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Stabilization of nonlinear uncertain systems based
on interval observers

Denis Efimov, Member, IEEE, Tarek Raïssi, and Ali Zolghadri

Abstract—The problem of output stabilization of a class of
nonlinear systems subject to parametric and signal uncertainties
is studied. First, an interval observer is designed estimating the
set of admissible values for the state. Next, it is proposed to
design a control algorithm for the interval observer providing
convergence to zero of the interval variables, that implies a
similar convergence of the state for the original nonlinear system.
An application of the proposed technique shows that a robust sta-
bilization can be performed for linear time-varying and Linear-
Parameter-Varying (LPV) systems without assumption that the
vector of scheduling parameters is available for measurements.
Efficiency of the proposed approach is demonstrated on two
examples of computer simulation.

Index Terms—interval estimation, nonlinear stabilization, LPV
systems

I. INTRODUCTION

THE problem of nonlinear system stabilization has been an
area of active research during the last two decades [1],

[2], [3]. Most of the proposed approaches appeal to particular
structural characteristics of a considered nonlinear system.
Frequently a partial similarity to linear systems is used to
take advantage of the well established solutions for observer or
control design. For example, the class of Lipschitz nonlinear
systems forms a subclass of nonlinear ones, which can be
estimated and regulated applying linear control approaches [4],
[5]. This class of nonlinear systems is considered in the paper
under assumption that the model contains uncertain time-
varying parameters. The proposed methodology ensures the
system output stabilization for all parameter values belonging
to a given interval.

An important framework which has been largely investi-
gated, to solve the problems of estimation and control for
generic nonlinear systems, is based on LPV transformations
[6], [7]. There exist several approaches to equivalently repre-
sent a nonlinear system in a LPV form [8], [9], [10]. It is worth
to note that such a procedure is not based on approximate
linearization. It is global and transforms the nonlinear system
by introducing extended parametric uncertainties to the LPV
setting. There are several methods for estimation of LPV
systems, one of them is based on interval state observer design
[11], [12], [13], that provides two variables evaluating the
lower and upper bounds for state values of LPV systems in
real time. Control of LPV systems is more challenging and has
been intensively studied [14], [15], [16], [17]. Classically, the
vector of scheduling parameters is assumed to be measured.
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However, in some cases, this assumption may become hard
to satisfy because some relevant physical parameters, that can
be served as scheduling parameters, are not measured or their
measurement is not judged reliable. For example, to generate
a LPV model for a nonlinear aircraft model, usually mass and
center of gravity are used as scheduling parameters. Although
these parameters are measured and available on-board (for
example mass estimation based on fuel consumption), their
measurements are relatively crude and they should be consid-
ered to be an interval, rather than a single point measurement.

In the present work, the assumption on measurements of
the vector of scheduling parameters is dropped. The proposed
dynamic output feedback approach is based on an interval
state observer design for a given class of nonlinear uncertain
systems. To the best of our knowledge, an interval observer
has not been used for control before. The control is designed
to stabilize the interval observer ensuring convergence to a
vicinity of zero for the bounding variables. Since the computed
interval observer bounds of the state vector have to be valid for
any control, the plant state vector also converges to the origin.
An advantage of the proposed approach is that it allows us to
stabilize rather wide spectrum of nonlinear uncertain systems
with partial measurements. Additionally, the proposed method
may deal with systems with unstable or/and unobservable
modes.

The paper is organized as follows. The preliminaries are
given in Section 2. The problem statement and the system
equations are given in Section 3. The interval observer design
is presented in Section 4. Section 5 is devoted to the control
design. Finally, two simulation examples are given in Section
6 to demonstrate efficiency of the developed techniques.

II. PRELIMINARIES

In this work for any two vectors x1, x2 or matrices A1, A2

the relations x1 ≤ x2, x1 ≥ x2, A1 ≤ A2, A1 ≥ A2

are understood elementwise. A square and symmetric positive
definite matrix P is defined by P � 0. The symbol | · |
is used to denote vector or corresponding induced matrix
norms. The symbol I denotes the identity matrix, λmin(A) and
λmax(A) are respectively stated for the minimal and maximal
eigenvalues of the matrix A. The sequence of integers 1, ..., n
is denoted as 1, n.

