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Abstract— A new vision-based obstacle avoidance technique
for indoor navigation of Micro Aerial Vehicles (MAVs) is
presented in this paper. The vehicle trajectory is modified
according to the obstacles detected through the Depth Map of
the surrounding environment, which is computed online using
the Optical Flow provided by a single onboard omnidirectional
camera. An existing closed-form solution for the absolute-scale
velocity estimation based on visual correspondences and inertial
measurements is generalized and here employed for the Depth
Map estimation. Moreover, a dynamic region-of-interest for
image features extraction and a self-limitation control for the
navigation velocity are proposed to improve safety in view of the
estimated vehicle velocity. The proposed solutions are validated
by means of simulations.

I. INTRODUCTION

The recent years have seen a growing interest on MAVs

applications in several environments, e.g. surveillance and

human dangerous scenarios. For indoor autonomous naviga-

tion the obstacle avoidance is one of the most relevant draw-

back, also because the GPS signal and a detailed environment

map are often unavailable. A number of control strategies

have been developed based on other on-board sensors like

cameras, radar, lasers, sonars and IMUs (Inertial Measure-

ment Units). However, the most promising approaches make

use of visual sensors.

Several methods based on visual collision avoidance have

been proposed. When a stereo camera system is available, an

image couple can be employed as in [1] to compute distances

towards detected objects based on triangulation. However,

stereo systems require a high payload and onboard compu-

tational capacity. Several biologically inspired approach are

also been presented. In [2] it is shown that fruit flies avoid

obstacles when they turn away from the region with a high

level of Optical Flow (OF). On the other hand, in [3] it is

found out that honeybees try balancing the amount of lateral

OF in order to stay equidistant from the flanking walls.

Different studies in the last years have concerned with

the use of Optical Flow for obstacle avoidance. In some

approaches the average intensity of the left and right OF

vectors is balanced, according to the fact that if the left
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optical flow is larger than the right one, it means that the

object is closer to the left side than the right one, and

viceversa. A nonlinear control strategy for obstacle avoidance

based on the OF is presented in [4], while autopilots for

lateral obstacle avoidance of an hovercraft using two one-

dimensional sensors pointing at ±90◦ have been developed

in [3] and [5]. A single-camera frontal collision-avoidance

strategy computing the divergence of the OF is proposed

in [6], where an increase of the OF divergence indicate the

presence of a frontal obstacle.

The optical flow has also been used for implementing

altitude control for MAVs, e.g regulating the altitude of a

helicopter using two downward optical flow sensors as in [7].

In this last, constant speed obtained by a constant pitch angle

implies that the amount of OF is constant so that the vehicle

stays at a constant height above ground [6], [8].

In [9] two different strategies, with and without the adop-

tion of the OF, based on the Time to Contact –time needed to

obtain a collision between the obstacle and the vehicle, while

it is moving with a translational speed– have been proposed.

The Depth Map (DM) of the environment can be computed

using the OF and GPS measurements. In [10], [11] an

intuitive 3D map providing obstacle locations is provided

using only OF and GPS data. A lateral obstacle avoidance

algorithm for a wheeled robot has been proposed in [12],

where a depth map obtained from the OF evaluated with

an omnidirectional camera has been used. In [13] a real-

time algorithm to compute the Relative Depth Map (RDM)

from the OF independently of the performed motion, while

in [14] the RDP is employed for the navigation through

indoor corridors in the case of linear motion.

In this paper a new vision-based obstacle avoidance

technique for indoor navigation is presented for MAVs

applications. The vehicle trajectory is modified according

to a repulsive force field generating from the DM of the

surrounding environment computed online using the OF. A

single onboard omnidirectional camera is assumed to be

available. In particular, a new formulation for a closed-form

solution for the absolute-scale velocity estimation problem,

which are required for the DM estimation, is presented.

