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Abstract— In Operational Modal Analysis, the modal param-
eters (natural frequencies, damping ratios and mode shapes),
obtained from Stochastic System Identification of structures,
are subject to statistical uncertainty from ambient vibration
measurements. It is hence necessary to evaluate the uncer-
tainty bounds of these obtained results. To obtain vibration
measurements at many coordinates of a structure with only
a few sensors, it is common practice to use multiple sensor
setups for the measurements. Recently, a multi-setup subspace
identification algorithm has been proposed that merges the data
from different setups first to obtain one set of global modal
parameters. This paper proposes an algorithm that efficiently
estimates the uncertainty on modal parameters obtained from
this multi-setup subspace identification.

I. INTRODUCTION

The estimation of modal parameters can easily be carried
out by using Stochastic System Identification methods on
sensor measurements, where the vibrating characteristics
(frequencies, damping ratios, mode shapes) are identified
of mechanical or civil structures subject to uncontrolled,
unmeasured and nonstationary excitation [1]. In [2], it was
proved that the Instrumental Variable method and what was
called the Balanced Realization method for linear eigenstruc-
ture identification are consistent in a nonstationary context.
From that on, the family of subspace algorithms has been
extensively studied and expanded rapidly [3], [4], [5], [6].

To obtain vibration measurements at many coordinates of
a structure with only a few sensors, it is common practice to
use multiple sensor setups for the measurements. For these
multi-setup measurements, some of the sensors, the so-called
reference sensors, stay fixed throughout all the setups, while
the other sensors are moved from setup to setup. By fusing
in some way the corresponding data, this allows to perform
modal identification as if there was a very large number of
sensors, even in the range of a few hundreds or thousands.
In [7], [8] a method was proposed to merge the data from all
the setups, before doing the global system identification on
it. This method was designed for covariance-driven subspace
identification and generalized in [9], [10] to a large range of
subspace methods.

All identified modal parameters are afflicted with sta-
tistical uncertainty due to many reasons, such as finite
number of data samples, undefined measurement noises,
nonstationary excitation, nonlinear structure or model order
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reduction. Then the system identification algorithms do not
yield the exact system matrices. To quantify the statistical
uncertainty of the obtained modal parameters, the statistical
uncertainty in the data can be evaluated and propagated to
the system matrices and, thus, to the modal parameters. Such
an algorithm was proposed in [11] for covariance-driven
subspace identification. It has been shown how uncertainty
bounds of modal parameters can be determined from the
covariances of the system matrices, which are obtained from
some covariance of the data. Many extensions are possible to
this algorithm depending on the identification procedure of
interest. Recently, uncertainty bounds have been derived for
the Eigensystem-Realization-Algorithm, a class of subspace
methods [12].

The current paper will expand on this and focus on the
uncertainty computation for the modal parameters obtained
from multi-setup stochastic subspace identification. Applying
uncertainty computation as in [11] would yield to matrix
computations for very large matrices in the multi-setup
setting. An efficient uncertainty quantification algorithm is
derived here, whose memory requirement does not increase
with the number of setups or the total number of sensors.

In Section II, the generic stochastic subspace identification
algorithm is introduced and the multi-setup subspace identifi-
cation explained. Then uncertainty bounds for the multi-setup
algorithm are derived in Section III.

II. STOCHASTIC SUBSPACE IDENTIFICATION (SSI)

A. The General Stochastic Subspace Identification Algorithm

The discrete time model in state-space form is:{
Xk+1 = AXk + Vk+1

Yk = CXk
(1)

with the state X ∈ Rn, the output Y ∈ Rr, the state
transition matrix A ∈ Rn×n and the observation matrix
C ∈ Rr×n. The state noise V is unmeasured and assumed
to be Gaussian, zero-mean, white.