Recall that a square matrix S with dimension n×n is called
Metzler if all its off-diagonal elements are nonnegative: Si,j ≥
0, 1 ≤ i 6= j ≤ n. For such Metzler matrix S, the system

ż = Sz + r(t), z ∈ Rn, r : R+ → Rn+
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is monotone (cooperative) [18] and has nonnegative solutions,
i.e. if z(0) ≥ 0 then z(t) ≥ 0 for all t ≥ 0.

III. PROBLEM STATEMENT

Consider the nonlinear system

ẋ = Ax+B(θ(t))u+ f(x, y, θ(t)), y = Cx, (1)

where x ∈ Rn, y ∈ Rp, u ∈ Rm are the state, the output and
the control respectively, θ ∈ Θ ⊂ Rq is the vector of uncertain
possibly time-varying parameters, the set Θ is assumed to be
given, t ≥ 0; the constant matrices A and C and the nonlinear
functions B : Rq → Rn×m and f : Rn+p+q → Rn are known,
the function f ensures uniqueness and existence of the system
solutions at least locally. Without any loss of generality assume
that f(0, 0, θ) = 0 for any θ ∈ Θ.

The goal of the paper is to design a dynamic output
feedback ensuring the system (1) (practical) stabilization at the
origin. The forthcoming investigation is based on the following
properties of the system (1):
(A1) There are functions f, f : R2n+p → Rn and

matrices Bmin, Bmax such that the relations

f(x, x, y) ≤ f(x, y, θ) ≤ f(x, x, y),

Bmin ≤ B(θ) ≤ Bmax

are satisfied provided that x ≤ x ≤ x and θ ∈ Θ.
The functions f, f can be computed under assumption that
θ ≤ θ ≤ θ for all θ ∈ Θ and some θ, θ ∈ Rq . Note that under
assumption (A1) for any u ∈ Rm the inequalities

B(u)u ≤ B(θ)u ≤ B(u)u

are satisfied for

B(i)(u) =

{
B

(i)
min if ui ≥ 0;

B
(i)
max if ui < 0,

B
(i)

(u) =

{
B

(i)
max if ui ≥ 0;

B
(i)
min if ui < 0,

where the upper index i for a matrix B(i) denotes the i-th
column of the matrix, and the lower index i for a vector ui
returns the i-th element of the vector.

In this paper the vector θ may play a role of the vector of
scheduling parameters in the LPV representation:

ẋ = A(θ(t))x+B(θ(t))u (2)

or simply a parameter vector of (1). The system (2) can be
presented in the form (1) with f(x, y, θ) = [A(θ)−A]x. The
control design will be presented for more generic nonlinear
system (1), the system (2) will be used as a special case. Note
that assumption (A1) is satisfied for the LPV system (2) if,
for example, there exists a matrix ∆A ≥ 0 such that

A−∆A ≤ A(θ) ≤ A+ ∆A,

for any θ ∈ Θ. In this case f(x, x, y) = −∆A(x − x),
f(x, x, y) = ∆A(x− x).

IV. INTERVAL STATE OBSERVER

In this section based on assumption (A1) we are going to
design an interval observer for (1) using the results from [11],
[13]. To simplify the presentation we introduce the following
auxiliary assumption (weaker than assumptions in [11], [13]).

(A2) There exists a matrix L such that the matrix A−
LC is Metzler.

Note that we do not require any stability properties for the
matrix A−LC. In this case, an interval observer for the system
(1) can be written as follows [11], [13]:

ẋ = Ax+B(u)u+ f(x, x, y) + L(y − Cx),

ẋ = Ax+B(u)u+ f(x, x, y) + L(y − Cx).
(3)

In this paragraph we implicitly assume that the control u does
not violate the conditions of solutions existence into the system
(3), and that system (3) solutions are defined for all t ≥ 0 with
a such control.

Theorem 1. Let assumptions (A1),(A2) and the constraint
x(0) ≤ x(0) ≤ x(0) be satisfied, then for any control u the
solutions of the system (1), (3) satisfy:

x(t) ≤ x(t) ≤ x(t), ∀t ≥ 0.