Starting from the solution proposed in [15], where in addition

to inertial measurements the correspondences of an image

feature between three image frames (here referred as visual

station) are required, a new compact formulation is adopted

also generalizing to the case of multiple visual station

and image features. Finally, a dynamic region-of-interest

for image feature extraction and a navigation velocity self-

limitation control are considered to improve safety during
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navigation in view of the estimated vehicle velocity.

II. DEPTH MAP CONSTRUCTION

The Optical Flow can be defined as the apparent motion of

a image features (objects, surfaces, etc.) between two consec-

utive camera frames caused by the relative motion between

the camera and the scene. It is known that the motion of

obstacles observed in an image sequence depends on the

distance of the object with respect to the camera, and thus

the OF can be profitably exploited estimating the distances of

surrounding obstacles. For this reason, OF is often employed

in non-stereo visual based obstacle avoidance. However, the

estimation of the absolute distance of an obstacle requires

the knowledge of the vehicle translational velocity, which

is here evaluated with a new closed-form solution based on

image correspondences and IMU measurements.

A. Depth map construction with Optical Flow

In the case of a purely translational motion of the vehicle,

assuming that all the objects in the scene are stationary,

the translational Optical Flow ωT of an image feature of

an observed object depends on the relative velocity between

the camera and the object itself v and on the angle between

the direction of motion and the observed feature α, as shown

in Fig. 1, with the following rule:

d =
‖v‖

ωT

sin(α), (1)

where d is the distance between the object feature and the

camera. If the velocity is available, the distance and so the

position of the observed obstacle can be estimated. However,

in a general case, the motion of the vehicle is composed of

a translational part and of a rotational part, namely ωT and

ωR, each of which produces a rate of the OF.

OF

d

v

a

Image feature
motion

Obstacle

Fig. 1. Optical flow during a translational motion.

The computation of the ωT component can be performed

applying a compensation of the rotational effect as described

in [14]. With reference to Fig. 2, the inertial and the camera

reference frames are denoted with I −xIyIzI and O−xyz,

respectively. Without loss of generality, it is supposed that

the camera and the vehicle frames are coincident. The camera

velocity v and acceleration a, this last provided by the

onboard IMU system with a period T , are expressed in

camera frame. The orientation of the camera frame, also

extracted using the IMU measurements, is referred to the

inertial frame and expressed using the well-known Tait-

Bryan (Euler) angles roll, pitch, and yaw φφφ = (ϕ, θ, ψ).
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Fig. 2. Inertial and camera reference frames.

Adopting a classical pin-hole camera model (other models

can be considered in view of the available hardware, e.g.

see [16] for the case of fisheye lens) and assuming known the

camera calibration parameters, the image feature vector f =
[

x y z
]T

, i.e. the position of the observed feature with

respect to the camera, can be expressed using the normalized

image coordinates X and Y as follows

f = z





X
Y
1



 = d · f̂̂f̂f , (2)

where d = ‖f‖ is the distance of the feature and f̂̂f̂f is the

unit feature vector depending only on visual measurements

X and Y .

The image features considered in this paper are corners,

while the Pyramidal Lucas-Kanade algorithm [17], [18] has

been employed to find matches. Denote with f̂̂f̂f1
1

and f̂̂f̂f2
2

the unit feature vectors of a correspondence between two

consecutive images, both represented in the respective ref-

erence frames –conventionally, for vectors and matrices the

reference frame is indicated as superscript– and with φφφ12 the

corresponding angular changes for the camera orientation.

Then, the unit feature vector f̂̂f̂f1
2

representing the position of

the image feature measured in frame 2 reported in frame 1
can be evaluated as follows

f̂̂f̂f1
2
= R1

2
f̂̂f̂f2
2
, (3)

where R1

2
= R(φφφ12) is the rotational matrix representing the

rotation performed by the camera in the form

R(φφφ) =





cϕcθ cφsθsψ − sφcψ cϕsθcψ + sφsψ
sϕcθ sφsθsψ + cφcψ sϕsθcψ − cφcψ
−sθ −cθsψ cθcψ



 .

