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Abstract— The aim of this paper is to obtain periodic state
space representations for periodic input–output behavioral
systems using a lifting technique which allows to associate a
time–invariant behavior to a periodic one. Our approach differs
from the classical one since we do not start from a transfer
function description but rather from linear difference equations
with periodically time-varying coefficients.

Index Terms— Mathematical systems theory, linear systems,
discrete-time systems, behavior.

I. INTRODUCTION

The problem of finding state space representations for

periodic systems has deserved great attention, see, e.g.,

[1]–[8]. The available contributions consider exclusively the

realization of transfer functions or impulse responses.

In this paper we are concerned with a similar problem,

in the context of the behavioral approach. This means that

our object of interest is the behavior of a system, a set that

consists of all the signal trajectories that are admissible

according to the system laws. In particular, such trajectories

do not necessarily correspond to zero initial conditions,

and therefore the behavior may contain more trajectories

than the ones that can be generated by the system transfer

function or impulse response. In this sense, our realization

problem is aimed at a broader class of systems.
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Our starting point is the description of a periodic behavior

by means of linear difference equations with periodically

time–varying coefficients. Based on this, we obtain a

description for the set of corresponding lifted trajectories,

which is a time–invariant behavior, described in terms of

a linear constant coefficient difference equations. Using

behavioral techniques, it is possible to construct minimal

state space representations for the lifted behavior that can

be used (either directly or after a suitable transformation)

to obtain a minimal periodic state space representation of

constant dimension for the original periodic behavior.

II. PRELIMINARIES

In the behavioral framework, see [9], [10], a dynamical

system Σ is defined as a triple Σ = (T,W,B), where T⊆
R is the time set, W is the signal space, and B⊆ W

T :=
{w:T→W} is the system behavior. The behavior is a set

that consists of all the signal evolutions that are compatible

with the system laws. In this paper we shall be concerned

with the discrete–time case, that is, T=Z, and assume that

the signal space is W = R
2. In general, in the behavioral

approach all the system variables are treated in an equal

footing, and no a priori distinction is made between inputs

and outputs. This distinction can be made a posteriori, if at

all appropriate. Here we shall assume that this input–output

partition has been made and w=(u, y) consists of the input

component u and the output component y.

For τ ∈Z, define the τ–shift as στ : (Rq)
Z
→(Rq)

Z
, by

(στw) (k) := w (k + τ) .

While the behavior B of a time–invariant system over

Z is characterized by its invariance under the time shifts,

which amounts to σB=B, [9], [10], P -periodic behaviors

are required to be invariant only with respect to shifts that

are powers of σP .

Definition 2.1: [11] A system Σ is said to be P–periodic,

with P ∈N, if its behavior B satisfies σP
B=B. ⋄

We consider single input–single output P–periodic behav-

iors B described by difference equations with periodically
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time–varying coefficients, i.e.

(
pt
(
σ, σ−1

)
y
)
(t+Pk)=

(
qt
(
σ, σ−1

)
u
)
(t+Pk) , (1)

t=0, . . . , P−1, k∈Z ,

where, for each time instant t = 0, . . . , P − 1,

pt
(
ξ, ξ−1

)
, qt

(
ξ, ξ−1

)
∈R

[
ξ, ξ−1

]
are Laurent polynomials

in the indeterminate ξ. Note that (1) can also be written as

(
p
(
σ, σ−1

)
y
)
(Pk)=

(
q
(
σ, σ−1

)
u
)
(Pk) , k∈Z, (2)

where

p
(
ξ, ξ−1

)
:=




p0
(
ξ, ξ−1

)

ξp1
(
ξ, ξ−1

)

...

ξP−1pP−1

(
ξ, ξ−1

)



,

and similarly for q
(
ξ, ξ−1

)
. From now on, such systems

will simply be called SISO P–periodic behaviors.