Proof: Introducing the estimation errors e = x − x and
e = x− x from (1) and (3) we get that

ė = (A− LC)e+ d(t), ė = (A− LC)e+ d(t),

d = [B(θ)−B(u)]u+ [f(x, y, θ)− f(x, x, y)],

d = [B(u)−B(θ)]u+ [f(x, x, y)− f(x, y, θ)].

By (A1) we have e(0) ≥ 0, e(0) ≥ 0 and d(0) ≥ 0, d(0) ≥ 0.
From assumption (A2) the dynamics of the estimation errors
is cooperative. Therefore, e(t) ≥ 0, e(t) ≥ 0 for all t ≥ 0,
that is necessary to prove.

The theorem does not claim that variables x(t) and x(t) are
bounded, it establishes the order relations only (for any control
u). Due to nonlinear nature of the plant and coupling among
the systems (1), (3), even Hurwitz property of the matrix A−
LC (usual assumption for interval observers [11], [13]) does
not ensure boundedness of the solutions x(t) and x(t). The
solution x(t) also can be unbounded. To ensure the overall
boundedness of solutions for the systems (1), (3) we have to
design a stabilizing control algorithm.

Remark 2. Before we proceed with the control design, it
is worth to note that the assumption (A2) can be relaxed.
Actually the existence of a nonsingular matrix T is needed
such that the matrix S = T−1(A − LC)T is Metzler. The
problem of design of the matrix T is studied in [19]. Indeed,
introducing new variables x = Tz, the system (1) can be
presented as follows:

ż = T−1ATz + T−1B(θ(t))u+ T−1f(Tz, y, θ(t)),
y = CTz.

(4)

Obviously, if the assumption (A1) is satisfied for the system
(1), then a similar property holds for the system (4) with the
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functions T−1B(θ(t)) and T−1f(Tz, y, θ(t)). Indeed, in this
case under assumption (A1) we have:

T iϕ(z, z, y)− T iϕ(z, z, y) ≤ T−1f(Tz, y, θ(t)) ≤
≤ T iϕ(z, z, y)− T iϕ(z, z, y),

[T iB(u)− T iB(u)]u ≤ T−1B(θ)u ≤
≤ [T iB(u)− T iB(u)]u,

where

ϕ(z, z, y) = f(Tz − Tz, Tz − Tz, y),

ϕ(z, z, y) = f(Tz − Tz, Tz − Tz, y)

and T = max{0, T}, T = T − T , T i = max{0, T−1}, T i =
T i − T−1. Then, the interval observer (3) can be written for
the system (4) as follows:

ż = Sz +Bz(u)u+ fz(z, z, y) + T−1Ly,

ż = Sz +B
z
(u)u+ fz(z, z, y) + T−1Ly,

(5)

where Bz(u) = T iB(u) − T iB(u), B
z
(u) = T iB(u) −

T iB(u), fz(z, z, y) = T iϕ(z, z, y) − T iϕ(z, z, y) and
fz(z, z, y) = T iϕ(z, z, y) − T iϕ(z, z, y). In the new coor-
dinates, the observer (5) is similar to (3). By introducing the
estimation errors e = z − z and e = z − z it is possible to
show that their dynamics are cooperative and

z(t) ≤ z(t) ≤ z(t), ∀t ≥ 0

provided that z(0) ≤ z(0) ≤ z(0). Therefore, for brevity of
presentation all results below are stated for the case of assump-
tion (A2), taking in mind the possibility of its relaxation.
Remark 3. Another interval observer is proposed in [12], for
the system (1) under assumption (A1) it can be written as
follows

ẋ = A1x+A2x+B(u)u+ f(x, x, y),

ẋ = A1x+A2x+B(u)u+ f(x, x, y),
(6)

where A1
i,i = Ai,i, A1

i,j = max{0, Ai,j} for i = 1, n, j = 1, n,
j 6= i and A2 = A − A1. The interval observer (6) has not
the gain L, thus it is independent on assumption (A2). Note
that, if f and f are independent on y, then the observer is an
autonomous system. This observer under the constraint x(0) ≤
x(0) ≤ x(0) for any control u ensures that x(t) ≤ x(t) ≤ x(t),
∀t ≥ 0. The proposed below control approach also can be
applied to (6). This possible extension is omitted for brevity
of presentation.

