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Abstract— In supervisor synthesis achieving nonblockingness
is a major computational challenge for a large system. In
the literature several automaton-based distributed synthesis
approaches have been proposed, in which the plant is modeled
by a collection of nondeterministic finite-state automata and the
requirement and the final distributed supervisor are modeled by
a collection of deterministic finite-state automata. In this paper
we provide a sufficient condition, which guarantees maximal
permissiveness of the synthesized distributed supervisor.

Index Terms— discrete-event systems, nondeterministic finite-
state automata, automaton abstraction, distributed supervisor
synthesis, maximal permissiveness

I. INTRODUCTION

In the Ramadge/Wonham supervisory control paradigm

[1] [2] one of the main challenges of supervisor synthesis

is to achieve nonblockingness when a target system has a

large number of states, often resulting from synchronous

product of many relatively small local components. To

overcome this difficulty, many approaches have been

proposed recently, e.g. state-feedback control based on

state-tree structures [5], hierarchical interface-based control

[4] and modular/distributed control [6] [8] [13] [14].

The modular/distributed approaches with decomposable

requirements are particularly interesting for two

reasons: potentially low synthesis complexity and high

implementation flexibility. The low complexity is achieved

through local synthesis, and implementation flexibility refers

that a structural change of the target system may require

only a small number of relevant local controllers to be

updated. There are two major types of modular/distributed

synthesis approaches: language-based approaches, e.g.,

[6] [7], and automaton-based approaches, e.g., [8] [10]

[14]. The language-based approaches utilize the concept

of natural observers [3] to guarantee that a nonblocking

supervisor synthesized based on an abstracted plant model

is also a nonblocking supervisor of the original plant

model. To achieve the same goal, the automaton-based

approaches usually use an appropriate variation of the

concept of weak bisimulation equivalence relation in model
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abstraction. It has been shown that imposing the natural

observer property on relevant projections may unnecessarily

enlarge the size of the abstracted plant model, which may

significantly increase the subsequent synthesis complexity.

Therefore, using automaton-based abstraction techniques

may be arguably more attractive for practical applications.

There is one catch for using automaton-based approaches -

the abstracted models usually are nondeterministic, which

fortunately turns out to be just a minor side effect.

In general, a nonblocking modular/distributed supervisor

is not maximally permissive. Nevertheless, under some

circumstances the maximal permissiveness is attainable in

modular/distributed control. For language-based approaches

some sufficient conditions have been given in the literature,

e.g., in [6] [7]. But it is still an open problem for

automaton-based approaches, which this paper aims to

solve. In addition, we will also address the issue of

partial observation in maximally permissive distributed

control, which has not been discussed in the literature.

More explicitly, we extend the concept of local control

consistency in [13] (which is more general than the concept

of output control consistency used in [6]) and the concept

of mutual controllability in [12] to handle nondeterministic

plant models. We also introduce a new concept called

compatibility. It generalizes the basic idea of natural

observers so that its usage is less restrictive than natural

observers, thus, usually resulting smaller abstracted models

which still allow the existence of maximally permissive

distributed supervisors. In addition, nondeterminism and

partial observation are both taken into account in this new

concept, making it even more general than natural observers.

This paper is organized as follows. In Section II we review

relevant concepts, automaton operations and the general

setup of distributed supervisory control described in [10].

Then in Section III we formulate a distributed supervisor

synthesis problem and introduce the concept of a distributed

supervisor. A sufficient condition to guarantee maximal per-

missiveness of a distributed supervisor is presented in Section

IV. After providing a realistic example in Section V we draw

conclusions in Section VI.