Let r be the number of sensors, p and q be chosen
parameters with (p + 1)r ≥ qr ≥ n. From the output data,
a matrix H is built according to a chosen SSI algorithm,
see e.g. [6] for an overview. The matrix H will be called
“subspace matrix” in the following, and the SSI algorithm is
chosen such that the corresponding subspace matrix enjoys
the factorization property

H = O Z (2)
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into the matrix of observability

O def
= O(C,A)

def
=


C
CA

...
CAp

 (3)

and a matrix Z depending on the selected SSI algorithm.
Note that with (2) we restrict ourselves to SSI algorithms
without a left weighting.

Example 1: Let N + p + q be the number of available
samples, and define the data matrices

Y+ =
1√
N


Yq+1 Yq+2

... YN+q

Yq+2 Yq+3

... YN+q+1

...
...

...
...

Yq+p+1 Yq+p+2

... YN+p+q

 ,

Y− =
1√
N


Yq Yq+1

... YN+q−1

Yq−1 Yq
... YN+q−2

...
...

...
...

Y1 Y2
... YN

 .

For the covariance-driven SSI [2], [5], a block Hankel
matrix containing correlations of the data is built, which is
asymptotically equivalent to the subspace matrix Hcov def

=
Y+Y−T . It enjoys the factorization property (2), where Z
is the controllability matrix.

For the data-driven SSI with the Unweighted Principal
Component (UPC) algorithm [4], [5], the matrix H̃dat def

=
Y+Y−T (Y−Y−T )−1Y− enjoys the factorization property
(2) where Z is the Kalman filter state matrix. In practice,
the respective subspace matrix Hdat is obtained from an RQ
decomposition of the data, such that H̃dat = HdatQ with
an orthogonal matrix Q. See the mentioned references for
details on the implementations.

The eigenstructure of the system (1) is retrieved from a
given matrix H with the general subspace algorithm stated in
the following, with the condition that factorization property
(2) holds for the selected subspace algorithm.

The observability matrix O is obtained from a thin Sin-
gular Value Decomposition (SVD) of the matrix H and its
truncation at the desired model order n:

H = UΣV T

=
[
U1 U0

] [Σ1 0
0 Σ0

] [
V T1
V T0

]
, (4)

O = U1Σ
1/2
1 . (5)

with the matrices

U1 =
[
u1 . . . un

]
, V1 =

[
v1 . . . vn

]
,Σ1 = diag{σ1, . . . , σn}

containing the first n left and right singular vectors, and
singular values. The observation matrix C is then found in
the first block-row of the observability matrix O. The state

transition matrix A is obtained from the shifting invariance
property of O, namely as the least squares solution of

O↑A = O↓, where O↑ def
=


C
CA

...
CAp−1

, O↓ def
=


CA
CA2

...
CAp

. (6)

Definition 2: In general, let ↑ respectively ↓ be operators,
which remove the last respectively the first block row of
an observability matrix as in (6). The size of the removed
block row is the size of the observation matrix present in the
observability matrix.

The eigenstructure (λ, ϕλ) results from

det(A− λI) = 0, Aφλ = λφλ, ϕλ = Cφλ, (7)

where λ ranges over the set of eigenvalues of A. From λ,
the natural frequency and damping ratio are obtained, and
ϕλ is the corresponding mode shape.

There are many papers on the used subspace identification
techniques. A complete description can be found in [2], [4],
[5], [6], and the related references. A proof of non-stationary
consistency of these subspace methods can be found in [6].

B. Multi-Setup Stochastic Subspace Identification

The problem of stochastic subspace identification using
nonsimultaneously recorded data from multiple sensor setups
was addressed in [7], [8] and generalized in [9], [10]. Instead
of a single record for the output (Yk) of the system (1),
Ns records(

Y
(1,ref)
k

Y
(1,mov)
k

)
︸ ︷︷ ︸

Record 1

(
Y

(2,ref)
k

Y
(2,mov)
k

)
︸ ︷︷ ︸

Record 2

. . .