V. CONTROL DESIGN

The main idea of this work is to solve the stabilization
problem for the completely known system (3) instead of (1).
Under conditions of Theorem 1, if both x(t) and x(t) converge
to zero, then the state x(t) also has to converge to zero, and
boundedness of x(t) follows by the same property of x(t) and
x(t). In this case the signal y(t) is treated in the system (3)
as a state dependent disturbance with upper bound

|y(t)| ≤ |C|(|x(t)|+ |x(t)|), t ≥ 0.

Therefore, it is required to stabilize the system (3) uniformly
(or robustly) with respect to the input y. Applying the same
arguments in the case of Remark 2, the system (1) stabilization

follows by the interval observer stabilization in coordinates
z,z (the matrix T is nonsingular). In the case of Remark
3, stabilization of the system (1) follows by the system (6)
stabilization.

The advantages of such reduction are that the system (3) is
completely known and the state vector x(t), x(t) is available.
However, the dimension of (3) is two times bigger than the
corresponding dimension of the system (1) while the control
vector u preserves its size. Another difficulty is that the system
(3) has variable structure if the matrix functions B and B
depend on u or if the matrix function B in (1) depends on θ (if
this is not the case and B(θ) = B, then B(u) = B(u) = B).

The nonlinearity of the system (3) inherited from (1) rep-
resents an obstacle, since there is no common approach to
robustly stabilize a generic nonlinear system. From another
side, there exist several techniques obtained for special classes
of nonlinear systems [2], [3]. In the present work some of
them are chosen and applied here to stabilize (3) and (1). For
this purpose some restrictions on the functions f and f are
introduced.

A. Lipschitz case

(A3) Let there exist constants ai ≥ 0, ai ≥ 0, i =
1, 2, 3 such that for any x, x ∈ Rn, y ∈ Rp the
inequalities

|f(x, x, y)| ≤ a1|x|+ a2|x|+ a3|y|,
|f(x, x, y)| ≤ a1|x|+ a2|x|+ a3|y|

are satisfied.
The introduced assumption does not restrict behavior of the
nonlinearity f in the plant equations (1). In addition, if stabi-
lization is required for a predefined set of initial conditions,
then for rather wide spectrum of nonlinear functions f , the
majorant nonlinearities f and f can be chosen locally to satisfy
the assumption (A3). Indeed, roughly speaking this assumption
says that the nonlinearities f and f are globally Lipschitz.
The locally Lipschitz property is required if stabilization into
a predefined set is needed.

For the system (2) the assumption (A3) is naturally satisfied
for a1 = a2 = a1 = a2 = |∆A| and a3 = a3 = 0.

Due to Lipschitz property of the system (3) under assump-
tion (A3), the control is chosen in the conventional state linear
feedback form:

u = Kx+Kx, (7)

where K and K are two feedback gains to be designed.
Substitution of the control (7) into the equations (3) gives:

ẋ = [A− LC +B(u)K]x+B(u)Kx+ f(x, x, y) + Ly,

ẋ = [A− LC +B(u)K]x+B(u)Kx+ f(x, x, y) + Ly.
(8)

The linear part of the system depends on the sign of the control
(7) and is defined by the following 2m matrices:

Gk =

[
A− LC +BkK BkK

BkK A− LC +BkK

]
, k = 1, ..., 2m,

where Bk = Bmax +Bmin −Bk and B(i)
k can be composed

by B(i)
min or B(i)

max for each i = 1, ...m (there are 2m variants
8159
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of such compositions). Thus the system (8) is nonlinear and
it has multiple-mode linear part.

Theorem 4. Let assumptions (A1)-(A3) hold, x(0) ≤ x(0) ≤
x(0) and for the chosen matrices K, K there exist matrices
PT = P � 0 and QT = Q � 0 such that the Riccati equation

GTk P + PGk + I + α2P 2 +Q = 0

is verified for all k = 1, ..., 2m, where α = maxs=1,2{as +
as}+ 2|C|(a3 + a3 + 2|L|). Then, solutions of the system (1),
(3), (7) are bounded and asymptotically converge to the origin.