II. BASIC CONCEPTS

In this section we first introduce basic concepts of lan-

guages and nondeterministic finite-state automata. Then we

describe automaton abstraction introduced in [11].
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A. Languages and nondeterministic finite-state automata

Let Σ be a finite alphabet and Σ∗ be the free monoid

on Σ, where the unit element is the empty string ǫ and the

monoid operation is the concatenation. Given two strings

s, t ∈ Σ∗, s is called a prefix substring of t, written as

s ≤ t, if there exists s′ ∈ Σ∗ such that ss′ = t, where ss′

denotes the concatenation of s and s′. A subset L ⊆ Σ∗ is

called a language. L = {s ∈ Σ∗|(∃t ∈ L) s ≤ t} ⊆ Σ∗ is

called the prefix closure of L. Given a set X we use 2X and

|X | to denote respectively the power set and the size of X .

Let Σ′ ⊆ Σ. A mapping P : Σ∗ → Σ′∗ is called the

natural projection with respect to (Σ,Σ′), if

1) P (ǫ) = ǫ

2) (∀σ ∈ Σ)P (σ) :=

{

σ if σ ∈ Σ′

ǫ otherwise
3) (∀sσ ∈ Σ∗)P (sσ) = P (s)P (σ)

Given a language L ⊆ Σ∗, P (L) := {P (s) ∈ Σ′∗|s ∈ L}.

The inverse image mapping of P is

P−1 : 2Σ
′∗

→ 2Σ
∗

: L 7→ P−1(L) := {s ∈ Σ∗|P (s) ∈ L}.

Given L1 ⊆ Σ∗
1 and L2 ⊆ Σ∗

2, the synchronous product of

L1 and L2 is defined as:

L1||L2 := P−1
1 (L1) ∩ P

−1
2 (L2),

where P1 : (Σ1 ∪ Σ2)
∗ → Σ∗

1 and P2 : (Σ1 ∪ Σ2)
∗ → Σ∗

2

are natural projections. || is commutative and associative.

A nondeterministic finite-state automaton is a 5-tuple G =
(X,Σ, ξ, x0, Xm), where X stands for the finite state set, Σ
for the alphabet, ξ : X × Σ → 2X for the nondeterministic

transition function, x0 for the initial state and Xm for the

marker state set. As usual [9], we extend the domain of ξ
from X × Σ to X × Σ∗. If for all x ∈ X and σ ∈ Σ,

|ξ(x, σ)| ≤ 1, then G is called deterministic. Let B(G) :=
{s ∈ Σ∗|(∃x ∈ ξ(x0, s))(∀s

′ ∈ Σ∗) ξ(x, s′)∩Xm = ∅}. We

say G is nonblocking if B(G) = ∅. For each x ∈ X , we

define another set N(G) := {s ∈ Σ∗|ξ(x0, s) ∩ Xm 6= ∅}
and call N(G) the nonblocking set of G, which is simply

the set of all strings recognized by G. It is possible that

B(G) ∩ N(G) 6= ∅, due to nondeterminism. Let φ(Σ) be

the collection of all nondeterministic finite-state automata

over Σ. Given a language K ⊆ Σ∗, we say G ∈ φ(Σ) is

a recognizer of K , if G is deterministic, nonblocking and

N(G) = K . The synchronous product of two nondetermin-

istic automata, say G1 ∈ φ(Σ1) and G2 ∈ φ(Σ2) is defined

in the usual way [15], which is denoted as G1 ×G2.

B. Automaton abstraction

Definition 1: [11] Given G = (X,Σ, ξ, x0, Xm) ∈ φ(Σ),
let Σ′ ⊆ Σ and P : Σ∗ → Σ′∗ be the natural projection. A

weak observation equivalence relation on X with respect to

Σ′ is an equivalence relation R ⊆ {(x, x′) ∈ X × X |x ∈
Xm ⇐⇒ x′ ∈ Xm} such that for all (x, x′) ∈ R, and all

s ∈ Σ∗, if P (s) 6= ǫ then for all y ∈ ξ(x, s),

(∃s′ ∈ Σ∗)P (s) = P (s′) ∧ (∃y′ ∈ ξ(x′, s′)) (y, y′) ∈ R.