The corresponding ωT can be estimated as the angular

velocity of the feature vector evaluated in the interval ∆t12,

between the image frames 1 and 2, given by

ωT =
cos−1

(

f̂̂f̂f1
1
· f̂̂f̂f1

2

)

∆t12
. (4)

Figure 3 shows the ωT computed in a real indoor scene

with an omnidirectional fisheye camera.
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Fig. 3. Optical Flow estimated in a real scene.

For a given vehicle translational velocity v, substituting

(4) in (1) and the result in (2), the set of all feature vectors

f of the available image correspondences can be evaluated,

constituting the instant Depth Map of the surrounding envi-

ronment at the time of the image frame acquisition.

B. Velocity estimation

In this section a generalization of the method proposed

in [15] is presented with a more compact analytical formu-

lation, where the extension to a multi-frame multi-feature

correspondence is explicitly considered. Without loss of

generality, it is assumed that the period of the visual system

is N times the period of the IMU system T . This means

that between two consecutive images there are N available

measures provided by the IMU. Moreover, it is assumed that

the IMU and the camera reference frames are coincident –if

both are calibrated it is easy to refer IMU data to the camera

frame– and that the IMU is ideal, i.e. it provides gravity

and bias-free acceleration and gyroscopic measurements.

Therefore, only the camera frame will be considered in the

rest of the section. Finally, the acceleration a is always

expressed in the current camera frame (e.g. aj = a
j
j , where

j refers to the camera frame at the time instant tj).

Ok

Ok N–s

Ok 1–Ok 2–

Ok j–

x

y z
x

y
z

fk
ˆ

fk N–s

ˆ

P

dk
dk N–s

rk N–s

k

Fig. 4. Camera (blu) and IMU measurement reference frames.

Considering a camera motion as shown in Fig. 4 and

assuming that tk is the last sample time with available visual

data, the previous available visual measurements are referred

to the sample times tk−sN , with s ∈ N (s identifies each

visual station). By denoting with r
j
i the relative displacement

of the frame i with respect and referred to the frame j and

considering a single image feature match between frames k

and ks = k − sN , the following relation can be written

dks f̂̂f̂f
ks
ks

=
(

Rk
ks

)T (

dkf̂̂f̂f
k
k − rkks

)

, (5)

where Rk
ks

=
[

rx ry rz
]k

ks
is the rotational matrix

representing the orientation of frame ks with respect to frame

k, and rx, ry , and rz are the its column vectors. This

relative displacement can be expressed in terms of the current

velocity, with respect to the current camera frame k, and

the integration of acceleration samples between tk−sN and

tk. Let us consider the relative displacement and velocity

between two consecutive frames:

r
j−1

j = v
j−1

j−1
T +

1

2
aj−1T

2 (6)

v
j−1

j = v
j−1

j−1
+ aj−1T (7)

r
j
j−1

= −R
j
j−1

r
j−1

j = −vj−1T −
1

2
R
j
j−1

aj−1T
2 (8)

vj = R
j
j−1

v
j−1

j = vj−1 +R
j
j−1

aj−1T. (9)

Replacing (9) in (8) yelds

r
j
j−1

= −vjT +
1

2
R
j
j−1

aj−1T
2. (10)

The whole displacement between two consecutive visual

frames can be achieved adding all the displacements corre-

sponding to the intermediate time intervals where only IMU

data are available, obtaining

rkks = −sNTvk +
1

2
ākksT

2, (11)

with

ākks =
sN
∑

j=1

(2(sN − j) + 1)Rk
k−jak−j , (12)

which can also be expressed in a recursive formulation, here

omitted for brevity.