Proof: Since all conditions of Theorem 1 are satisfied, we
have x(t) ≤ x(t) ≤ x(t) for all t ≥ 0 and |y| ≤ 2|C||ξ|, where
ξ = [xT xT ]T is the state vector of the system (8). Consider
for the system (8) the Lyapunov function V = ξTPξ:

V̇ = ξT (GTk P + PGk)ξ + 2ξTP [F (ξ, y) + Λy],

where F (ξ, y) = [f(x, x, y)T f(x, x, y)T ]T and Λ =
[LT LT ]T . Owing the previous definitions

|F (ξ, y)| ≤ (a1 + a1)|x|+ (a2 + a2)|x|+ (a3 + a3)|y|
≤ maxs=1,2{as + as}|ξ|+ (a3 + a3)|y|,

|Λ| ≤ 2|L|,

and completing squares, we obtain (|F (ξ, y) + Λy| ≤ α|ξ|):

V̇ ≤ ξT (GTk P + PGk + I)ξ +

+[F (ξ, y) + Λy]TP 2[F (ξ, y) + Λy]

≤ ξT (GTk P + PGk + I + α2P 2)ξ ≤ −ξTQξ.

Therefore, the variable ξ is bounded and asymptotically
converges to zero (the system (8) is asymptotically stable).
Since all conditions of Theorem 1 are satisfied we have that
x(t) ≤ x(t) ≤ x(t) for all t ≥ 0, that implies boundedness
and convergence to zero for x(t).

The proposed theorem establishes stability conditions for
the interval observer-based control (7) and it provides a con-
structive technique for the matrices K and K choice resolving
the Riccati equations. Note that in this case, to ensure the
system stability, we do not require a stability property of the
matrix A−LC, it could be unstable, but Metzler. That allows
us considering systems with nonobservable or non-detectable
pair (A,C). Moreover, the matrix Gk stability can be ensured
by the gains L, K, K choice. The pairs of matrices (A,C),
(A,Bk) and (A,Bk) can be unobservable and uncontrollable
(separately the gains L or K, K can not ensure the matrix
A stability), but their combined application A− LC +BkK,
A− LC +BkK may solve the problem.

B. Known control gain
In this section we consider more simple situation assuming

that B(θ) = B, then B(u) = B(u) = B. The result of
Theorem 1 is valid in this case, and the assumption (A3) can
be relaxed as follows.
(A4) Assume there exist constants ρ ≥ 0, φ ≥ 0, γ ≥ 0,

σ ≥ 0 and ν ≥ 0 such that for any x, x ∈ Rn,
y ∈ Rp the inequalities

|δf(x, x, y)| ≤ ρ|x− x|+ φ,
|fa(x, x, y)| ≤ 0.5γ|x+ x|+ σ|y|+ ν,

are satisfied, where

δf(x, x, y) = f(x, x, y)− f(x, x, y),

fa(x, x, y) = 0.5[f(x, x, y) + f(x, x, y)].

Again, the introduced assumption does not restrict behavior of
the nonlinearity f in the plant equations (1). It imposes mainly
the same restriction, that the difference δf and the average
fa are globally Lipschitz. The locally Lipschitz property is
required if stabilization into a predefined set is considered.
The assumption (A4) is less restrictive as (A3) due to nonzero
constants φ and ν appearance.

The control is chosen in the same form (7) with u = Kx+
Kx = Kded+Kaea, Kd = 0.5[K−K], Ka = K+K, where
ed = x−x is the estimated interval length (difference between
the upper and the lower estimates) and ea = 0.5[x+ x] is the
interval average. The dynamics of these errors have the form:

ėd = [A− LC +BdKd]ed +BdKaea + δf(x, x, y),
ėa = [A− LC +BaKa]ea +BaKded + fa(x, x, y) + Ly,

where Bd = B(u)−B(u) = 0, Ba = 0.5[B(u)+B(u)] = B.
In this case the dynamics of ed does not depend on the control
and stability of this variable has to be ensured by a choice of
the matrix L (the pair (A,C) is observable for instance). The
choice Kd = 0 explicitly decouples dynamics of the errors ed
and ea:

ėd = [A− LC]ed + δf(x, x, y),
ėa = [A− LC +BaKa]ea + fa(x, x, y) + Ly.

(9)

In this case the matrices L and Ka are responsible for stability
of different variables, ed and ea respectively.