The largest weak observation equivalence relation on X
with respect to Σ′ is denoted as ≈G,Σ′ . �

If G is clear from the context we simply write ≈Σ′ for

≈G,Σ′ . In [11] it has been shown that the largest weak

observation equivalence relation is weaker than the weak

bisimilarity used in many existing abstraction techniques,

e.g., in [8] [14], thus can achieve a smaller abstracted

model than those techniques, which are based on the weak

bisimilarity, can achieve.

Definition 2: [11] Given G = (X,Σ, ξ, x0, Xm), let Σ′ ⊆
Σ. The automaton abstraction of G with respect to ≈Σ′ is

an automaton G/ ≈Σ′ := (Z,Σ′, δ, z0, Zm) where

1) Z := X/ ≈Σ′ := {{x′ ∈ X |(x, x′) ∈≈Σ′}|x ∈ X},

2) z0 :=< x0 >,

3) Zm := {z ∈ Z|z ∩Xm 6= ∅},

4) δ : Z × Σ′ → 2Z , where for any (z, σ) ∈ Z × Σ′,

δ(z, σ) :=
{z′ ∈ Z|(∃x ∈ z)(∃u, u′ ∈ (Σ−Σ′)∗) ξ(x, uσu′)∩z′ 6= ∅}.

�

The time complexity of computing G/ ≈Σ′ is dominated

by the time complexity of computing X/ ≈Σ′ , which is

O(|Σ||X |2 log |X |) [11]. To use the proposed automaton

abstraction technique properly, we need to introduce the con-

cept of standardized automata, which is defined as follows.

We bring in two new symbols τ and µ not contained in Σ.

We call τ the initial event and µ the marking event. Let

Στ,µ := Σ ∪ {τ, µ}. We say Gτ,µ = (X,Στ,µ, ξ, x0, Xm) is

standardized if the following hold

1) x0 /∈ Xm ∧ (∀x ∈ X) [ξ(x, τ) 6= ∅ ⇐⇒ x =
x0] ∧ (∀σ ∈ Σ− {τ}) ξ(x0, σ) = ∅

2) (∀x ∈ X)(∀σ ∈ Σ)x0 /∈ ξ(x, σ)
3) (∀x ∈ X)x ∈ Xm ⇐⇒ x ∈ ξ(x, µ)

A standardized automaton is an automaton, in which x0 is

not marked (by condition 1), τ is only used at x0, which

only has outgoing transitions labeled by τ (by condition

1) and no incoming transition (by condition 2), and each

marker state has a selflooping transition µ (by condition

3). From now on we only consider standardized automata.

For notational simplicity we assume that each alphabet Σ
contains τ and µ, and φ(Σ) is the set of all standardized

finite-state automata, whose alphabets are Σ. In [11] it has

been shown that the product of two standardized automata

is a standardized automaton, and the abstraction of a

standardized automaton, whose target alphabet contains τ
and µ, is still standardized.

In control engineering examples G usually consists of a

large number of small automata, namely G = G1×· · ·×Gn

for some very large number n ∈ N, where Gi ∈ φ(Σi)
for each i = 1, 2, · · · , n. How to compute G/ ≈Σ′ im-

poses a great computational difficulty. To overcome it, a

sequential abstraction algorithm called SAP is presented in

[11], which generates an automaton W ∈ φ(Σ′) such that

(×i∈IGi)/ ≈Σ′
∼=W , where ≈Σ′

∼= is called the nonblocking

1156



equivalence relation, which essentially says that (×i∈IGi)
and W are equivalent in terms of their blocking and non-

blocking behaviors.

III. A DISTRIBUTED SYNTHESIS PROBLEM

Given G = (X,Σ, ξ, x0, Xm) ∈ φ(Σ), for each x ∈ X let

EG : X → 2Σ : x 7→ EG(x) := {σ ∈ Σ|ξ(x, σ) 6= ∅}.

