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Abstract— The problem of deploying continuous-time kine-
matic agents on a line is considered. To achieve the pre-
scribed formation each agent uses a binary information, namely
whether the distance of the agent from a neighbor is below or
above the prescribed inter-agent distance. A simple control law
which achieves and maintains the formation despite the coarse
information available is designed.

I. INTRODUCTION

Much effort has been devoted in recent years to the study

of distributed coordination control algorithms. Among the

many possible coordination tasks ([4], [21], [17], [28], [27],

[18], [26]), two of the basic ones which capture several of

the interesting features of formation control problems are

consensus and deployment. Although the common assump-

tion is that neighboring agents can exchange information

continuously and that such information is perfectly known, in

many cases this assumption is unrealistic due to limitations in

the communication channel, in the sensing capabilities of the

agents or in the hardware needed to implement the control

laws. For this reason, researchers have started looking at the

problem of achieving consensus in the presence of quantized

information ([22], [16], [25], [6], [23] to name a few).

The papers above have focused on discrete-time quantized

coordination algorithms, but in many cases of interest the

agents’ equations of motion are in continuous-time and thus

works have started to appear which deal with consensus

problems in continuous-time in the presence of quantization:

the paper [15] has dealt with the consensus algorithm when

the relative distance between neighbors is quantized whereas

[8] has focused on consensus algorithms which use quantized

absolute position measurements. Moreover, to deal with

agents which have more complex dynamics, the paper [13]

has investigated a passivity approach to coordinated control

in the presence of quantized measurements.

One of the difficulties with quantized algorithms in

continuous-time is that the use of quantized measurements
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makes the system discontinuous and a rigorous analysis of

these systems must rely on a suitable notion of solution

and tools from nonsmooth control theory. The paper [8]

has shown that Krasowskii solutions are appropriate to study

this class of problems as opposed to Carathéodory solutions

which may not exist. Moreover, a new class of quantizers,

namely hysteretic quantizers, has been introduced in [8] to

deal with the undesired phenomenon of chattering. Prior to

[15], [8], the papers [9], [24], [31] to name a few have

already recognized the role of nonsmooth control theory in

coordination algorithms (see [10] for a recent survey on the

topic with some applications in coordination problems).

The consensus problem is not the only one which has

been investigated under limited information. Building up on

previous work on the deployment of discrete-time kinematic

agents ([26], see also [18] for an early work), the authors

of [5] have studied both rendez-vous and deployment under

quantized position measurements. A related line of research

has studied coordination problems in the presence of coarse

sensors. The authors of [32] show rendez-vous of nonholo-

nomic carts equipped with sensors which can only detect

whether a neighboring cart enters or leaves its field of view.

Another example is triangular formation maintenance using

bearing-only measurements ([3]).

General classes of deployment problems such as disk-

covering and sphere packing have been studied in [11] pro-

viding quite comprehensive solutions. These solutions rely

on the definition of globally Lipschitz locational optimization

functions and on the design of distributed gradient control

laws which steer the dynamical systems to the critical points

of the functions. The control laws require full information

about the location of the agents’ Voronoi neighbors.

The aim of this note is to show that for the particular problem

of deployment of kinematic agents on a segment, deployment

is achievable even when very coarse proximity sensors are

used. As already mentioned, the deployment problem under

quantized information has been also studied in [5]. Compared

with the latter, a number of differences must be pointed out.

First of all, in this paper the equations of the kinematic

agents are in continuous-time (these agents can be obtained

from the kinematic model of omni-directional mobile robots

up to singularities – see [20] for a recent paper and ref-

erences therein). Moreover, while in [5] the information is

an absolute position measurement which is quantized via a

uniform quantizer, in our paper the information delivered

by the sensors to the agents concerns the relative position

between two agents and is a binary information, namely it

specifies whether the distance of the agent from a neighbor

is below or above the prescribed inter-agent distance. The
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agents then aggregates these measurements by taking the

average and use this aggregated information as the control

action. Quite interestingly, despite the coarse information

and the simplicity of the adopted control law, the agents

achieve and maintain the prescribed formation. We stress

that the formation is achieved as in the case of infinitely

precise sensors, and this is in contrast with what is commonly

found in consensus via quantized measurements, where only

“practical” consensus can be guaranteed ([15], [8], [5]).