Theorem 5. Let assumptions (A1), (A2),(A4) hold, x(0) ≤
x(0) ≤ x(0) and for the chosen matrix Ka, there exist
matrices PTd = Pd � 0, PTa = Pa � 0 and QTd = Qd � 0,
QTa = Qa � 0 such that the Riccati equations

(A− LC)TPd + Pd(A− LC) + I + 2ρ2P 2
d +Qd = 0,

[A− LC +BaKa]TPa + Pa[A− LC +BaKa]+
+I + α2P 2

a +Qa = 0

are verified for α = γ + β, β = 2|C|(σ + |L|). Then, the
solutions of the system (1), (3), (7) are bounded and admit
the estimates:

|ed(t)| ≤ κd(|ed(0)|e−0.5ηdt + %dφ),

|ea(t)| ≤ κa(|ea(0)|e−0.5ηat + %a
√
π[|ed(0)|, φ, ν])

with

π[x, φ, ν] =
β2κ2

dx
2

1−ηdη−1
a

(e−ηdt − e−ηat)+
+ 2αβκdx

1−0.5ηdη
−1
a

(e−0.5ηdt − e−ηat) + (βκd%dφ+ ν)2,

where ηd = λmin(Qd)
λmax(Pd)

, κd =
√

λmax(Pd)
λmin(Pd)

, %d =
√

2λmax(Pd)
ηd

,

ηa = λmin(Qa)
λmax(Pa)

, %a =
√

2λmax(Pa)
ηa

and κa =
√

λmax(Pa)
λmin(Pa)

.

Proof: All conditions of Theorem 1 are satisfied and
we have x(t) ≤ x(t) ≤ x(t) for all t ≥ 0 and |y| ≤
2|C|(|ea| + |ed|). Since the dynamics of variables ed and
ea are decoupled in (9) it is possible to analyze stability
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of these variables separately. Consider the Lyapunov function
Vd = eTd Pded, then

V̇d = eTd ([A−LC]TPd+Pd[A−LC])ed+ 2eTd Pdδf(x, x, y).

Taking in mind that |δf(x, x, y)| ≤ ρ|ed|+ φ we obtain:

V̇d ≤ eTd ([A− LC]TPd + Pd[A− LC] + I)ed +

+δf(x, x, y)TP 2
d δf(x, x, y)

≤ eTd ([A− LC]TPd + Pd[A− LC] + I +

+2ρ2P 2
d )ed + 2|Pd|2φ2

≤ −eTdQded + 2|Pd|2φ2.

Therefore, the variable ed is practically stable and it admits
the required estimate.

Next, consider the Lyapunov function Va = eTa Paea, then:

V̇a = eTa ([A− LC +BaKa]TPa + Pa[A− LC +

+BaKa])ea + 2eTa Pa(fa(x, x, y) + Ly).

By assumption (A4), we have |fa(x, x, y) + Ly| ≤ γ|ea| +
(σ + |L|)|y|+ ν, then

V̇a ≤ eTa ([A− LC +BaKa]TPa + Pa[A− LC +BaKa] +

+I + α2P 2
a )ea + 2|Pa|2(β|ed|+ ν)2 ≤

≤ −eTaQaea + 2|Pa|2(β|ed|+ ν)2.

Using the proven boundedness of the error ed, the required
estimate is satisfied.

Comparing with Theorem 4, Theorem 5 presents more
simple way of treatment for the case B(θ) = B. For the case
φ = ν = 0 the boundedness and asymptotic convergence to
zero are substantiated in Theorem 5.

VI. EXAMPLES

In this section we illustrate the proposed approach on
examples of time-varying uncertain systems.

Fig. 1. The results of LPV system stabilization.

A. LPV system

Consider the uncertain system:

ẋ = A(θ)x+Bu, y = Cx,

A−∆A ≤ A(θ) ≤ A+ ∆A, θ ∈ R,

C =
[

1 0 0 0
]
,

A =


35.6 50.7 45.6 75.6
−1.8 −25.5 −3.8 −6.3
−18.1 −20 −38.9 −31
−5.8 −7 −6.6 −30.5



∆A = 1
4


1 1 5 2
1 2 1 3
2 1 2 2
1 4 1 2

 , B =


1 −1
2 3
−2 1
−2 2

 ,
where the matrix ∆A defines the admissible time-varying
deviations from the nominal value A. The matrix A is unstable
and it does not exist a matrix L such that A−LC is Metzler
(assumption (A2) is never satisfied). However for

