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Abstract— An estimator of the wind speed of a wind turbine
coupled to a generator is proposed in this paper. Wind speed
enters into the generator dynamics through a highly nonlinear
function, hence we are confronted with a difficult problem of
estimation of a nonlinearly parameterized system. To solve this
problem we use the technique of immersion and invariance,
recently introduced in the literature. It is assumed that the
rotor speed and electrical torque of the generator are measured,
which is the case for the machines typically used in this
application. The result is of interest for the design of controllers
of maximum power extraction, where the knowledge of the wind
speed is necessary to express the control objective as a speed
tracking problem. Detailed computer simulations are presented
to assess the performances of the proposed estimator and a
certainty equivalent proportional plus integral controller.

Keywords Identification, nonlinearly parameterized systems,
adaptive control, control of windmill systems.

I. INTRODUCTION

Wind power is becoming increasingly popular around the
world due to its low footprint on the environment. Countries
such as Denmark, Germany, Spain, the US and others have
launched aggressive policies in order to drastically increase
the wind power penetration in their energy portfolio for
electricity generation [15]. It is often desirable to operate
these systems at the point of maximum power extraction
[3], [4], [6], [14]. To achieve this objective it is necessary
to know the wind speed, which is usually not available for
measurement.

Several publications have appeared in the literature at-
tempting to control windmill systems without velocity mea-
surement. To the best of our knowledge, none relies on the
development of a bona fide parameter estimator that, as is
well–known, is necessary for high–performance controller
designs. The estimation of the wind speed is complicated
because the unknown wind speed enters into the (mechani-
cal) dynamics in a nonlinear way. Estimation of nonlinearly
parameterized systems is a widely open research area—for
which, besides practically questionable high–gain designs,
almost no theoretical results are available in the literature.
See [7] for a recent survey. The main contribution of the
paper is the development of a wind speed estimator, which
is proven to be consistent under a monotonicity assumption
that is verified in several practical windmill models.
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In [4] a provably stable adaptive controller to directly
adjust the torque gain of a variable speed wind turbine
is proposed. No attempt is made to estimate the wind
speed, instead, concavity of the power coefficient function
is assumed to adapt the gain of a switching torque—that
intrinsically injects high gain in the loop. In [13] the well–
known passivity–based and sliding mode control techniques
are used to provide some guidelines for the controller design.
Unfortunately, as indicated by the authors, the assumptions
required by these techniques are not satisfied and the con-
troller is designed invoking some approximations, with the
wind speed (indirectly) reconstructed with an approximate
differentiator.

The paper is organized as follows. Section II presents the
dynamic model considered in the paper, followed by the
estimation problem formulation in Section III and its solution
in Section IV. Section V provides simulation results that
illustrate the performance of the estimator and a proportional
plus integral (PI) nonadaptive and (certainty equivalent)
adaptive controllers. Finally, Section VI wraps–up the paper
with some concluding remarks and future research work.

II. MATHEMATICAL MODEL OF THE WINDMILL SYSTEM

The windmill system considered in the paper consists
of a wind turbine and a generator. The mechanical power
available at the windmill shaft is given by1

Pw =
1

2
ρACp(λ)v

3
w, (1)

where ρ is the air density, A is the area swept by the blades,
Cp(·) is the power coefficient, and vw is the wind speed.
The power coefficient is a function of the blades’ tip speed
λ, which is defined as

λ :=
rωm

vw
, (2)

with r the blades’ radius and ωm the shaft’s rotational speed.
The shape of the function Cp(·) depends on the geometry

of the windmill. Fig. 1 shows a typical curve that can
be obtained from experimental measurements.2 Clearly, the
operating region for the blades tip speed is restricted to an
interval [0, λM ], λM > 0, such that

Cp(λ)


= 0 for λ = 0

> 0 for λ ∈ (0, λM )

= 0 for λ = λM .

(3)

The mechanical dynamics of the generator are described by

1All constants defined in the paper are positive. Interested readers are
referred to [6], [13] for further details on models of windmill systems.

2In this, and all remaining plots, the function Cp(·) given in (22) is used.
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Fig. 1. Power coefficient for a typical windmill.

Jω̇m = Tm − Te. (4)

where J is the rotor inertia, which is assumed known, Te is
the electrical torque and Tm is the mechanical torque applied
to the windmill shaft, that readily follows from (1)

Tm =
Pw

ωm
.