Moreover it is achieved in finite time.

Early results on a related problem were presented in [14],

[12]: compared with the latter, in this work we remove the

formation-size-dependent gains which were present in [14],

[12] and we propose a different analysis.

Section II introduces the problem formulation and Section

III a convergence result with some auxiliary lemmas. Section

IV studies the deployment problem. Numerical results are

illustrated in Section V. Some final comments are given in

the Conclusions (Section VI).

II. PROBLEM FORMULATION AND MODEL

We study the problem of deploying on a line a group of

N agents with kinematic continuous-time model

ẋi = ui , i = 1, . . . , N , (1)

with xi, ui ∈ R. The agents are connected through an

undirected path graph G = (V, E), with V = {1, 2, . . . , N}
and E = {(1, 2), . . . , (i, i + 1), . . . , (N − 1, N)}. We recall

that a path graph is a connected graph with two vertices of

degree 1 and all the other vertices of degree 2. Moreover,

we consider a fixed virtual leader and a fixed virtual follower

whose positions we denote by x0 ∈ R and xN+1 ∈ R, with

x0 < xN+1. Let di > 0 be the desired inter-agent distance

between the agents i and i + 1, with i = 0, 1, . . . , N . The

agents must be deployed within the segment of left end point

x0 and right end point xN+1 at the prescribed distance from

each other and must preserve the order in such a way that

each agent of position xi precedes the agent of position xi−1

and follows the agent of position xi+1. Consistently, we have

xN+1 = x0 + d0 + . . .+ dN .

In addition to deployment and order preservation, the control

laws we are interested in use very coarse information.

Namely, we consider the scenario in which the agents are

endowed with sensors which are capable to detect whether

the distance from a neighbor is greater or less than the

desired distance and set the control action accordingly. The

proposed control law takes the following form:

u1 = −κsgn(x1 − x0 − d0) + κsgn(x2 − x1 − d1)
ui = −κsgn(xi − xi−1 − di−1) + κsgn(xi+1 − xi − di)

i = 2, . . . , N − 1
uN = −κsgn(xN − xN−1 − dN−1)+

κsgn(xN+1 − xN − dN ),
(2)

where κ > 0 is a parameter and sgn : R → {−1,+1} is the

sign function: sgn(y) = +1 if y ≥ 0 and sgn(y) = −1 if y <

0. From (2) it is seen that each agent computes the average

of the signs of the distances from the neighbors measured

by the binary sensors and use it as the control law.

The resulting closed-loop system is:

ẋ1 = −κsgn(x1 − x0 − d0) + κsgn(x2 − x1 − d1)
ẋi = −κsgn(xi − xi−1 − di−1) + κsgn(xi+1 − xi − di)

i = 2, . . . , N − 1
ẋN = −κsgn(xN − xN−1 − dN−1)+

κsgn(xN+1 − xN − dN ),
(3)

The system has the following interesting interpretation. If the

distance between agents i and i+1 is larger than or equal to

the desired distance di then sgn(xi+1 − xi − di) = +1 and

this contributes a positive value to the velocity of the agent

i. Otherwise sgn(xi+1 − xi − di) = −1, and this results in

a negative term in the velocity of agent i. Analogously for

the distance between agent i and i − 1. As a consequence,

if both agents i − 1 and i + 1 are too close to agent i (i.e.