L =
[

5 2 3 1
]T
,

T =


−22.179 8 3 19

8 −21.179 7 5
3 7 −20.179 6
9 5 6 −19.179


the matrix T−1(A − LC)T is Hurwitz and Metzler as it is
required in Remark 2 and Theorem 4. In addition, all other
conditions of Theorem 4 are satisfied for the system (4) and
the interval observer (5) with

K =

[
−2.8 −5.6 1.2 −1.8
−8.4 −9.8 −7 −13.2

]
,

K =

[
−9.6 −13.2 −0.9 −12.6
−15.6 −18.9 −14.4 −23.7

]
.

For simulation we choose A[θ(t)] = A(t) = A+ V (t), where

V (t) =

= 1
4


sin(t) cos(0.5t) 5sin(2t) 2cos(t)
sin(0.5t) 2cos(2t) cos(t) 3sin(0.5t)
2cos(2t) sin(t) 2cos(0.5t) 2sin(2t)
cos(t) 4sin(0.5t) cos(2t) 2sin(0.5t)

 .
The results of simulation are presented in Fig. 1. On plots
Fig. 1,a – Fig. 1,d the state coordinates are shown (solid line)
with the corresponding bounding variables from the interval
observer (dashed lines).

B. Nonlinear system

Consider the time-varying nonlinear pendulum:

ẋ1 = x2; ẋ2 = −ω2(t)sin(x1)− κ(t)x2 + b(t)u; y = x1,

where x1 ∈ [−π, π] is the angle, x2 ∈ R is the angular
velocity. The parameters satisfy the inequalities

ωm ≤ ω(t) ≤ ωM , κm ≤ κ(t) ≤ κM , bm ≤ b(t) ≤ bM
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for some known ωm, ωM , κm, κM , bm, bM . Clearly, the system
is in the form (1) for

A =

[
0 1
0 −κa

]
, f [x1, x2, θ(t)] =

[
0

θ1(t)sin(x1) + θ2(t)x2

]
,

B[θ(t)] =

[
0

θ3(t)

]
, C =

[
1
0

]T
,

θ(t) = [−ω2(t) ∆κ(t) b(t)]T ,

where κa = 0.5(κm + κM ), ∆κ(t) = κ(t) − κa, |∆κ(t)| ≤
δκ = 0.5(κM − κm) (assumption (A1) is satisfied). It is
required to stabilize this pendulum in the upper unstable equi-
librium (π, 0) starting from the origin (the stable equilibrium).
Such problem is called the pendulum swinging up, a solution
of this problem for uncertain and time-varying pendulum is
rather complicated. For simulation the following values of
parameters have been chosen:

ωm = 0.1, ωM = 1.2, κm = 0.4, κM = 1.5,
bm = 0.5, bM = 2.5

and

ω(t) = 0.5[ωM + ωm + (ωM − ωm)cos(t)],
b(t) = 0.5[bM + bm + (bM − bm)cos(2t)],

κ(t) = κa + δκsin(t).

For
L = [5 0]T

the matrix A−LC becomes Hurwitz and Metzler (assumption
(A2) is verified). Clearly, assumption (A3) holds since the
nonlinearity f is globally Lipschitz in this case. All conditions
of Theorem 4 are satisfied for

K = −[1 1], K = −[5 1].

The results of simulation are presented in Fig. 2, where the
state coordinates (solid lines) and their interval bounds (dashed
lines) are plotted.

Fig. 2. The results of nonlinear pendulum stabilization.

VII. CONCLUSIONS

The problem of nonlinear uncertain systems stabilization
has been addressed in this paper. An approach for output
dynamic feedback design is proposed, where the conventional
observer is replaced with an interval one. In this way, the prob-
lem of output stabilization of an uncertain nonlinear system is
reduced to the problem of robust state feedback design for two
completely known nonlinear systems. Applicability conditions
of the interval observers are less conservative than for the con-
ventional state observers. Thus the proposed approach extends

the class of uncertain nonlinear systems having stabilizing
control laws. Application of the proposed stabilizing method to
LPV systems does not require measurements of the vector of
scheduling parameters making the method very attractive for
uncertain systems with partial measurements. The price to pay
is that the dimension of the controller may become rather large
(the interval observer has the dimension two times bigger than
the plant model). The proposed approach is illustrated through
simulation examples.