Throughout the paper the following assumption —always
verified in practice—is used.
Assumption 0 The motor rotates in the same direction with
a minimal, positive, speed. That is, there exists ωmin

m > 0,
such that

ωm(t) ≥ ωmin
m , (5)

for all t ≥ 0.
For future reference it is convenient to define the key

function

1

J
Tm =

ρA

2J

v3w
ωm

Cp

(
rωm

vw

)
=: Φ(ωm, vw). (6)

One practical scenario where the knowledge of vw is
essential is when we want to operate the system at the point
of maximum power extraction. Namely,

λ⋆ := argmax
λ

Cp(λ),

which is typically known. Given vw, the speed of maximum
power extraction is defined using (2) as

ω⋆
m :=

vw
r
λ⋆. (7)

Given an estimate of vw, say v̂w, the control task boils down
to regulation of the shaft’s speed ωm around a reference
speed

ωd
m =

v̂w
r
λ⋆. (8)

In the nonadaptive case v̂w is fixed to some a–priori (con-
stant) estimate. In this paper an on–line wind speed estimator
is proposed to generate the desired speed.

III. WIND SPEED ESTIMATION PROBLEM

To formulate the estimation problem the following as-
sumptions are needed.
Assumption 1 The power coefficient is a known, smooth,
function Cp : [0, λM ] → R+, which verifies (3) and

C ′
p(λ)


> 0 for λ ∈ [0, λ⋆)

= 0 for λ = λ⋆

< 0 for λ ∈ (λ⋆, λM ],

(9)

where (·)′ denotes differentiation.
Assumption 2 The wind speed vw is an unknown positive
constant.
Assumption 3 The electrical torque Te and the motor speed
wm are measurable.
Problem Formulation Given the system (4) and (6), ver-
ifying Assumptions 1–3, design an on–line estimate of the
wind speed, v̂w, such that, under some suitable conditions,

lim
t→∞

v̂w(t) = vw.

That is, ensure that the parameter estimator is asymptotically
consistent.

Some remarks regarding the assumptions are in order.
(R1) Concerning Assumption 1, as indicated above, the
shape of Cp(λ) can be easily obtained from experimental
data. Furthermore, the conditions imposed on its derivative
are consistent with the physical operation of the windmill.
Namely, that power increases with the blade’s tip speed up
to a maximum point,

C⋆
p := Cp(λ

⋆),

after which it starts decreasing. From the analytical view-
point, this is a critical assumption that ensures some mono-
tonicity conditions for Cp(λ)—needed for a proper behavior
of the estimator.
(R2) The assumption of constant wind speed may seem
stringent, particularly for its application in maximum power
point tracking controllers. However, we propose an on–line
estimator that, as is well–known [9], is able to track slowly–
varying parameters. The time scale separation between the
wind dynamics and the mechanical and electrical signals of
the windmill systems is an additional argument to justify the
assumption.
(R3) Regarding Assumption 3, measuring wm is standard
practice in windmill systems. Moreover, knowledge of Te is
available in permanent magnet synchronous or doubly–fed
induction generators, which are the machines typically used
in this application. Indeed, for the former, Te is given by

Te =
3

2

P

2
ϕiq. (10)

where iq is the current in the dq reference frame, ϕ is the
permanent magnetic flux produced by the rotor magnets, and
P is the number of pole pairs. For doubly–fed induction
generators the torque is defined as

Te = Lsr(isqird − isdirq)
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with Lsr the mutual inductance and (isd, isq), (ird, irq) are,
respectively, the stator and rotor currents—which are mea-
surable in winded–rotor machines.

IV. MAIN RESULT

As can be seen from (4) and (6), wind speed enters
into the system in a highly nonlinear way. Moreover, since
the basic objective of the control is to track the maximum
power point in the face of (slowly) varying wind speeds,
the motor speed—and, consequently, λ—will take values in
wide ranges, stymieing the application of standard linear
estimation techniques for the linearized system.

A. Immersion and Invariance Parameter Estimators
In [7], [8] a new framework to design parameter estimators

and adaptive controllers for nonlinearly parameterized non-
linear systems has been proposed. The key step is the con-
struction of a monotone mapping, which explicitly depends
on some of the estimator tuning parameters. The construction
relies on the use of the immersion and invariance (I&I)
ideas introduced in [2] for the design of adaptive stabilizing
controllers and observers. See [1] for a recent overview of
the applications of I&I.