(
Y

(Ns,ref)
k

Y
(Ns,mov)
k

)
︸ ︷︷ ︸

Record Ns
(8)

are now available collected successively. Each record j

contains data Y
(j,ref)
k of dimension r(ref) from a fixed ref-

erence sensor pool, and data Y
(j,mov)
k of dimension r(j)

from a moving sensor pool. To each record j = 1, . . . , Ns
corresponds a state-space realization in the form [7], [8]

X
(j)
k+1 = A X

(j)
k + V

(j)
k+1

Y
(j,ref)
k = C(ref) X

(j)
k (reference pool)

Y
(j,mov)
k = C(j,mov) X

(j)
k (sensor pool noj)

(9)

with a single state transition matrix A, since the same system
is being observed. The observation matrix C(ref) with respect
to the reference sensors is independent of the measure-
ment setup as the reference sensors are fixed throughout
the measurements, while the observation matrices C(j,mov)

correspond to the moving sensor pool of each setup j.
In [10] an algorithm is derived that constructs a global

observability matrix O(all) = O(C(all), A) (cf. (3)) from
all the records (8), where the global observation matrix
containing information of all sensor positions is defined as

C(all) def
=
[
C(ref)T C(1,mov)T . . . C(Ns,mov)T

]T
.

6452



From O(all), the eigenstructure of system (9) can then be
identified in one run using the steps (6)-(7) of the general
subspace identification algorithm from Section II-A.

The global observability matrix O(all) is constructed as
follows [10]:

(a) For each setup j, the subspace matrix H(j) is built ac-
cording to the chosen subspace algorithm using data Y (j,ref)

k

and Y (j,mov)
k , such that H(j) fulfills factorization property (2)

with observability matrix O(
[
C(ref)T C(j,mov)T

]T
, A).

(b) Obtain O(j) from an SVD of H(j) and truncation at
the desired model order n as in (4)-(5).

(c) Separate O(j) into O(j,ref) and O(j,mov) by choosing
the appropriate block rows, where O(j,ref) = O(C(ref), A)Tj
and O(j,mov) = O(C(j,mov), A)Tj with an unknown change
of basis matrix Tj . Note that

O(j) = Pj

[
O(j,ref)

O(j,mov)

]
,

where Pj is an appropriate permutation matrix.
(d) Set O(ref) def

= O(1,ref) and compute the observability
matrix parts

O(j,mov) def
= O(j,mov)O(j,ref)†O(ref),

which are in the same modal basis.
(e) Interleave the block rows of the matrices O(ref) and

O(j,mov)
, j = 1, . . . , Ns, to obtain the global observability

matrix

O(all) = P


O(ref)

O(1,mov)

...

O(Ns,mov)

 , (10)

where P is an appropriate permutation matrix.
Remark 3: Due to factorization property (2) and the re-

striction to subspace algorithms without a left weighting, step
(d) of the merging algorithm is equivalent to

O(j,mov) def
= H(j,mov)H(j,ref)†O(ref), (11)

where H(j,mov) and H(j,ref) are defined by

H(j) = Pj

[
H(j,ref)

H(j,mov)

]
, (12)

analogously to O(j,mov) and O(j,ref).
From O(all), the global observation matrix C(all) is recov-

ered as the first block row. The state transition matrix A is
the least squares solution of O(all)↑A = O(all)↓. With (10)
and using Definition 2, this least squares solution can be
expressed as

A =
(
O(all)↑TO(all)↑

)−1
O(all)↑TO(all)↓

=

O(ref)↑TO(ref)↑ +

Ns∑
j=1

O(j,mov)↑TO(j,mov)↑

−1

·

O(ref)↑TO(ref)↓ +

Ns∑
j=1

O(j,mov)↑TO(j,mov)↓

. (13)