0 < xi+1 − xi < di and 0 < xi − xi−1 < di−1) or too far

from agent i (i.e. xi+1−xi > di and xi−xi−1 > di−1) then

the agent i does not move. In fact, the agent cannot move in

any direction to get away from or get closer to either agent

i − 1 or agent i + 1, and its only possible choice is to stay

still. On the other hand if one of the agents, say i−1 is close,

and the other one is far, then ẋi = 2κ > 0, i.e. the agent i

moves away from agent i − 1 and closer to agent i + 1. If

it is the agent i + 1 to be close and the agent i − 1 to be

far, then ẋi = −2κ and the agent i moves towards i− 1 and

away from i + 1. The paper [11] has discussed analogous

relations between the control laws for disk-covering and

sphere-packing and behavior-based robotics rules.

Observe that the model also incorporates the case in which

two agents are at a distance which is larger than the range

of the sensors. In fact, if agent i is too far from agent i+1,

so that the sensor on agent i cannot measure the distance

xi+1−xi, then it can set this quantity to any quantity which

is strictly greater than di. Hence, sgn(xi+1 − xi − di) =
+1. Similarly, if agent i − 1 is beyond the range of the

sensor of agent i, then it can set xi − xi−1 > di−1, with

sgn(xi − xi−1 − di−1) = +1.

In the next section we analyze the closed-loop system

introduced above. Before doing this, we first observe that

since the system (3) is discontinuous its solutions are to be

intended in a generalized sense. In this paper, we consider

Krasowskii solutions to (3), namely solutions to the differ-

ential inclusion

ẋ ∈ K(f(x)) , (4)

where f(x) denotes the right-hand side of (3), and where

K(f(x)) =
⋂

δ>0

co (f(B(x, δ))) , (5)

with co the closed convex hull of a set, and B(x, δ) the ball

centered at x and of radius δ. The reason for considering

Krasowskii solutions rather than other notions of solutions

such as Carathéodory is that, similarly to [8], one can show

by simple examples that Carathéodory solutions may not

exist. On the other hand, Krasowskii solutions can be proven
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to always exist. In fact, it can be shown that there exist

solutions which can only slide along discontinuity surfaces.

In the following we say that the problem of deploying

kinematic agents by binary information is solvable if we can

prove that for any pair of constant parameters x0, xN+1, any

gain κ > 0 and any initial condition x ∈ R
N such that x0 <

x1 < x2 < . . . < xN < xN+1, every Krasowskii solution

x(t) to (3) originating from x satisfies x0 < x1(t) < x2(t) <
. . . < xN (t) < xN+1 for all t ≥ 0 and converges in finite

time to x∗ := (x0+d0, x0+d0+d1, . . . , x0+d0+. . .+dN−1).
Basic notions of nonsmooth control theory Before ending

the section, we recall a few basic notions from the theory of

nonsmooth control systems which will be used throughout

the paper (see [1], [7], [10] for more details). x0 ∈ R
N is a

Krasowskii equilibrium for (4) if the function x(t) = x0 is a

Krasowskii solution to (4) starting from the initial condition

x0, namely if 0 ∈ K(f(x0)). A set S is weakly (strongly)

invariant for (4) if for any initial condition x ∈ S at least

one (all the) Krasowskii solution x(t) starting from x belongs

(belong) to S for all t in the domain of definition of x(t).
Let V : R

N → R be a locally Lipschitz function. Then

by Rademacher’s theorem the gradient of V exists almost

everywhere. Let R be the set of measure zero where ∇V (x)
does not exist. Then the Clarke generalized gradient of V at

x is the set ∂V (x) = co{limi→+∞ ∇V (xi) : xi → x, xi 6∈
S , xi 6∈ R} where S is any set of measure zero in R

N .