By factoring p and q as, see [12],

p
(
ξ, ξ−1

)
= PL

(
ξP , ξ−P

)
ΩP (ξ) (3)

q
(
ξ, ξ−1

)
= QL

(
ξP , ξ−P

)
ΩP (ξ) (4)

where

ΩP (ξ) :=
[
1 ξ · · · ξP−1

]T
,

we write down relation (2) as

(
PL

(
σP , σ−P

)
ΩP (σ) y

)
(Pk)

=
(
QL

(
σP , σ−P

)
ΩP (σ) u

)
(Pk) , k ∈ Z . (5)

Define the lifted input and output trajectories

uL (k) := (Lu) (k) :=




u (Pk)

...

u (Pk + P − 1)




yL (k) := (Ly) (k) :=




y (Pk)

...

y (Pk + P − 1)




see [11]–[14], and note that L
(
σP v

)
=σ (Lv). Then (5) can

be written as

(
PL

(
σ, σ−1

)
yL

)
(k) =

(
QL

(
σ, σ−1

)
uL

)
(k) , k ∈ Z. (6)

The behavior BL, defined by L(B):={(Lu,Ly) , (u, y)∈B},

called the lifted behavior associated with B, is time–

invariant, and equals the set of trajectories

{(
uL, yL

)
∈
(
R

P
)Z

×
(
R

P
)Z

| (6) holds
}
,

that is,

B
L=ker

[
PL

(
σ, σ−1

)
−QL

(
σ, σ−1

)]
.

Given a P–periodic input–output behavior B, we

say that a P–periodic state space system Σ (·) =
(A (·) , B (·) , C (·) , D (·))




(σx) (k)=A (k)x (k)+B (k)u (k)

k∈Z,
y (k)=C (k)x (k)+D (k)u (k)

(7)

where A (·) , B (·) , C (·) , D (·) are periodic functions with

period P , is a (periodic) state space representation of B if

B = {(u, y) | ∃x such that (u, x, y) satisfies (7)} .

The definition of a (time–invariant) state space representation

Σ=(A,B,C,D) for a time invariant behavior is analogous,

see [15]. A state space representation of a behavior will be

called minimal if the dimension of the state vector is the

smallest among all the representations of the same behavior.

Notice that according to this definition, a state space

representation should describe the whole system behavior

and not only its transfer function (or impulse response). This

issue is particularly relevant in the case of non controllable

behaviors, [9], [10].

III. PERIODIC STATE SPACE REPRESENTATIONS

In this section we investigate the construction of periodic

state space representations for SISO periodic behaviors.

This differs from the realization problems previously

considered by other authors, see, e.g., [7], [16], since we

are not interested in merely realizing the transfer function

or the impulse response. Instead, we start from a periodic

behavior B described by a linear difference equation with

periodically time–varying coefficients as (1), and exploit the

connections B and its (time–invariant) lifted version B
L in

order to construct periodic state space representations. More

concretely, we show how to obtain periodic state space

representations for B from state space representations of

the time–invariant behavior B
L, which can be obtained by

standard algorithms, see [17, pp. 72–77].

For this purpose we start by studying the relationship

between periodic state space representations of a given

periodic behavior B and time–invariant state space

representations of the lifted behavior B
L. For the sake of

simplicity we consider only the case of P = 2. General P

follows along the same lines.

Let us start by assuming that a n–dimensional state space

representation Σ (·) = (A (·) , B (·) , C (·) , D (·)) of B is

given, i.e.,




(σx) (k)=A (k)x (k)+B (k)u (k)

k ∈ Z,
y (k)=C (k)x (k)+D (k)u (k)

1546



where A (·)∈R
n×n, B (·)∈R

n×1, C (·)∈R
1×n and D (·)∈

R are periodic functions with period 2. Letting

z (k) = x (2k)

uL (k) =

[
u (2k)

u (2k + 1)

]

yL (k) =

[
y (2k)

y (2k + 1)

]

we obtain the following time–invariant n–dimensional state

space representation ΣL=(F,G,H, J) for BL :
{

z (k + 1) = Fz (k) +GuL (k)

yL (k) = Hz (k) + JuL (k) ,
(8)

with

F = A (1)A (0) G =
[

A (1)B (0) B (1)
]

H =

[
C (0)

C (1)A (0)

]
J =

[
D (0) 0

C (1)B (0) D (1)

]
.

This representation is also obtained in [7], [14], [18] in a

different context.

We shall say that the representation ΣL = (F,G,H, J)
of B

L is induced by the representation Σ (·) =
(A (·) , B (·) , C (·) , D (·)) of B, or equivalently, that

Σ (·) induces ΣL. Moreover, we shall call a representation

ΣL of BL induced whenever it is induced by some periodic

representation Σ of B.

Note that, for the n–dimensional induced representation

(8), the (n+ 1)–square matrix

M :=

[
F G1

H2 J21

]
,

with G1, H2, and J21 defined by

[
G1 G2

]
:= G

[
H1

H2

]
:= H

[
J11 J12
J21 J22

]
:= J ,

can be factored as

M =

[
A (1)A (0) A (1)B (0)

C (1)A (0) C (1)B (0)

]

=

[
A (1)

C (1)

]

︸ ︷︷ ︸
n

[
A (0) B (0)

]}
n .