Finally, the work presented in this paper is focused on
the case of Lipschitz nonlinearities. Other state feedback
techniques for robust stabilization of nonlinear systems (e.g.
backstepping/forwarding, passivation approach, feedback lin-
earization) can be applied in a similar way. An appealing
direction for future work is to relax conservatism of the
proposed Lipschitz stability conditions.

REFERENCES

[1] A. Astolfi, D. Karagiannis, and R. Ortega, Non-linear and Adaptive
Control with Applications. Communications and Control Engineering,
Springer, 2008.

[2] A. Isidori, Nonlinear Control Systems. London: Springer Verlag, 3rd ed.,
1995.

[3] H. Khalil, Nonlinear Systems. Upper Saddle River, New Jersey: Prentice
Hall, 3rd ed., 2002.

[4] G. Kreisselmeier and R. Engel, “Nonlinear observers for autonomous
lipschitz continuous systems,” IEEE Trans. Autom. Control, vol. 48,
no. 3, pp. 397–401, 2003.

[5] A. Pertew, H. Marquez, and Q. Zhao, “Hinf observer design for
lipschitz nonlinear systems,” IEEE Trans. Autom. Control, vol. 51, no. 7,
pp. 1211–1216, 2006.

[6] L. Lee, Identification and Robust Control of Linear Parameter-Varying
Systems. PhD thesis, University of California at Berkeley, Berkeley,
California, 1997.

[7] J. Shamma and D. Xiong, “Set-valued methods for linear parameter
varying systems,” Automatica, vol. 35, pp. 1081–1089, 1999.

[8] S. Hecker and A. Varga, “Generalized lft-based representation of para-
metric uncertain models,” European Journal of Control, vol. 10, no. 4,
pp. 326–337, 2004.

[9] A. Marcos and J. Balas, “Development of linear-parameter-varying
models for aircraft,” J. Guidance, Control, Dynamics, vol. 27, no. 2,
pp. 218–228, 2004.

[10] W. Tan, Applications of Linear Parameter-Varying Control Theory. PhD
thesis, Dept. of Mechanical Engineering, University of California at
Berkeley, Berkeley, 1997.

[11] J. Gouzé, A. Rapaport, and M. Hadj-Sadok, “Interval observers for
uncertain biological systems,” Ecological Modeling, vol. 133, pp. 46–56,
2000.

[12] F. Mazenc and O. Bernard, “Asymptotically stable interval observers
for planar systems with complex poles,” IEEE Trans. Autom. Control,
vol. 55, no. 2, pp. 523–527, 2010.

[13] T. Raïssi, G. Videau, and A. Zolghadri, “Interval observers design for
consistency checks of nonlinear continuous-time systems,” Automatica,
vol. 46, no. 3, pp. 518–527, 2010.

[14] P.-A. Bliman, Positive Polynomials in Control, vol. 312 of Lecture Notes
in Control and Information Sciences, ch. Stabilization of LPV Systems,
pp. 103–116. Springer, 2005.

[15] J. Daafouz, J. Bernussou, and J. C. Geromel, “On inexact lpv control
of continuous-time polytopic systems,” IEEE Trans. Autom. Control,
vol. 53, no. 7, pp. 1674–1678, 2008.

[16] L. Jetto and V. Orsini, “Efficient lmi-based quadratic stabilization of
interval lpv systems with noisy parameter measures,” IEEE Trans.
Autom. Control, vol. 55, no. 4, pp. 993–998, 2010.

[17] W. Rugh and J. Shamma, “Research on gain scheduling,” Automatica,
vol. 36, no. 10, pp. 1401–1425, 2000.

[18] H. Smith, Monotone Dynamical Systems: An Introduction to the The-
ory of Competitive and Cooperative Systems, vol. 41 of Surveys and
Monographs. Providence: AMS, 1995.

[19] T. Raïssi, D. Efimov, and A. Zolghadri, “Interval state estimation for a
class of nonlinear systems,” IEEE Trans. Automatic Control, p. accepted,
2011.

8162