We define the set-valued derivative of V at x with respect

to (4) the set V̇ (x) = {a ∈ R : ∃v ∈ K(f(x)) s.t. a =
p · v, ∀p ∈ ∂V (x)}. The definition of regular functions used

in the following nonsmooth LaSalle invariance principle can

be found e.g. in [1, p. 363]:

Theorem 1 ([1, Th. 3] [9, Th. 2]) Let V : R
N → R be

a locally Lipschitz and regular function. Let x ∈ S , with

S compact and strongly invariant for (4). Assume that for

all x ∈ S either V̇ (x) = ∅ or V̇ (x) ⊆ (−∞, 0]. Then any

Krasowskii solution to (4) starting from x converges to the

largest weakly invariant subset contained in S ∩ {x ∈ R
N :

0 ∈ V̇ (x)}, with 0 the null vector in R
N .

III. A CONVERGENCE RESULT

In this section we study a slightly more general problem

than the one formulated at the end of the previous section.

Namely, we show that, given any choice of the constant

parameters x0, xN+1, d0, . . . , dN such that xN+1 = x0 +
d0+. . .+dN and d0, . . . , dN > 0, any κ > 0, any Krasowskii

solution to (3) converges in finite time to x∗ from any initial

condition in R
N . In other words, we do not assume any

initial order of the agents neither that their initial positions

are within the segment [x0, xN+1]. Although the problem

may not be always physically feasible (for instance, if agent

i is not adjacent to the agent i+ 1 it is impossible for it to

measure the distance sgn(xi+1 − xi − di)), the convergence

result in Theorem 2 is used in the next section to prove

that the problem of deploying kinematic agents by binary

information is solvable.

The convergence result rests on a basic yet fundamental

fact, namely that the differential inclusion (4) can be writ-

ten as a gradient differential inclusion. More precisely, let

V (x) =
∑N

j=0
|xj+1−xj −dj |. Thanks to [29], Theorem 1,

first statement, and [19], Lemma 2.8, one has K(f(x)) =
−κ∂V (x), with ∂V (x) the Clarke generalized gradient.

Moreover the unique Krasowskii equilibrium of (3) is x∗,

as proved in the following lemma:

Lemma 1 0 ∈ K(f(x)) if and only if x = x∗.

Proof: Clearly x∗ is a minimum for the function V

then 0 ∈ ∂V (x∗) ([11], Proposition 2.3) and 0 ∈ K(f(x∗)).
On the other hand, if 0 ∈ K(f(x)), then 0 ∈ ∂V (x) and

since V (x) is convex then x is a minimum for V (see [30],

Theorem 10.1). Since x∗ is the unique minimum of V one

gets x = x∗. �

We are now able to prove the desired convergence result.

The result is fundamentally the convergence of a gradient

system (see Proposition 2.9 in [11]), but we report its proof

here for the sake of completeness:

Theorem 2 Any Krasowskii solution to (3) converges to x∗

in finite time.

Proof: x(·) : R+ → R
N is a Krasowskii solution to

(3) if it is absolutely continuous and satisfies ẋ ∈ K(f(x))
for a.e. t ≥ 0, with f(x) the vector field on the right-hand

side of (3). Let V (x) =
N∑

j=0

|xj+1 − xj − dj |. As recalled

above K(f(x)) = −κ∂V (x). V (x) is a convex function and

as such it is regular (see e.g. [1, p. 364]).

Consider the set-valued derivative of V , V̇ (x) = {a ∈ R :
∃v ∈ K(f(x)) s.t. a = p · v, ∀p ∈ ∂V (x)}. For points x

where f(x) is continuous, V̇ (x) = {−κ|∇V (x)|2}, with

|∇V (x)|2 =

N∑

j=1

|sgn(xj−xj−1−dj−1)−sgn(xj+1−xj−dj)|
2

Clearly, −|∇V (x)|2 < 0 because otherwise sgn(xj−xj−1−
dj−1) = sgn(xj+1 − xj − dj) for all j ∈ {1, . . . , N},

and this would cause x to violate the condition xN+1 =
x0 + d0 + . . .+ dN .

Suppose now that x is a state where f(x) is discontinuous.