Therefore rankM 6 n .

Conversely, let now ΣL = (F,G,H, J) be a state space

representation of BL, with

F ∈ R
n×n G =

[
G1 G2

]
∈ R

n×2

H =

[
H1

H2

]
∈ R

2×n J =

[
J11 J12

J21 J22

]
∈ R

2×2 .

Define

M :=

[
F G1

H2 J21

]
. (9)

Assume that rankM 6 n and decompose this matrix as

M =

[
E1

E2

]

︸ ︷︷ ︸
n

[
D1 D2

]}
n . (10)

Then it can be shown that Σ (·)=(A (·) , B (·) , C (·) , D (·)),
with

A (0) = D1 B (0) = D2 (11)

A (1) = E1 B (1) = G2 (12)

C (0) = H1 D (0) = J11 (13)

C (1) = E2 D (1) = J22 , (14)

is a periodic state space representation of B of dimension n.

These considerations lead to the following result.

Proposition 3.1: Let B be a SISO 2–periodic behavior

and B
L the lifted behavior associated to B. Then a n–

dimensional state space representation ΣL=(F,G,H, J) of

B
L, with

F ∈ R
n×n G =

[
G1 G2

]
∈ R

n×2

H =

[
H1

H2

]
∈ R

2×n J =

[
J11 J12
J21 J22

]
∈ R

2×2 ,

is induced if and only if

rank

[
F G1

H2 J21

]
6 n .

Moreover, in this case, Σ (·) = (A (·) , B (·) , C (·) , D (·))
defined as in (11)–(14) is a periodic n–dimensional state

space representation of B that induces ΣL. ⋄

As the next example shows, not every state space

representation of BL is an induced one.

Example 3.2: Consider the 2–periodic input–output be-

havior B described by
([

σ2 − 1
σ

]
y

)
(2k) =

([
0
1

]
u

)
(2k) .

Its associated lifted behavior BL, defined according to (6),

is given by
([

σ−1 0
0 1

]
yL

)
(k) =

([
0 0
1 0

]
uL

)
(k) ,

for which a minimal state space representation, of dimension

1, is




σz (k) = z (k)

yL (k) =

[
1
0

]
z (k) +

[
0 0
1 0

]
uL (k) .
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In this case the matrix M defined in (9) is given by

M =

[
1 0
0 1

]
, (15)

which is clearly of full rank, and hence not decomposable

as in (10). ⋄

However, as we shall see, it is always possible to construct

an induced state space representation of BL starting from a

non–induced one. In fact, let ΣL = (F,G,H, J) be a n–

dimensional representation of BL,

{
σx (k) = Fx (k) +GuL (k)

yL (k) = Hx (k) + JuL (k) ,

which is not induced by a periodic state space representation

of B. This means that the (n+ 1)× (n+ 1) matrix

M =

[
F G1

H2 J21

]

has rank n+ 1. Augment this matrix by adding a zero row

to F and G1 and a zero column to F and H2, yielding

M̃ =




F

0
...

0
G1

0 · · · 0 0 0 · · · 0

H2

0
...

0
J21




. (16)

Note that this corresponds to adding a superfluous (zero)

state xs to the original representation, in order to obtain a

higher dimensional one, of the form:





σxe (k) =




F

0
...

0
0 · · · 0 0


xe (k) +

[
G

0

]
uL (k)

yL (k) =


 H

0
...

0


xe (k) + JuL (k) .

Clearly M̃ is an (n+ 2)× (n+ 2) matrix with rank n+ 1
that can be decomposed as

M̃ =

[
E1

E2

] [
D1 D2

]
,

with

[
E1

E2

]
:=




F G1

0 0
H2 J21




[
D1 D2

]
:=

[
I 0 0
0 0 I

]
.

This yields a (n+ 1)–dimensional state space representation

Σ (·)=(A (·) , B (·) , C (·) , D (·)) of B, given by:

A (0) = D1 B (0) = D2 (17)

A (1) = E1 B (1) =

[
G2

0

]
(18)

C (0) =
[

H1 0
]

D (0) = J11 (19)

C (1) = E2 D (1) = J22 , (20)

cf. (11)–(14).

Thus, it is always possible to construct a periodic state

space representation Σ for a SISO 2–periodic behavior

B starting from a state space representation ΣL of B
L.

Moreover dim (Σ)=dim
(
ΣL

)
or dim (Σ)=dim

(
ΣL

)
+1.