III. UNCERTAINTY BOUNDS OF MODAL PARAMETERS IN
STOCHASTIC SUBSPACE IDENTIFICATION

A. Covariances of Modal Parameters from Single-Setup SSI

Consider the Stochastic Subspace Identification from Sec-
tion II-A, where the modal parameters (natural frequencies
fλ, damping ratios dλ and mode shapes ϕλ) are obtained
from output-only data of one measurement setup. The sta-
tistical uncertainty of the obtained modal parameters at a
chosen system order can be computed from the uncertainty
of the system matrices, which depends on the uncertainty
of the corresponding subspace matrix H. For any function
y = f(H) and a small perturbation ∆H, the uncertainty
on H is propagated by ∆y ≈ Jf∆H, where Jf is the
sensitivity of function f . The uncertainty of H can be
evaluated by cutting the sensor data into blocks on which
instances of the subspace matrix are computed. Thus, this
offers a possibility to compute the uncertainty bounds of
the modal parameters at a certain system order without
repeating the system identification. In [11], this algorithm
was described in detail for the covariance-driven SSI. The
uncertainty ∆A and ∆C of the system matrices A and C are
connected to the uncertainty of the subspace matrix through
a Jacobian matrix JA,C by[

vec ∆A
vec ∆C

]
= JA,C vec ∆H, (14)

where vec is the vectorization operator. Hence, the covari-
ance of the vectorized system matrices can be expressed as

covA,C
def
= cov

([
vecA
vecC

])
= JA,C covH J

T
A,C , (15)

where covH
def
= cov(vecH) is the covariance of the vector-

ized subspace matrix. Note that covH depends on the selected
subspace method. For covariance-driven SSI, it is stated in
[11] and for data-driven SSI with the UPC algorithm, it is
derived in [13].

As the modal parameters are functions of the system
matrices A and C, their uncertainty yields

∆fλ = Jfλ

[
vec ∆A
vec ∆C

]
, ∆dλ = Jdλ

[
vec ∆A
vec ∆C

]
,

∆ϕλ = Jϕλ

[
vec ∆A
vec ∆C

]
,

where Jfλ , Jdλ and Jϕλ are the respective Jacobians [11]
that are computed for each mode λ. Finally, the covariances
of the modal parameters are obtained as

cov(fλ) = Jfλ covA,C J
T
fλ
, cov(dλ) = Jdλ covA,C J

T
dλ
,

cov(ϕλ) = Jϕλ covA,C J
T
ϕλ
. (16)

B. Covariances of Modal Parameters from Multi-Setup SSI

As the system matrices A and C are obtained differently
for multi-setup measurements in Section II-B than for a
single measurement in Section II-A, their covariance com-
putation has to be adapted. Equations (14) and (15) do not
hold anymore and covA,C needs to be derived for multi-setup
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measurements. Then, the covariance of the modal parameters
is obtained from (16).

For evaluating the uncertainties of system matrices A and
C from the multi-setup SSI, the uncertainties of O(ref) and
O(j,mov)

are required, as A and C depend on these matrices.
Lemma 4: The uncertainties of O(ref) and O(j,mov)

, j =
1, . . . , Ns, with respect to small perturbations in H(j) are

vec ∆O(ref) = JO(ref),H(ref)vec ∆H(1), (17)

vec ∆O(j,mov)
= JOj ,H(ref)vec ∆H(1) + JOj ,Hjvec ∆H(j),

where the Jacobians JO(ref),H(ref) , JOj ,H(ref) and JOj ,Hj are
defined in Equations (18), (23) and (24), respectively.

Proof: See Appendix.
From the uncertainties of O(ref) and O(j,mov)

, j =
1, . . . , Ns, the uncertainties of A and C are derived in the
following lemma, using (13) and (10).

Lemma 5: The uncertainties of A and C with respect to
small perturbations in O(ref) and O(j,mov)

write as

vec ∆A = JA,O(ref)vec ∆O(ref) +

Ns∑
j=1

J
A,Ojvec ∆O(j,mov)

,

vec ∆C = JC,O(ref)vec ∆O(ref) +

Ns∑
j=1

J
C,Ojvec ∆O(j,mov)

,

where the Jacobians JA,O(ref) , J
A,Oj , JC,O(ref) and J

C,Oj are
defined in Equations (28), (29) and (30), respectively.