Let V̇ (x) 6= ∅ and a ∈ V̇ (x). Then there must exist

v ∈ K(f(x)) such that a = p · v for all p ∈ ∂V (x).
Since K(f(x)) = −κ∂V (x), a = p · v must be true also

for p = − 1

κ
v, which implies that a = − 1

κ
|v|2. Hence, if

V̇ (x) 6= ∅, then V̇ (x) = {a ∈ R : ∃v ∈ K(f(x)) s.t. a =

− 1

κ
|v|2}, which implies V̇ (x) ⊆ (−∞, 0]. Since V̇ (x(t))

exists for almost every t and V̇ (x(t)) ∈ V̇ (x(t)) for almost

every t ([7], [9]), V (x(t)) can not increase. The definition

of V (x) implies that there exists a strongly invariant set

S ⊂ R
N for (3) which includes both x(0) and x∗. Then,

the nonsmooth LaSalle invariance principle ([1], [9]) implies

that any Krasowskii solution must converge to the largest
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weakly invariant set contained in the intersection of S and

the set of points x such that 0 ∈ V̇ (x). We have proven

earlier that if 0 ∈ K(f(x)) then x = x∗. This implies that

for x 6= x∗ either V̇ (x) = ∅ or 0 6∈ V̇ (x). Hence, the

intersection reduces to x∗ and since x∗ is trivially a weakly

invariant point (Lemma 1), we conclude that any Krasowskii

solution must converge to x∗.

Thanks to Proposition 4 in [9], in order to prove finite time

convergence to x∗, it is enough to prove that there exists

ǫ > 0 such that max V̇ (x) ≤ −ǫ for all x 6= x∗, i.e. there

exists ǫ > 0 such that |v|2 ≥ 1

κ
ǫ for any v ∈ ∂V (x),

x 6= x∗. Let us first of all remark that, if V is differentiable

at x, then v = ∇V (x) and |v|2 ≥ 4. Then we observe that

∇V (x) takes a finite number of values over RN\{x∗}. As a

consequence, also the set-valued map ∂V (x) admits a finite

nuber of set-values in 2R
N

over RN\{x∗}, that we denote by

V1, ...,VM . By Lemma 1, 0 ∈ ∂V (x) if and only if x = x∗.

Then, for all v ∈ Vi, i = 1, ...,M , one has |v| > 0. On

the other hand, for all i = 1, ...,M , the set Vi is compact

and then there exists min{|v|2, v ∈ Vi} > 0. By taking

ǫ = κmin{min{|v|2, v ∈ Vi}, i = 1, ...,M}, we get that

max V̇ (x) ≤ −ǫ for all x 6= x∗. �

IV. A SOLUTION TO THE DEPLOYMENT PROBLEM

The main result of the previous section states that all

the solutions to (3) converge to the prescribed formation

from any initial position of the agents. However, with no

further specification, the control problem modeled by (3)

becomes unrealistic. In a deployment problem the agents’

positions satisfy suitable conditions. First of all, the agents

are initially within the segment where they must deploy.

Moreover, without loss of generality we can assume that

x0 < x1(0) < x2(0) < . . . < xN (0) < xN+1, where

the inequalities are strict to take into account the physical

dimensions of the agents. Then we can say that a solution

x(·) to (3) is feasible if the order remains preserved for any

time, i.e. x0 < x1(t) < x2(t) < . . . < xN (t) < xN+1 for all

t ≥ 0. In what follows we show that any Krasowskii solution

to (3) is feasible. To this purpose, it is convenient to add the

trivial components ẋ0 = 0 and ẋN+1 = 0 to the system (3)

and rewrite the entire system in the new coordinates:

z0 = x0 , zi = xi − xi−1, i = 1, 2, . . . , N + 1 , (6)

as:

ż0 = 0
ż1 = −κsgn(z1 − d0) + κsgn(z2 − d1)
żi = κsgn(zi−1 − di−2)− 2κsgn(zi − di−1)+

κsgn(zi+1 − di) i = 2, . . . , N
żN+1 = κsgn(zN − dN−1)− κsgn(zN+1 − dN ).