The I&I identification technique of [8] is applied here
to solve the wind estimation problem. A slight variation of
the main result of [8]—suitable for our objective—is given
below. The interested reader is referred to this reference for
the proof of the proposition, and to [7], for further details
and extensions of the result.

Proposition 1 Consider the system

ẋ = F (t) + Φ(x, θ), (11)

where x ∈ R, the function F (t) and the mapping Φ :
R × R → R are known, and θ ∈ R is a constant unknown
parameter. Assume there exists a smooth mapping β : R →
R such that the parameterized mapping

Qx : R → R
Qx(θ) := β′(x)Φ(x, θ) (12)

is strictly monotone increasing,3 where β′(·) denotes differ-
entiation. The I&I estimator

˙̂
θI = −β′(x)

[
F (t) + Φ(x, θ̂I + β(x))

]
θ̂ = θ̂I + β(x), (13)

is asymptotically consistent. That is,

lim
t→∞

θ̂(t) = θ. (14)

for all (x(0), θ̂I(0)) ∈ R×R, and F (t) such that (x(t), θ̂(t))
exist for all t ≥ 0.

Notice that Assumption 2 of Proposition 1 in [8] is
conspicuous by its absence in the proposition above. This
stems from the fact that, for the scalar parameter case, this
Assumption is implied by the strict monotonicity condition.

3That is, for all a, b ∈ R, a > b, and all x ∈ R, the mapping satisfies
Qx(a) > Qx(b).

B. Verifying the Monotonicity Condition

We will apply Proposition 1 to the system (4), (6) with
vw the unknown parameter, x = ωm and

F (t) = − 1

J
Te(t), (15)

where Te is viewed as a function of time. The key step
is to construct a function β(·), such that the parameterized
function

Qωm : R+ → R
Qωm(vw) = β′(ωm)Φ(ωm, vw)

is strictly monotonically increasing. In this scalar case, the
latter is true if and only if the derivative of the function is
positive, which is computed as

Q′
ωm

(vw) = β′(ωm)
∂Φ(ωm, vw)

∂vw

=
ρAr

2J
vwβ

′(ωm)

[
3vw
rωm

Cp

(
rωm

vw

)
− C ′

p

(
rωm

vw

)]
.

Obviously, since vw is a positive constant, the monotonicity
of Qωm(vw) is determined by the product of the sign of
β′(ωm) and the sign of the term in brackets, which we write
in the more convenient form

κ(λ) :=
3

λ
Cp(λ)− C ′

p(λ). (16)

Now, since β(ωm) is used in the construction of the estimator
(13), it is clear that it cannot depend on the unknown vw.
Consequently, the monotonicity of Qωm(vw) is (essentially)
determined by κ(λ). See Fig. 2 for one possible scenario.

λ
 

 

0

3

λ
Cp(λ)

C′

p
(λ)

κ(λ)

Fig. 2. Plots of 3
λ
Cp(λ), −C′

p(λ) and κ(λ), for the case when κ(λ)
changes sign.

The lemma below plays a central role in our developments.
Lemma 1 Consider the function κ(·) defined by (16), with
Cp(·) satisfying Assumption 1. There exists two constants,
λc1, λc2, with

0 < λc1 ≤ λc2 < λ⋆,

such that

κ(λ) > 0 for λ ∈ [0, λc1) ∪ (λc2, λM ].
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Proof First, note that

lim
λ→0

κ(λ) = 2C ′
p(0) > 0,

which follows from Assumption 1 and direct application of
L’Hopital’s Lemma to (16). Invoking continuity establishes
the existence of λc1 > 0 such that k(λ) > 0 for all λ ∈
[0, λc1). See Fig. 2.

Let us prove now the existence of λc2 < λ⋆ such that
k(λ) > 0 for all λ ∈ (λc2, λM ]. First, from the facts that
C ′

p(λ) ≤ 0 for all λ ≥ λ⋆, and 3
λCp(λ) > 0 for all λ, we

conclude that k(λ) > 0 for all λ ∈ [λ⋆, λM ]. Now, again
from continuity and the fact that C ′

p(λ
⋆) = 0 we conclude

that there exists λc2 < λ⋆ such that k(λ) > 0 for all λ ∈
(λc2, λ

⋆]. Putting both arguments together proves the claim.
Now, assume there is no zero crossing of κ(λ). Then,

we can set λc1 = λc2 to be any constant in the interval
(0, λM ). In that case, κ(λ) > 0 for all λ ∈ [0, λM ]. On
the other hand, if there is a zero crossing—obviously, in
the interval (0, λ⋆)—there are necessarily (at least) two
of them, because k(0), k(λM ) > 0. Selecting λc1 and
λc2 to be, respectively, the smallest and largest of these
roots establishes that λc1 < λc2, completing the proof. ���

We now recall that our interest is to study the monotonicity
of the function Qωm(vw). In particular, we want to define
intervals for ωm where the function is increasing, which is
an immediate corollary of Lemma 1, (2), and Assumption 1.
Corollary 1 Fix β(ωm) such that sign β′(ωm) > 0.
The function Qωm(vw) verifies either one of the following
properties.
P1 Qωm(vw) is monotonically increasing for all ωm.
P2 There exists ωc2

m < ω∗
m such that Qωm(vw) is mono-

tonically increasing for all ωm > ωc2
m—where ω⋆

m is
defined in (7) and ωc2

m is defined via (2) with λc2 .

C. I&I Estimator

We are in position to present the main result of the paper.
Proposition 2 Consider the system (4), (6), verifying As-
sumptions 0–3. The I&I estimator

˙̂vIw = γ[
1

J
Te − Φ(ωm, v̂Iw + γωm)]

v̂w = v̂Iw + γωm, (17)

where γ > 0 is an adaptation gain, is asymptotically
consistent, that is,

lim
t→∞

v̂w(t) = vw

if either one of the conditions below holds.
C1 The power coefficient verifies

3

λ
Cp(λ) > C ′

p(λ), (18)

for all λ ∈ (0, λ⋆).
C2 The generator speed remains in the range

ωm(t) > ωc2
m (19)

for all t ≥ 0, where ωc2
m is defined in Corollary 1.

Proof. Set
β(ωm) = γωm. (20)

From Corollary 1 we conclude that, if condition C1 is
satisfied, the function Qωm(vw) is monotone for all ωm. On
the other hand, if condition C2 holds, it is monotone for
ωm > ωc2

m . The proof is completed invoking Proposition 1
and replacing (15) and (20) in (13) to get (17). ���

V. PI CONTROL AND SIMULATION RESULTS

In this section we assess, via computer simulations, the
performance of the wind speed estimator, a fixed controller
and a certainty equivalent adaptive controller. We adopt
the simplified—but widely adopted, see e.g., [3], [4] and
references therein—scenario that neglects the dynamics of
the generator and its power converter, and assumes that
the electrical torque Te is actually a control variable, for
which a standard PI controller around the rotor speed error
is proposed. That is,

Te = KP (ωm − ωd
m) +KIξ

ξ̇ = (ωm − ωd
m), (21)

where KP ,KI > 0 are tuning gains and ωd
m > 0 is, either

fixed to a constant value for the nonadaptive PI controller
via (8), or adjusted on–line using the estimated wind speed
(17), for its adaptive version.

A. Stability Analysis of the Fixed PI Control

The nonadaptive PI enjoys the following stability proper-
ties.
Proposition 3 Consider the system (4), (6), verifying As-
sumptions 0–3 in closed–loop with the PI controller (21).
(i) The system has a unique equilibrium point

{ωm = ωd
m, ξ =

J

KI
Φ(ωd

m, vw)}.

(ii) All trajectories are bounded and the system is ultimately
bounded. That is, there exists time tc > 0, such that

|ωm(t)− ωd
m| ≤ 1

KP
κ

|ξ(t)− J

KI
Φ(ωd

m, vw)| ≤ 1

2KI
κ,

for all t ≥ tc, where

κ :=
ρAv3w
ωmin
m

Cp(
rω⋆

m

vw
).

(iii) There exists Kmin
P > 0 such that, for all KP ≥ Kmin

P

the equilibrium is asymptotically stable.
Proof. Claim (i) follows immediately from inspection of (4),
(6), (21).