Proof: See Appendix.
From Lemma 4 and 5 the computation of the covariances

of the system matrices follows finally in the following
proposition.

Proposition 6: The covariance of the system matrices
obtained from multi-setup SSI writes as

covA,C =

Ns∑
j=1

JAC,j covH(j) JTAC,j ,

where

JAC,1 =

[
JA,O(ref)

JC,O(ref)

]
JO(ref),H(ref) +

Ns∑
j=1

[
J
A,Oj

J
C,Oj

]
JOj ,H(ref) ,

JAC,j =

[
J
A,Oj

J
C,Oj

]
JOj ,Hj , j ≥ 2,

and covH(j) = cov(vecH(j)), j = 1, . . . , Ns, are the
covariances of the local subspace matrices according to the
selected SSI algorithm.

Proof: Plugging the results of Lemma 4 into Lemma 5,
the uncertainties of the system matrices can be expressed by
the uncertainties of the local subspace matrices and it holds[

vec ∆A
vec ∆C

]
=

Ns∑
j=1

JAC,j vec ∆H(j).

As the data records from different measurement setups are
collected at different times, we can assume that they are

uncorrelated. Hence, the local subspace matrices H(j) are
statistically independent and it holds cov(H(j1),H(j2)) = 0
for j1 6= j2. Thus, the assertion follows.

Note that in Proposition 6, the size of the involved
covariance matrices is reduced considerably by assuming
statistical independence of the data from different setups,
as only the matrices covH(j) are needed.

Using Proposition 6, the covariance and hence the uncer-
tainty bounds of the modal parameters can be computed as
stated in (16).

IV. NUMERICAL RESULTS

The paper presents multi-setup system identification re-
sults and their uncertainty bounds on a multilayer E-glass
reinforced composite panel [14], which is similar to the
load carrying laminate in a wind turbine blade. The nominal
dimension are 20× 320× 320 mm. Vibration measurements
of the composite panel were taken in three setups with
14 moving sensors and one setup with 7 moving sensors,
while one reference sensor stayed fixed throughout all the
measurements.

Fig. 1. Schematic view of the investigated composite panel.

For the construction of the local subspace matrices for
multi-setup system identification in Section II-B, the param-
eters p+1 = q = 40 and the model order n = 40 were used.
The covariance-driven subspace identification algorithm was
used. A summary of the obtained natural frequencies and
damping ratios from the multi-setup identification is given
in Table I, together with their uncertainty bounds obtained
from the algorithm described in Section III-B. Note that in
Table I relative standard deviations (standard deviation of the
value divided by this value) are presented, which are obtained
from the square root of the estimated covariance from (16).

Uncertainty bounds of the frequencies are much smaller
than those of damping ratios. This is coherent with statistical
theory, since the lower bound of the covariance given by
Fisher information matrix is smaller for the frequencies than
for the damping ratios [15].

V. CONCLUSIONS
In this paper, a memory efficient algorithm for the uncer-

tainty quantification of modal parameters, which are obtained
from the multi-setup subspace identification algorithm pre-
sented in [9], [10], has been derived. It has been shown that
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TABLE I
IDENTIFIED FREQUENCIES f AND DAMPING RATIOS d WITH THEIR

RELATIVE STANDARD DEVIATIONS.

Mode f (Hz) σf/f · 100 (%) d (%) σd/d · 100 (%)
1 358.1 0.40 2.12 9.0
2 551.9 0.15 2.56 6.8
3 787.5 0.36 3.64 16
4 923.4 0.21 2.42 8.5
5 1096 0.09 2.20 4.6
6 1262 0.86 3.50 20
7 1508 0.11 2.45 3.6
8 1855 0.43 2.74 27
9 1928 0.45 2.67 31

the uncertainty on modal parameters is a weighted sum of the
uncertainty of all local subspace matrices for each setup and
then can be computed efficiently and iteratively. The method
was successfully applied and tested on the ambient vibration
data of a composite panel.
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APPENDIX

PROOFS OF SECTION III-B

Before actually proofing Lemma 4 and Lemma 5, results
from [16] are presented on the uncertainty propagation to
singular values and vectors.

