0 (−1)rdi

d 0

)( ∂H
∂α̂p

∂̂H
∂αq

)
+(−1)r

(
db

0

)
êb ,

fb = (−1)p
∂H
∂α̂p

∣∣∣∣
∂K

,

(10)

where r = pq + 1.
It immediately follows that dH

dt = 〈êb ∧ fb, ∂K〉, enunci-
ating a fundamental property of the system: the increase in
the energy on the domain |K| is equal to the power supplied
to the system through the boundary ∂K and ∂(?K). Due
to its structural properties, the system (10) can be called a
spatially-discrete time-continuous boundary control system
with êb being the boundary control input and fb being the
output.

In contrast to (10), in the case of the port-Hamiltonian
formulation with respect to the simplicial Dirac structure
(8) the boundary flows f̂b can be considered to be freely

Fig. 2. The primal 1-dimensional simplicaial complex K with even nodes
indices and its dual ?K with odd indices, both with conventional orientation
of one simplices (from the node with a lower-index to the higher-index
node). By construction, the nodes v̂0 and v̂2n are added to the boundary
as previously explained to insure that the boundary of the dual is the dual
of the boundary, i.e., ∂(?K) = ?(∂K).

chosen, while the boundary efforts eb are determined by the
dynamics.

VI. EXAMPLE: TELEGRAPH EQUATIONS

We consider an ideal lossless transmission line on a 1-
dimensional simplicial complex. The energy variables are
the charge density q ∈ Ω1

d(K), and the flux density φ̂ ∈
Ω1
d(?K), hence p = q = 1. The Hamiltonian representing the

total energy stored in the transmission line with distributed
capacitance C and distributed inductance L is

H =
1

2
〈 1

C
q ∧ ∗q +

1

L
φ̂ ∧ ∗φ̂,K〉 , (11)

where ∗ is the discrete diagonal Hodge operator [13], [16]
and the co-energy variables are: êp = ∂̂H

∂q = ∗ qC = V̂

representing voltages and eq = ∂H
∂φ̂

= ∗ φ̂L = I currents.

Selecting fp = −∂q∂t and f̂q = −∂φ̂∂t leads to the port-
Hamiltonian formulation of the telegraph equations(

−∂q∂t
−∂φ̂∂t

)
=

(
0 d
di 0

)( ∗ qC
∗ φ̂L

)
+

(
0
db

)
f̂b

eb = − ∗ φ̂
L

∣∣∣∣
∂K

,

(12)

where the f̂b are input voltages and the eb are output currents.
In the case we wanted to have the electrical currents as the

inputs, the charge and the flux densities would be defined on
the dual mesh and the primal mesh, respectively. Instead of
the port-Hamiltonian system in the form (12), the discretized
telegraph equations would be in the form (10). The free
boundary variables are always defined on the boundary of
the dual cell complex.

Note that the structure (12) is in fact a Poisson structure on
the state space Ω1

d(K)×Ω1
d(?K). This will become obvious

when we present this structure in a matrix representation.

Matrix representation. For the simplicial complex in Fig. 2,
a differential form eq ∈ Ω0

d(K) is uniquely characterized by
its coefficient vector ~eq ∈ Rn+1 since dim Ω0

d(K) = n+ 1,
similarly ~ep, ~fp ∈ Rn, ~fq ∈ Rn+1, ~eb, ~fb ∈ R2. Representing
discrete forms by their coefficient vectors induces a matrix
representation for linear operators (see e.g. [8], [16]). The
exterior derivative d : Ω0

d(K) → Ω1
d(K) is represented

by a matrix D ∈ Rn×(n+1), which is the transpose of the
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incidence matrix of the primal mesh [8], [9]. The discrete
derivative d : Ω0

d(?K) → Ω1
d(?K) in the matrix notation

is the transpose of the incidence matrix of the dual mesh
denoted by D̂ ∈ R(n+1)×(n+2), which can be decomposed

as D̂ = (Di

...Db)T with Di = −DT and Db is the transpose
of the boundary incidence matrix, that is,

D =


−1 1 0 · · · 0 0

0 −1 1 · · · 0 0
. . .

0 0 0 · · · −1 1

 ,

DT
b =

(
−1 0 0 · · · 0 0

0 0 0 · · · 0 1

)
.

(13)

Implementing the primal-dual wedge product as a scalar
multiplication of the coefficient vectors, the simplicial Dirac
structure of (12) can be represented by ~fp

~fq
~eb

 =

 0 D 0
−DT 0 Db

0 −DT
b 0

 ~ep
~eq
~fb

 . (14)

Convergence. Repeating simulation experiments for different
parameters we conjecture that the accuracy of the proposed
method is 1/n, what comes as no surprise since we worked
with diagonal mass-lumped Hodge operators, which are of
first-order accuracy.

VII. CONCLUDING REMARKS

A number of interesting topics and open questions still
need to be addressed. A major challenge from the numerical
analysis standpoint is to offer a careful study of the conver-
gence properties of discrete exterior calculus. In future, in the
context of [1], [17], it would be interesting to study structure-
preserving discretization of port-Hamiltonian systems in the
framework of Hilbert complexes.

An important application of structure-preserving dis-
cretization of port-Hamiltonian systems might be in op-
timal control theory what also prompts a need for time
discretization. The issue in this context is to study the
effects variational integrators [18], [19] have on passivity
(and losslessness) of open dynamical systems.
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