(7)

Before going on, let us first denote the change of coordinates

(6) as z = Sx, where by a slight abuse of notation we set

x = (x0 x1 . . . xN xN+1)
T , ẋ = f(x), and the system (7) as

ż = g(z). Then, we would like to make sure that the analysis

of the original system (3) (with ẋ0 = 0 and ẋN+1 = 0) can

actually be reduced to the study of (7). To this purpose we

state the following simple fact:

Lemma 2 For any Krasowskii solution x(t) to (3), there

exists a Krasowskii solution z(t) to (7) such that z(t) =
Sx(t) for all t ≥ 0.

In other words for any solution x(t) to (3) there is a solution

z(t) to (7) which is uniquely determined by x(t). Hence

statements about the solutions to (7) can be used to infer

properties of the solutions to (3).

Proof: If we can prove that the function z̄(t) = Sx(t)
is a Krasowskii solution to (7), then the thesis holds taking

z(t) = z̄(t). Observe that z̄(t) satisfies ˙̄z(t) = Sẋ(t) ∈
SK(f(x(t))) = SK(f(S−1z̄(t))). Since Sf(S−1z) =
g(z), by [29], Theorem 1, property 5, SK(f(S−1z̄(t))) =
K(Sf(S−1z̄(t))) = K(g(z̄(t))) and this shows ˙̄z(t) ∈
K(g(z̄(t))), that is z̄(t) is a Krasowskii solution to (7). �

We are now ready to prove that if a Krasowskii solution

z starts in the positive orthant RN
+ then it can never leave it:

Lemma 3 Any Krasowskii solution to (7) with initial condi-

tion such that zi(0) > 0 for all i = 1, 2, . . . , N +1, satisfies

zi(t) > 0 for all i = 1, 2, . . . , N + 1 and for all t ≥ 0.

Proof: Suppose that the thesis is not true. Then there

must exist an open interval of time (t1, t2) and an index i

such that 0 < zi(t) < di−1 and żi(t) < 0 for all t ∈ (t1, t2).
In what follows we will exploit the property that if ż(t) ∈
K(g(z(t))) then ż(t) ∈ ×N

i=0K(gi(z(t))) ([29]), where the

symbol × denotes the Cartesian product. Consider the case

in which i = 1. Since 0 < z1(t) < d0, then g1(z(t)) = κ+
κ sgn(z2(t)−d1) and K(g1(z(t))) = co{0, 2κ} = {v1 ∈ R :
v1 = 2λ1κ, λ1 ∈ [0, 1]}. Since any Krasowskii solution z(t)
is such that ż1(t) ∈ K(g1(z(t))) ⊆ [0,+∞), this contradicts

ż1(t) < 0. Similarly, if i = 2, . . . , N , since 0 < zi(t) <

di−1, then

żi(t) ∈ K(gi(z(t))) = co{0, 4κ}
= {vi ∈ R : vi = 4κλi, λi ∈ [0, 1]} ⊆ [0,+∞) ,

which is again a contradiction. Finally, if i = N + 1, then

żN+1(t) ∈ K(gN+1(z(t))) = co{0, 2κ}
= {vN+1 ∈ R : vN+1 = 2λN+1κ, λN+1 ∈ [0, 1]}
⊆ [0,+∞) ,

and the conclusion is the same as before. This concludes the

proof. �

It is now straightforward to prove the following:

Theorem 3 The problem of deploying kinematic agents by

binary information is solvable.