Thus, EG(x) is simply the set of all events allowable

at x in G. Let Σ = Σc ∪ Σuc = Σo ∪ Σuo, where the

disjoint subsets Σc and Σuc denote respectively the set of

controllable events and the set of uncontrollable events,

and the disjoint subsets Σo and Σuo denote respectively

the set of observable events and the set of unobservable

events. In particular, τ ∈ Σuc ∩ Σuo and µ ∈ Σc ∩ Σuo. Let

L(G) := {s ∈ Σ∗|ξ(x0, s) 6= ∅} = B(G) ∪N(G).

Definition 3: [10] Given G = (X,Σ, ξ, x0, Xm) and Σ′ ⊆
Σ, let A = (Y,Σ′, η, y0, Ym) ∈ φ(Σ′). A is state-controllable

with respect to G and Σuc if for all s ∈ L(G× A),
(∀(x, y) ∈ ξ × η(x0, y0, s))EG(x) ∩ Σuc ∩ Σ′ ⊆ EA(y). �

Intuitively speaking, A will not block occurrence of any

uncontrollable event in G. When G and A are deterministic,

state-controllability coincides with language controllability

introduced in [1]. Next, we introduce the concept of state

normality. Let Po : Σ∗ → Σ∗
o be the natural projection.

Definition 4: [10] Given G = (X,Σ, ξ, x0, Xm) ∈ φ(Σ)
and Σ′ ⊆ Σ, let A = (Y,Σ′, η, y0, Ym) ∈ φ(Σ′). A is state-

normal with respect to G and Po if for all s ∈ L(G × A)

and s′ ∈ P−1
o (Po(s)) ∩ L(G×A),

(∀(x, y) ∈ ξ × η(x0, y0, s
′))(∀s′′ ∈ Σ∗)Po(s

′s′′) =
Po(s) ∧ ξ(x, s′′) 6= ∅ ⇒ ξ × η(x, y, s′′) 6= ∅. �

State-normality is a direct extension of language normality

[18] for nondeterministic cases. They coincide when G
and A are deterministic. We now present the concept of

distributed systems.

Definition 5: [10] A distributed system with

respect to given alphabets {Σi|i ∈ I} is a finite

collection of nondeterministic finite-state automata

G := {Gi = (Xi,Σi, ξi, xi,0, Xi,m) ∈ φ(Σi)|i ∈ I}.

Each Gi (i ∈ I) is called the ith component of G, and

Σi = Σi,c ∪ Σi,uc = Σi,o ∪ Σi,uo, where disjoint subsets

Σi,c and Σi,uc are the controllable and uncontrollable

alphabets respectively, and disjoint subsets Σi,o and

Σi,uo are the observable and unobservable alphabets

respectively. For all i, j ∈ I with i 6= j, we assume that

Σi,uc ∩ Σj,c = Σi,uo ∩ Σj,o = ∅. The compositional

behavior of G is specified by ×i∈IGi. �

The product of local components is the system of

interest. Interaction among local components is modeled by

event sharing among local components. We now present a

supervisor synthesis problem.

Distributed Supervisor Synthesis Problem: [10] Given a

distributed system G = {Gi ∈ φ(Σi)|i ∈ I} and a set of

specifications H = {Hj ∈ φ(∆j)|∆j ⊆ ∪i∈IΣi ∧ j ∈ J},

where J is a finite index set and each Hj is a deterministic

automaton, synthesize a collection of deterministic finite-

state automata

S = {Sk ∈ φ(Γk)|Γk ⊆ ∪i∈IΣi ∧ k ∈ K},

where K is a finite index set, such that the following

conditions hold,

1) N((×i∈IGi) × (×k∈KSk)) ⊆ N((×i∈IGi) ×
(×j∈JHj)),

2) B((×i∈IGi)× (×k∈KSk)) = ∅,

3) ×k∈KSk is state-controllable with respect to ×i∈IGi

and ∪i∈IΣi,uc,

4) ×k∈KSk is state-normal with respect to ×i∈IGi and

Po : (∪i∈IΣi)
∗ → (∪i∈IΣi,o)

∗. �

We can check that the decentralized supervisor synthesis

mentioned in [16] is a special case of the aforementioned

distributed synthesis problem. Therefore, the existence of

S with respect to G, H and given alphabets {Γk|k ∈ K}
is in general undecidable. Nevertheless, in many practical

applications such an S can be computed, see in [10]. When

this happens, S is called a nonblocking distributed supervisor

of G under H, and each Sk is a local supervisor.