By plugging (11) in (5) and considering (2), the following

system of equations for a one-point image correspondence

between frames k and ks is derived

Xks =

(

rkx,ks

)T (

dkf̂̂f̂f
k
k + sNTvk −

1

2
ākksT

2

)

(

rkz,ks

)T (

dkf̂̂f̂fkk + sNTvk −
1

2
ākksT

2

)

(13)

Yks =

(

rky,ks

)T (

dkf̂̂f̂f
k
k + sNTvk −

1

2
ākksT

2

)

(

rkz,ks

)T (

dkf̂̂f̂fkk + sNTvk −
1

2
ākksT

2

)

. (14)

In the general case, by considering ns ≥ 2 visual stations

and nf image features, a system of 2nsnf equation with

3 + nf unknowns vk and dk, where dk is the nf vector

of distances of each image feature, is achieved. This linear

system can be easily arranged in the classical form

A

[

vk
dk

]

= b, (15)

that for ns = 2 and nf = 1 becomes a square system

of 4 equations in 4 unknowns. However, by increasing ns
and/or nf , a least-squares solution can be achieved, which is
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robust to noise, but with some limitations. If ns is increased,

the number of unknowns do not change, i.e. the complexity

of the system solution remains the same, and the baseline

employed for the triangulation considered in the equation

system is enlarged. resulting in a well numerical conditioned

problem. However, in this case more IMU samples will be

integrated, resulting in a bad solution is the quality of the

IMU system is poor, as the typical case of MAVs. On the

other hand, increasing nf the same number of IMU data is

employed but the number of unknowns increases linearly: the

matrix A assumes a sparse conformation and the solution of

the system becomes quickly inefficient; the complexity of

the image feature matching algorithm increase and becomes

less robust (increase the probability of outliers).

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

s

m
/s

Fig. 5. A comparison of several cases for the absolute-scale velocity
estimation: true value (dark dashed line), case with ns = 2 and nf = 1

(red line), case with ns = 2 and nf = 2 (green line), and case with ns = 3

and nf = 1 (blue line).

Taking into account these considerations, a tradeoff is

required (e.g. ns = 3 or 4 is a good IMU system is available,

nf ≤ 3). A comparison between several cases is showed in

Fig. 5, where the ideal case with T = 10 ms, N = 10
is considered. Obviously, best results are achieved when

the number of image features are increased, while at the

beginning of the trajectory it is noticeable a bad numerical

solution for the minimum system case. This last condition

happens with a significant frequency for a number of tested

trajectories, then this choice it is inadvisable for a real case.

Notice that the proposed solution becomes singular in

two cases: 1) when the velocity of the camera is constant,

i.e. when the value of the integral of the acceleration over

two camera observation points is very small, and hence

the motion remain unobservable. However, this case can be

easily detected at runtime monitoring the result of the IMU

integration. 2) when the selected image features are aligned

along the motion direction. In this case it is sufficient a

selection of a new candidate feature set.

III. NAVIGATION CONTROL

Once estimated the vehicle velocity, the distance of each

feature observed in the scene and associated to an OF

element can be evaluated and collected together with the

corresponding optical rays. The result is a temporary en-

vironmental map, namely Depth Map, which can be fully

exploited for lateral obstacle avoidance during the navigation.

A. Dynamic region-of-interest

The OF computation requires, as explained before, an

image feature extraction algorithm and a matching algorithm,

that can be computational expensive for the typical processor

units available on a MAV. In the case of an omnidirectional

camera, the adoption of region-of-interest (RoI) for the image

elaboration processes may provide a large benefit in terms of

computational requirement, while the main drawback is that

the systems becomes “blind” outside the RoI. However, the

adoption od a dynamic RoI that is smartly adapted online to

the real environmental and navigation conditions may reduce

the risk of an unpredicted impact. Observing that, due to the

inertial of the system, an obstacle can be avoided only if it

is detected as early as possible with respect to the vehicle

velocity, the solution proposed is to adopt a RoI that “looks”

more forward as the vehicle is moving quickly.

v

Fig. 6. Dynamic region of interest.