Definition 7: For a, b ∈ N define the permutation

Pa,b =

a∑
k=1

b∑
l=1

Ea,bk,l ⊗ E
b,a
l,k ,

where Ea,bk,l is a matrix of size a × b that is equal to 1 at
position (k, l) and zero elsewhere. For any matrix X ∈ Ra,b
it has the property [16]

vecXT = Pa,bvecX.
Lemma 8 ([16]): Let σi, ui and vi be the ith singular

value, left and right singular vector of some matrix X ∈ Ra,b
and ∆X a small perturbation on X . Then,

∆σi = (vi ⊗ ui)Tvec ∆X,

[
∆ui
∆vi

]
= B†iCivec ∆X,

where

Bi
def
=

[
σiIa −X
−XT σiIb

]
, Ci

def
=

[
vTi ⊗ (Ia − uiuTi )

(uTi ⊗ (Ib − vivTi ))Pa,b

]
,

⊗ denotes the Kronecker product, In is identity matrix of
size n× n and Pa,b is defined in Definition 7.

Proof of Lemma 4

Using Lemma 8 and following the lines of [11], the
uncertainty of O(ref) is obtained as follows. Let O(ref) be
computed from H(1) as described in steps (a)-(d) in Section
II-B, i.e.

H(1) =
[
U1 U0

] [Σ1 0
0 Σ0

] [
V T1
V T0

]
, O(ref) = S0U1Σ

1/2
1 ,

where S0 is an appropriate selection matrix. Then, for a small
perturbation ∆H(1) equation (17) holds, where

JO(ref),H(ref) = B + C (18)

and [11]

B def
=

(
In ⊗

(
1

2
S0U1Σ

−1/2
1

))
S1

(v1 ⊗ u1)T

...
(vn ⊗ un)T

 ,
C def

= (Σ
1/2
1 ⊗ S0

[
In1

0n1,n2

]
)

B
†
1C1

...
B†nCn


and in which S1 =

∑n
k=1E

nn,n
(k−1)n+k,k is a selection matrix

and n1 and n2 are the number of rows and columns of H(1).
For the second part of Lemma 4, choose any j ∈

{1, . . . , Ns} and let the dimensions of H(j,ref) and H(j,mov)

be n1 × n3 and n2 × n3, respectively. From (11) follows

∆O(j,mov)
= ∆(H(j,mov))H(j,ref)†O(ref)

+ H(j,mov)∆(H(j,ref)†)O(ref)

+ H(j,mov)H(j,ref)†∆(O(ref))

and in vectorized form

vec ∆O(j,mov)
= (H(j,ref)†O(ref) ⊗ In2

)Tvec ∆H(j,mov)

+(O(ref)T ⊗H(j,mov))vec ∆H(j,ref)†

+(H(j,mov)H(j,ref)† ⊗ In)vec ∆O(ref). (19)

Let derive the required uncertainties in this equation, starting
with ∆H(j,ref)†. The pseudoinverse is defined with the SVD
decomposition

H(j,ref) =
[
U1 U0

] [Σ1 0
0 Σ0

] [
V T1
V T0

]
by H(j,ref)† = V1Σ−11 UT1 , where Σ1 is of size n×n. Hence,

∆H(j,ref)† = ∆(V1)Σ−11 UT1 − V1Σ−11 ∆(Σ1)Σ−11 UT1

+ V1Σ−11 ∆(UT1 ).