IV. MAXIMALLY PERMISSIVE DISTRIBUTED CONTROL

In general, given a distributed system G and a set of

requirements H, a distributed supervisor will not achieve

the same permissiveness as that of a monolithic supervisor,

which is obtained by first computing the product of all

components and the product of all requirements, then

performing centralized supervisor synthesis. In this section

we will discuss under what conditions an aforementioned

distributed supervisor attains maximal permissiveness.

Definition 6: Given G = (X,Σ, ξ, x0, Xm) ∈ φ(Σ) and

deterministic H = (W,∆, ψ, w0,Wm) ∈ φ(∆) with ∆ ⊆ Σ,

let P ′
o : Σ∗ → (∆ ∩ Σo)

∗ be natural projections. G is ∆-

compatible with respect to H if for all s, s′ ∈ L(G×H) and

(x,w) ∈ ξ × ψ(x0, w0, s),

1) P ′
o(s) = P ′

o(s
′) ⇒ (∀(x′, w′) ∈ ξ ×

ψ(x0, w0, s
′)) (x,w) ≈G×H,∆ (x′, w′). �

The concept of ∆-compatibility is a generalization of

natural observers in a nondeterministic setup under partial

observation. The condition in the definition is an analogue

to the condition for the projection P : Σ∗ → ∆∗ to

be an L(G × H)-observer and an Lm(G × H)-observer

simultaneously, except that we use the weak observation

equivalence relation to deal with nondeterminism and we

consider partial observation. It is interesting to notice that

if G is deterministic, fully observed and nonblocking, then
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P is an Lm(G)-observer implies that Condition (1) holds,

regardless of what the requirement H is. This suggests that

the common practice of using Lm(G)-observers in existing

maximal permissive synthesis may be over restrictive.

The condition of ∆-compatibility can be checked by the

following algorithm.

Procedure SC:

(1) Input: G = (X,Σ, ξ, x0, Xm) ∈ φ(Σ) and deterministic

H = (W,∆, ψ, w0,Wm) ∈ φ(∆).
(2) Compute G×H = (Z := X ×W,Σ, δ := ξ × ψ, z0 :=
(x0, w0), Zm := Xm ×Wm).
(3) Compute Z/ ≈G×H,∆.

(4) Output True if for all < z >,< ẑ >∈ Z/ ≈G×H,∆ with

< z > 6=< ẑ > and z′ ∈< z >, ẑ′ ∈< ẑ >,

(∀σ ∈ Σ) ẑ′ ∈ δ(z′, σ) ⇒ δ(z′, σ) ⊆< ẑ > ∧σ ∈ ∆ ∩ Σo;

Otherwise, output false. �

Proposition 1: Condition (1) in Def. 6 holds iff Procedure

SC outputs True. �

Since the complexity of determining all equivalent states

with respect to the weak observation equivalence relation

≈G×H,∆, i.e., Z/ ≈G×H,∆, is O(|X |2|W |2|Σ| log(|X ||W |))
[17], the complexity of checking the condition in Def. 6 is

O(|X |2|W |2|Σ| log(|X ||W |)).

Definition 7: Let G = (X,Σ, ξ, x0, Xm) and Σ′ ⊆ Σ.