In this paper the RoI is composed of two regions, namely

left and right RoI, which are symmetric with respect to the

direction of motion. Both regions have a fixed total extension

around the vertical axis, but they are rotated in view of an

angular offset θof with respect to the navigation velocity

(see Fig. 6). Notice that the forward region in the direction

of motion is discarded due to numerical inconsistency of the

OF along this direction. By denoting with θM the maximum

offset angle for the RoI, an exponential adaptation law is

considered for an offset anglewith respect to the motion

direction as follows

θof =







θM

(

1− e
−4

‖vvv‖−vm
vM−vm

)

if ‖v‖ > vm

0 if ‖v‖ ≤ vm,
(16)

where vm and vM are the minimum and maximum values

which can be assumed from the cruise velocity.

Also the vertical extension of the RoI is shaped in view

of the offset, symmetrically reducing its range with the

increase of θof . This behavior is required for omnidirectional

cameras, that compresses objects extension in the image as

far as they are along the direction of motion.

B. Lateral obstacle avoidance control

The safety of the vehicle during navigation within an

indoor environment depends on its capability to avoid un-

planned lateral obstacles.
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With respect to the dynamic left and right RoI presented

above and for each available DM, the distances of the vehicle

with respect to the left and right side of the surrounding

environment are computed with the following procedure. By

denoting with v̂̂v̂v = v/‖v‖ the unit vector pointing along

the motion direction, the distances of each detected feature,

which is characterized by its feature estimated vector f ,

along the motion direction sv̂̂v̂v(f) = fT · v̂̂v̂v and with respect

to the forward axis dv̂̂v̂v(f) = ‖xv̂̂v̂v(f)v̂̂v̂v − f‖ are computed.

Then, the vectors of distances from the left dLv̂̂v̂v and the right

dRv̂̂v̂v sides of the navigation direction are composed using

increasing values of sv̂̂v̂v as a sort criteria. Finally the minimum

of each distance vector is found and a local spacial average is

applied resulting in the minimum mean distances d̄Lv̂̂v̂v and d̄Rv̂̂v̂v .

Depending on the application, a LP-filter can be considered

to reduce discontinuities due to the changing of the observed

features.

Assuming dls as a safety lateral distance, a course cor-

rection is obtained through a PD controller acting on the

following error

el =























d̄Lv̂̂v̂v −d̄Rv̂̂v̂v
dls

if d̄Lv̂̂v̂v + d̄Rv̂̂v̂v < 2dls

1−
d̄Rv̂̂v̂v
dls

if d̄Lv̂̂v̂v ≥ dls, d̄
R
v̂̂v̂v < dls

d̄Lv̂̂v̂v
dls

− 1 if d̄Lv̂̂v̂v < dls, d̄
R
v̂̂v̂v ≥ dls

0 otherwise.

(17)

Notice that d̄Lv̂̂v̂v + d̄Rv̂̂v̂v < 2dls means that the vehicle is

navigating in a narrow environment, e.g. a corridor, and in

this case the previous control tries keeping the vehicle in the

middle of the free space, while the following cruise control

reduces the vehicle velocity.

C. Cruise control

The proposed navigation control considers a cruise veloc-

ity of the vehicle vc along the direction of motion in the

case of free space. However, for the safety of the vehicle,

when an obstacle is detected or when the dimension of the

space that is free for the motion is reduced, i.e. the minimum

distance with respect to the environment d becomes less than

a safety distance ds, a reduction of the navigation velocity

is commanded. The module of the navigation velocity is

generated applying a virtual control force fv in the desired

direction of motion, which is generated with an exponential

law as follows

fv =fp

(

1− e−4
‖vvv‖
vc

)

− (18)

fsM

(

1− e−4
ds−d
γvds

)(

1− e−4
‖vvv‖−vm
vc−vm

)

, (19)

with

fsM =

{

Fs if ‖v‖ > vm, d < ds

0 otherwise,

where γv ∈ (0, 1) determines the rate of reduction of the

velocity when the distance d becomes less than ds, vm is

the minimum cruise velocity that has to be assured, and Fs
is the maximum braking force.