With Lemma 8 follows

∆vecH(j,ref)† = JH(j,ref)†∆vecH(j,ref), (20)

where

JH(j,ref)† = B + (U1Σ−11 ⊗
[
0n3,n1

In3

]
)C

+ (In1 ⊗ V1Σ−11 )Pn1,n(In ⊗
[
In1

0n1,n3

]
)C

and

B def
=

n∑
i=1

σ−2i (uiv
T
i ⊗ viuTi ), C def

=

B
†
1C1

...
B†nCn

 .
From (12) follows

vec ∆H(j,ref) = S(j,ref)vec ∆H(j), (21)
vec ∆H(j,mov) = S(j,mov)vec ∆H(j), (22)
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where S(j,ref) and S(j,mov) are appropriate selection matrices.
Plugging (17), (20), (21) and (22) into (19), yields the
assertion with

JOj ,H(ref) = (H(j,mov)H(j,ref)† ⊗ In)JO(ref) , (23)

JOj ,Hj = (H(j,ref)†O(ref) ⊗ In2)TS(j,mov)

+ (O(ref)T ⊗H(j,mov))JH(j,ref)†S(j,ref).(24)

Proof of Lemma 5

From (13) follows A = K−1L, where

K = O(ref)↑TO(ref)↑ +

Ns∑
j=1

O(j,mov)↑TO(j,mov)↑
, (25)

L = O(ref)↑TO(ref)↓ +

Ns∑
j=1

O(j,mov)↑TO(j,mov)↓
. (26)

Hence, ∆A = −K−1∆KK−1L+K−1∆L = −K−1∆KA
+K−1∆L and it follows

vec ∆A = −(AT⊗K−1)vec ∆K+(I⊗K−1)vec ∆L. (27)

Let O ∈ R(p+1)r×n be a placeholder for O(ref) or O(j,mov)
,

where r = r(ref) or r = r(j), respectively. Let furthermore
S↑ and S↓ be selection matrices, such that O↑ = S↑O and
O↓ = S↓O. Then,

∆(O↑TO↑) = ∆(OT )ST↑ O↑ +O↑TS↑∆(O).

and after vectorization and using Definition 7

vec ∆(O↑TO↑) =
(
(O↑TS↑ ⊗ In)Ppr,n + (In ⊗O↑TS↑)

)
·vec ∆O.

Analogously, it holds

vec ∆(O↑TO↓) =
(
(O↓TS↑ ⊗ In)Ppr,n + (In ⊗O↑TS↓)

)
·vec ∆O.

Then, from (25), (26) and (27) the assertion follows for ∆A,
where

JA,O(ref) = −(AT ⊗K−1)
(

(O(ref)↑TS(ref)↑ ⊗ In)Ppr(ref),n

+(In ⊗O(ref)↑TS(ref)↑)
)

+(In ⊗K−1)
(

(O(ref)↓TS(ref)↑ ⊗ In)Ppr(ref),n

+(In ⊗O(ref)↑TS(ref)↓)
)
, (28)

J
A,Oj = −(AT ⊗K−1)

(
(O(j,mov)↑T

Sj↑ ⊗ In)Ppr(j),n

+(In ⊗O
(j,mov)↑T

Sj↑)
)

+(In ⊗K−1)
(

(O(j,mov)↓T
Sj↑ ⊗ In)Ppr(j),n

+(In ⊗O
(j,mov)↑T

Sj↓)
)
. (29)

It remains the uncertainty of C. As C is the first block row
of (10), its uncertainty can be written as

∆C = SC


∆O(ref)

∆O(1,mov)

...

∆O(Ns,mov)


with an appropriate selection matrix SC . Partition SC =[
SC,(ref) SC,1 . . . SC,Ns

]
such that

∆C = SC,(ref)∆O(ref) +

Ns∑
j=1

SC,j∆O
(j,mov)

.

Vectorizing this equation and setting

JC,O(ref) = In ⊗ SC,(ref), JC,Oj = In ⊗ SC,j (30)

leads to the assertion.
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[9] M. Döhler and L. Mevel, “Modular subspace-based system identifica-
tion and damage detection on large structures,” in Proc. 34th IABSE
Symposium, (Venice, Italy), 2010.
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