We say G is control consistent with respect to Σ′ if for all

x, x′ ∈ X and all s ∈ P−1((Σuc ∩ Σ′)+),

x′ ∈ ξ(x, s) ⇒ (∃s′ ∈ Σ+
uc)P (s) = P (s′) ∧ x′ ∈ ξ(x, s′),

where P : Σ∗ → (Σuc ∩ Σ′)∗ is the natural projection. �

Informally speaking, if G is control consistent with

respect to Σ′, then no uncontrollable event in Σ′ can be

stopped by disabling a controllable event in Σ − Σ′. The

concept of control consistency is a direct extension of the

concept of local control consistency presented in [13] to the

nondeterministic cases. Thus, the complexity of checking

control consistency is the same as that for local control

consistency, which is O(|X |4|ξ|3), where |ξ| denotes the

number of transitions.

Theorem 1: Given a plant G ∈ φ(Σ) and a requirement

H ∈ φ(∆) with ∆ ⊆ Σ. Assume that we have W ∈ φ(∆)
with W ∼= G/ ≈∆. Let S ∈ φ(∆) be the supremal NSN

supervisor of W under H . If G is control consistent with

respect to ∆ and ∆-compatible with respect to H , then a

recognizer of N(G)||N(S) is the supremal NSN supervisor

of G under H . �

Theorem 1 is about maximal permissiveness of a

supervisor computed based on an abstracted model. The

reason why we introduce the condition W ∼= G/ ≈∆ is

that in cases when G consists of many small automata,

computing G/ ≈∆ is done via some sequential procedure

such as SAP, which produces W instead of G/ ≈∆.

Theorem 1 assures that we can synthesize the supremal

state-normal supervisor based on an abstracted model W
obtained from SAP. Compared with the results in [6] and

[13], Theorem 1 drops the requirement of observers used in

[6] [13] and replace it with the concept of ∆-compatibility

with respect to H , which is in general weaker than the

concept of observers, and extends the concept of local

control consistency introduced in [13] (or the concept of

output control consistency used in [6]). Partial observation

is dealt with in the concept of ∆-compatibility, which is not

considered in [6] and [13].

So far we have provided a sufficient condition to guarantee

maximal permissiveness of a supervisor computed based on

an abstracted model. It is interesting to know under what

conditions a nonblocking distributed supervisor obtained by

coordinated synthesis achieves maximal permissiveness. To

this end we first extend the concept of mutual controllability

so that it is applicable to nondeterministic models.

Definition 8: Given a distributed system G = {Gi =
(Xi,Σi, ξi, xi,0, Xi,m) ∈ φ(Σi)|i ∈ I}, for each i, j ∈ I let

Pij : Σ∗
i → (Σi ∩ Σj)

∗ be the natural projection. We say G
is mutually controllable if for each i, j ∈ I with i 6= j, for

all si ∈ Σ∗
i and sj ∈ Σ∗

j with Pij(si) = Pji(sj), and for all

xi ∈ ξi(xi,0, si), xj ∈ ξj(xj,0, sj) and σ ∈ Σi,uc ∩ Σj,uc,

ξi(xi, σ) 6= ∅ if and only if ξj(xj , σ) 6= ∅. �

A distributed system G is mutually controllable if for

every two different subsystems Gi and Gj running together,

Gi allows an uncontrollable event shared by both Gi and

Gj to be fired if and only if Gj also allows the same

uncontrollable event to be fired. In other words, there is

no uncontrollable event, whose occurrence can be blocked

simply by the parallel composition of subsystems. Thus,

to prevent the occurrence of an uncontrollable event, an

appropriate controllable event disabling must be taken.

Theorem 2: Given a distributed system G = {Gi ∈
φ(Σi)|i ∈ I} and a collection of requirements H consisting

of local requirements {Hi ∈ φ(∆i)|∆i ⊆ Σi ∧ i ∈ I} and a

global requirement H ∈ φ(∆) with ∪i,j:i6=jΣi ∩ Σj ⊆ ∆ ⊆
∪i∈IΣi, suppose for each Gi we have the supremal NSN

supervisor Si ∈ φ(Σi) under Hi. Let Pi : ∆
∗ → (∆ ∩ Σi)

∗

be the natural projection. Suppose S ∈ φ(∆) is the supremal

NSN supervisor of ×i∈I((Gi × Si)/ ≈∆∩Σi
) under H .