IV. SIMULATION RESULTS

The performance of the proposed DM construction algo-

rithm and of the navigation control has been tested with

simulations using the MATLAB/Simulink environment.

Fig. 7. Simulated indoor environment.

In Fig. 7 a sketch of the employed simulator is showed.

The considered indoor environment is similar to a corridor

of a total length of 25 m and with a longitudinal shape that

changes along the path. In particular the width of the free

navigable space varies several times from 2 to 1 m, and vice

versa, also changing in its middle line position.

A random occurrence of image features has been con-

sidered on both sides of the environment without outliers.

Gaussian white noise has been added on image and IMU

measurements. For the velocity estimation, the case ns = 2
and nf = 2 has been considered with T = 0.01 s and

N = 10.

The adopted dynamic model of the vehicle can be found

in [19]. The control inputs are the two tilt angles, the angular

velocity around the vertical axis and the thrust, while the

outputs are the position and the yaw angle. In particular,

the vehicle is modeled in the inertial frame as a simple

point-mass model using the second Newton’s law. The forces

acting on the system are the controlled thrust τ and the

gravity g, as shown in the following system:

ä =
1

m
RI(ϕ, θ, ψ)





0
0
−τ



+





0
0
g



 , (20)

where m = 0.5 kg is the vehicle mass and RI(ϕ, θ, ψ) is

the rotation matrix of the vehicle frame with respect to the

inertial frame, which depends on the roll, pitch and yaw

angles. The delay acting on the control angles due to the

internal controller action can be modeled as a second order

system:

L(s) =
ω2

s2 + 2 · d · ω · s+ ω2
, (21)

where ω = 15.92 rad/s and d = 1.22. Supposing that

the controller is fast enough and smooth, it is possible to

consider the delay acting on forces and not on the angles, so

to obtain four linear and decoupled systems respect to the

forces. With respect to these parameters, the PD controller of
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the lateral obstacle avoidance control has been designed in

the frequency domain with the following transfer function:

C(s) =
0.008(100s+ 1)

0.001s+ 1
. (22)

Some of the most significant adopted parameters are as

follows: θM = 30◦ for a total lateral angle of view of

80◦, vc = 2.44 m/s, vm = vc/4, dls = ds = 1.0 m,

γv = γl = 0.25.

0 5 10 15 20 25
−1

−0.5

0

0.5

1

m

m

Fig. 8. Course correction during navigation in view of the detected
obstacles.

The course correction achieved during the navigation is

shown in Fig. 8, where also the shape of the environment

has been reported. The vehicle starts from the home position

that is near to the left side of the environment. The path

followed by the vehicle is almost centered in the middle of

the available free space left to the vehicle as desired.

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

m

m
/s

Fig. 9. Navigation velocity modified in view of the detected obstacles and
of the current free space (blue line) and adopted vc (red dashed line).

In Fig. 9 the navigation velocity modified in view of the

detected obstacles and of the current free space is shown. As

expected, the velocity is reduced when the vehicle is near to

obstacles or in a restricted area. The cruise velocity in the

narrow part of the environment is decreased, in view of the

adopted parameters, to about 1 m/s, while when the available

space increases also the velocity increases tending to vc.

V. CONCLUSION

A new vision-based obstacle avoidance technique for in-

door navigation of Micro Aerial Vehicles has been presented.

The Depth Map of the surrounding environment has been

constructed using only visual and inertial measurements. In

particular, an existing closed-form solution for the absolute-

scale velocity estimation based on visual correspondences

and inertial measurements has been generalized and em-

ployed for the velocity estimation. This last has been used

for the evaluation of the absolute-scaled Optical Flow, which

allows the construction of the desired Depth Map. Based on

this map a safe navigation control has been proposed, which

able to avoid lateral obstacles, to self-limit the cruise velocity

in view of the available free space, and to dynamically

set the regions of interest for image features extraction.

Simulations have been carried out to prove the effectiveness

of the proposed solution.
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