Example 3.3: Recall Example 3.2. Adding a zero row and

a zero column to matrix M given in (15), as illustrated

previously, we obtain a new 3× 3 matrix M̃ given by

M̃ =




1 0 0
0 0 0
0 0 1


 ,

which can be decomposed as



1 0 0
0 0 0
0 0 1


 =




1 0
0 0
0 1



[

1 0 0
0 0 1

]
.

This factorization allows us to obtain a 2–dimensional state

space reapresentation Σ (·) = (A (·) , B (·) , C (·) , D (·)) of

B, given by:

A (0) =

[
1 0
0 0

]
B (0) =

[
0
1

]

A (1) =

[
1 0
0 0

]
B (1) =

[
0
0

]

C (0) =
[

1 0
]

D (0) = 0

C (1) =
[

0 1
]

D (1) = 0 . ⋄

Since every time–invariant input–output behavior has

a state space representation [17], we conclude that every

periodic input–output behavior also has a periodic state

space representation.

Notice that every state space representation Σ of

B induces a representation ΣL of B
L with the same

dimension. Moreover, as a consequence of the following

lemma, either the minimal state space representations of B

are all induced or none of them is.

Lemma 3.4: Let BL be the lifted behavior associated to

a SISO 2–periodic behavior B. If BL has one minimal state

space representation which is induced, then all its minimal

representations are induced. ⋄

On the other hand, if the minimal state space repre-

sentations of ΣL of B
L (with dimension, say, nBL) are

1548



not induced, then there exists an induced representation of

dimension nBL + 1. This implies that

nBL 6 nB 6 nBL + 1 ,

where nB denotes the minimal dimension of the state space

representations of B.

The previous considerations can be summarized as

follows.

Theorem 3.5: Let B be a SISO 2–periodic behavior and

let BL be the corresponding lifted behavior. Then:

(i) B has a 2–periodic state space representation Σ (·) =
(A (·) , B (·) , C (·) , D (·));

(ii) The dimensions nB and nBL of the minimal state space

representations of B and of BL, respectively, are such

that:

nBL 6 nB 6 nBL + 1;

(iii) A minimal periodic state space representation of B

can be obtained by Algorithm 3.6.

⋄

Algorithm 3.6:

• Input: A SISO 2–periodic behavior B;

• Output: A minimal 2–periodic state space

representation of B.

Step 1. Construct the lifted behavior BL;

Step 2. Compute a minimal representation ΣL =
(F,G,H, J) of BL and its dimension nBL ;

Step 3. Construct the matrix M as in (9);

Step 4. If rankM 6 nBL :

4.1. decompose M as in (10), with n = nBL , to

obtain E1, E2, D1 and D2;

4.2. define Σ (·) = (A (·) , B (·) , C (·) , D (·)) as in

(11)–(14);

go to Step 6.

Else: continue;

Step 5. Construct the (nBL + 2)×(nBL + 2) matrix M̃ (of

rank nBL + 1) as in (16):

5.1. Decompose M̃ as

M̃ =

[
E1

E2

] [
D1 D2

]
,

where

[
E1

E2

]
has full column rank and

[
D1 D2

]
has full row rank;

5.2. Define Σ (·)= (A (·) , B (·) , C (·) , D (·)) as in

(17)–(20);

Step 6. Output: “Minimal state space representation of B”:

Σ (·)=(A (·) , B (·) , C (·) , D (·));

Step 7. End. ⋄

IV. CONCLUSION

In this paper we have investigated the problem of

obtaining state space representations for periodic input–

output behaviors by exploiting the lifting technique. This

classical approach to periodic systems has been previously

used in a different context for the realization of periodic

transfer functions or of impulse responses. In this paper

we have approached the realization problem from the

behavioral point of view and aimed at obtaining a state

space representation for the whole system behavior. As

pointed out earlier, this differs from the classical transfer

function or impulse response realization problem for the

case of noncontrollable behaviors. We have shown that

every SISO behavior described by a linear difference

equation with 2–periodic time–varying coefficients can be

represented in state space form, and have presented an

algorithm to obtain a corresponding minimal state space

representation from a minimal representation of the lifted

behavior. The generalization of these results to the case of

MIMO P–periodic systems with P > 2 can be achieved

along the same lines will be reported elsewhere. Apart from

the realization problem itself, many other relevant questions

concerning state space representations of periodic behaviors,

such as, for instance, the characterization of minimality, are

currently under investigation.
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