If for each i ∈ I , Gi × Si is control consistent with

respect to ∆ ∩ Σi and ∆ ∩ Σi-compatible with respect

to Ĥi which recognizes Pi(Lm(H)), {Gi × Si|i ∈ I}
is mutually controllable and for each i ∈ I we have

∪j∈I,j 6=i(Σi ∩ Σj) ⊆ Σi,o, then S ×i∈I Si is the supremal

NSN supervisor of ×i∈IGi under H ×i∈I Hi. �

In addition to the componentwise conditions of control

consistency and compatibility, to guarantee maximal permis-
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siveness of a distributed supervisor, Theorem 2 also requires

that {Gi×Si|i ∈ I} is mutually controllable and in addition,

for each i ∈ I , Σi,o ⊇ ∪j∈I,j 6=i(Σi ∩ Σj), which means all

shared events are observable. The last condition is used to

deal with partial observation. In the case of full observation

the condition ∪j∈I,j 6=i(Σi ∩ Σj) ⊆ Σi,o is automatically

satisfied. It is still an open question whether the last condition

can be relaxed further. To illustrate the proposed sufficient

condition, we apply it to the following cluster tool example.

V. EXAMPLE - A CLUSTER TOOL

We consider the following cluster tool depicted in Figure

1, which consists of one entering load lock (Lin) and one

exit load lock (Lout), four chambers (C11, C12, C21, C22),

two one-slot buffers (B1, B2), and three transportation

robots (R1, R2, R3). Wafers are transported into the system

from the entering load lock by the robot R1, then moved

through designated chambers for processing based on

pre-specified routing sequences by relevant robots located in

different clusters. Finally, processed wafers are transported

out of the system through exit load lock by R1. As an

C11

C12

B1

C21

C22

Lin

Lout
R1 R2

B2

R3

Fig. 1. Structure of cluster tool

illustration, we choose the following routing sequence: Lin

→ C11 → B1 → C21 → B2 → C22 → B1 → C12 → Lout.

Different routine sequences result in different requirements,

which lead to different distributed supervisors and the

corresponding synthesis complexities. Without supervision

the system may be blocked owing to wafers competing

for buffer slots. Our goal is to synthesize a maximally

permissive distributed supervisor that guarantees continuous

wafer processing, namely blocking should not happen. To

this end, we first model the system as follows.

For simplicity we assume that the entering load lock Lin

behaves like an infinite wafer source and the exit load lock

Lout like an infinite wafer sink. Figure 2 depicts the models

of load locks. We assume that in each chamber a wafer is

Fig. 2. Load locks

first dropped in by a relevant robot, then processed and finally

picked up by the relevant robot. Since each chamber has the

same automaton model, except for different alphabets, we

only provide the model for one chamber, which is depicted

in Figure 3, where i = 1, 2 and j = 1, 2. Notice that each

Ri-pick-Cij

Ri-drop-Cij Processij

Ri-pick-Cij Ri-drop-Cij
Ri-drop-Cij
Ri-pick-Cij

Fig. 3. Model of chamber Cij

chamber behaves like a one-slot buffer, except that it contains

an internal transition Processij . If robot Ri tries to pick when

the chamber is empty, or drop when the chamber is full,

the component will become deadlock. By modeling in such

a way we will force a nonblocking supervisor to prevent

inappropriate pick or drop actions to happen. The models of

robots are depicted in Figure 4. Finally we model each buffer

Bi (i = 1, 2) as a component, whose model is provided in

Figure 5, indicating that buffer overflow or underflow will

result in deadlock. In these models we assume that all events

are observable and only events of the robots are controllable.