Proof: Let x ∈ R
N be such that x0 < x1 < x2 < . . . <

xN < xN+1 and consider any Krasowskii solution x(t) to

(3) which starts from x. Consider the function z(t) = Sx(t)
and observe that by Lemma 2 z(t) is a Krasowskii solution

to (7). By construction, zi(0) > 0 for all i = 1, 2, . . . , N +1
and therefore zi(t) > 0 for all i = 1, 2, . . . , N + 1 and for
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all t ≥ 0 by Lemma 3. The definition of z(t) then implies

that x0 < x1(t) < x2(t) < . . . < xN (t) < xN+1 for all

t ≥ 0, i.e. the solution x(t) is feasible. Finally, for any initial

condition x ∈ R
N , any Krasowskii solution to (3) converges

to x∗, as proven by Theorem 2. In particular this is true for

any Krasowskii solution to (3) which starts from x ∈ R
N

such that x0 < x1 < x2 < . . . < xN < xN+1. This ends the

proof. �

V. NUMERICAL RESULTS

We have run simulations of the system (3) in the case

x0 = −xN+1 = −50, d0 = dN = xN+1−x0

2N
, di =

xN+1−x0

N

for i = 1, 2, . . . , N−1, which correspond to the configuration

where the agents should deploy uniformly within the segment

[x0, xN+1]. We have considered a formation with N = 20
agents and with gain κ = 2. In the first simulation (Fig.

1, top left), the agents start very close to each other and

nearby a point chosen randomly in the segment. In the second

simulation (Fig. 1, top right), the agents start from initial

positions which are drawn from a uniform distribution. In the

figures, the dotted lines represent the desired final positions

of the agents. It is seen that the agents converge to the desired

configuration in finite time. In both simulations, each agent

tries to move towards its final position if no other agent

prevents it to do so. Otherwise, it stays still, until the distance

from the neighbor which lies between the agent and its final

position becomes equal to the prescribed inter-agent (safety)

distance. At this time, the agent starts moving while trying

to keep the distance from its neighbors constant. During the

motion, the agent can stop momentarily even though it has

not reached its desired final position. This can happen if the

distance from both its neighbors becomes too large (or too

small). The switching between positive (or negative) and zero

velocities gives rise to the curved lines seen in the graphs.

The system is then simulated with a gain κ = 5 and the result

is illustrated in the bottom graphs of Fig. 1. It is seen that a

larger gain yields a faster response of the system. In fact, a

higher gain κ implies that the function V decreases towards

its minimum with an increased speed, as it is deduced from

the proof of Theorem 2.

VI. CONCLUSION

The problem of formation control under very coarse

information is receiving increasing attention in the literature.

In this paper we have presented a deployment control law

for continuous-time kinematic agents which uses binary

information. Despite the coarse information, the control law

is able to achieve and keep the formation.

Another advantage of the use of binary information is

that the sensed quantities can be transmitted via a digital

channel. Consider for instance the control law for agent

i. To implement ui, the agent i needs the measurements

sgn(xi−xi−1−di−1), sgn(xi+1−xi−di). They can either

be measured by sensors installed on agent i or measured

by the agents i − 1 or i + 1 and then transmitted to agent

i. Hence, a model like (3) allows to reduce the number of

sensors installed on each single agent.

The possible occurrence of chattering in practical imple-

mentation due to the use of the binary information may

be overcome with the introduction of hysteresis. A formal

analysis was presented in [8] for the case of consensus with

hysteretic quantizers. For a related deployment problem, the

use of sign functions with hysteresis has been studied in [12].

A general setting to study deployment problems is available

in [11] (see also [2] for deployment problems on a grid).

The tools adopted there are the same as the ones used in

this note. A natural question arises: how the results of [11]

can be adapted to deal with the scenario in which only coarse

information is available?
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Fig. 1. The evolution of the position of 20 agents which are deploying within the segment [−50, 50]. In the top row, the gain κ is set equal to 2. The
initial positions are chosen nearby a randomly picked point on the segment (left) or chosen within the segment according to a uniform distribution (right).
The dotted lines represent the desired final positions for the agents. The graphs in the bottom row depict the outcome of the simulations with the same
initial conditions but with an increased gain κ = 5.
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