The local requirements are depicted in Figure 6.

To synthesize a distributed supervisor, we first standardize

all component models then partition the system into two

modules. Module 1 consists of Lin, Lout, C11, C12, B1 and

R1. Module 2 consists of C21, C22, B1, B2 and R2 and R3.

With Module i (i = 1, 2) we associate Hi1, Hi2, Hi3 and

Hi4 as local specifications. For each module we synthesize

a local supremal nonblocking state-normal supervisor. For

Module 1 we first compute the standardized plant model

G1 := Lin × Lout × C11 × C12 ×B1 ×R1

then we compute the local requirement

H1 := H11 ×H12 ×H13 ×H14

Based on G1 and H1 we synthesize the local supervisor S1.

Similarly, we synthesize the local supervisor S2 for Module

2. The computational results are listed as follows:

G1 (129, 578) ; H1 (17, 66) ; S1 (58, 120)

G2 (509, 2534) ; H2 (17, 66) ; S2 (138, 328)

where in each tuple (x, y), x denotes the number of states

and y for the number of transitions.

It is not difficult to see that G1 and G2 are mutually

controllable because none of uncontrollable events are

shared. It is also true that Σ1 ∩ Σ2 ⊆ Σi,o for i = 1, 2
because all events are observable. We set ∆ := {R1-pick-

C11, R2-pick-C22 and R3-drop-B2}, which makes Gi × Si

(i = 1, 2) control consistent with respect to ∆ ∩ Σi and

strongly ∆-compatible with respect to Ĥi - a recognizer

of (∆ ∩ Σi)
∗. Thus, we can perform abstraction-based

synthesis. After computing (G1 × S1 × G2 × S2)/ ≈∆,

whose size is (13, 84), we use it as an abstracted model
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R1-pick-Lin
R1-pick-C11
R1-pick-C12
R1-pick-B1

R1-drop-Lout
R1-drop-C11
R1-drop-C12
R1-drop-B1

R1

R2-pick-B1
R2-pick-C21
R2-pick-C22
R2-pick-B2

R2-drop-B1
R2-drop-C21
R2-drop-C22
R2-drop-B2

R2

R3-pick-B2

R3-drop-B2

R3

Fig. 4. Models of robots

Fig. 5. Model of buffer Bi

and synthesize a new local supervisor CA, which is called

a coordinator whose size is (4, 9). A language-equivalence

test shows that S1 × S2 × CA is maximal permissive.

As a comparison we also apply the language-based ap-

proach [6] to derive a distributed supervisor. The results for

two modules are listed below.

G1 (128, 544);S1 (57, 118); G2 (508, 2404);S2 (137, 326)

At the module level the local supervisors are almost the same

except that in automaton-based results each local supervisor

contains one extra state and two extra transitions (one for τ
and one for µ). When we perform model abstraction with

respect to the target alphabet ∆, it turns out we need to add

R1-pick-Lin to ∆ to guarantee that both natural projections

R1-drop-C11

R1-pick-Lin

H11

R1-drop-B1

R1-pick-C11

H12

R1-drop-C12

R1-pick-B1

H13

R1-drop-Lout

R1-pick-C12

H14

R2-drop-C21

R2-pick-B1

H21

R2-drop-B2

R2-pick-C21

H22

R2-drop-C22

R2-pick-B2

H23

R2-drop-B1

R2-pick-C22

H24

Fig. 6. Models of local requirements

are observers. The size of the final coordinator CO is (7,

16), which is bigger than the size of CA.

VI. CONCLUSIONS

In this paper we have first introduced a distributed super-

visor synthesis problem, then provided a sufficient condition

to guarantee maximal permissiveness of the synthesized

distributed supervisor when partial observation and nonde-

terminism are considered in the plant model. The proposed

sufficient condition is more general and relaxed than those

existing conditions in the literature, thus, potentially appli-

cable to a larger class of systems.
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