To prove (ii) define the error signals

ω̃m := ωm − ωd
m

ξ̃ := ξ − J

KI
Φ(ωd

m, vw)
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and consider the positive definite function

V (ω̃m, ξ̃) :=
1

2
ω̃2
m +

KI

J
ω̃mξ̃ +

1

J
(KI +

K2
P

2J
)ξ̃2,

whose derivative, along the solutions of (4), (6), (21), verifies

V̇ = −KP

2J
ω̃2
m − KPKI

2J2
ξ̃2 +

+ (ω̃m +
KP

2J
ξ̃)[Φ(ωm, vw)− Φ(ωd

m, vw)]

≤ −KP

2J
|ω̃m|[|ω̃m| − 1

KP
κ]− KPKI

2J2
|ξ̃|[|ξ̃| − 1

2KI
κ]

where—to get the bound—we have used (6) and the fact that

Φ(ωm, vw)− Φ(ωd
m, vw) ≤

κ

2J
,

see Fig. 1. This establishes the claim.
Now, the linearization of the closed–loop system at the

equilibrium point yields the system matrix[
−KP

J + ∂Φ
∂ωm

(ωd
m, vw) −KI

J

1 0

]
.

which is Hurwitz for sufficiently large KP , establishing the
claim. ���

B. Simulation Results

The performance of the system is tested simulating step
changes in the wind speed. The gains of the PI were selected
using pole placement techniques after linearizing the system
around the initial operating point, which is taken to be the
one of maximum power extraction. The parameter γ, which
essentially determines the speed of convergence of the esti-
mator, was selected via trial–and–error. All simulations are
executed using the Matlab–Simulink R⃝ software package.

As is customary, for the purposes of the simulation we
assume the power coefficient is given by the function

Cp(λ) = e−
cp1
λ

(cp2
λ

− cp3

)
+ cp4λ, (22)

where the coefficients cpi, i = 1, . . . , 4—that are windmill–
specific, but independent of vw and ωm—are known. These
coefficients were taken from the benchmark problem of [12],
and have the following values: cp1 = 21, cp2 = 125.21,
cp3 = 9.8, and cp4 = 0.0068. This yields λ∗ = 8.1 and

C⋆
p := Cp(λ

⋆) = 0.48.

The resulting function Cp(λ) verifies the key inequality (18),
hence global convergence of the estimator is ensured.

Figure 3 shows the response of the error between the op-
timal and the actual speed for the nonadaptive PI controller.
The reference speed, ωd

m, was fixed assuming the wind is
known at t = 0. The initial condition of the speed was also
selected corresponding to its optimal value, and the integrator
was initialized at zero, i.e., ωm(0) = ω⋆

m(0) and ξ(0) = 0,
respectively. As shown in the figure, when the wind speed
changes ωd

m ̸= ω∗
m and the rotor speed that, as predicted by

Proposition 3, converges to ωd
m, moves away from its optimal

value of maximum power extraction. The global behavior of
the adaptive PI controller is illustrated in Fig 4, where —for

a fixed set of PI and estimation gains— several trajectories
starting on a disk at ξ(0) = 0 are shown to converge to a
unique equilibrium point.
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kp = 4         ki = 2
kp = 11.67   ki = 14.83

Fig. 3. Performance of the nonadaptive PI, speed deviations with respect
to the optimal values for different PI gains.
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Fig. 4. Behavior of the adaptive PI, with KP = 0.59, KI = 0.32 and
initial conditions on a disk at the plane ξ(0) = 0.

The performance of the certainty equivalent adaptive PI
controller is shown in Fig. 5, where we have set v̂w(0) =
vw(0), and the same initial conditions for the speed and
integral action as for the nonadaptive case. As may be
observed, the system behaves as desired, with the power
coefficient matching its optimal value, and hence maximum
power is being (asymptotically) extracted for all wind speeds.

VI. CONCLUSIONS AND FUTURE RESEARCH

An estimator for the wind speed of a windmill system,
with guaranteed convergence properties, has been presented.
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Fig. 5. Performance of the adaptive PI, speed deviations with respect to
the optimal values for different PI gains.

The result is global if the power coefficient verifies (18). This
condition can be easily checked numerically. Unfortunately,
if (18) does not hold, we have to rely on the signal–dependent
assumption (19), which cannot be verified a–priori. Indeed,
there is no way to guarantee that in closed–loop operation
the speed ωm(t) will remain above the value ωc2

m , which
is furthermore not known. However, the proposition guar-
antees that there is an interval, containing ω⋆

m, where the
speed estimation will “go in the right direction”. Given the
complexity of the problem, we tend to believe that this kind
of local results are the best one can hope for without further
assumptions on Cp(λ). It should be underscored that the
simulation results presented in Section V confirm the good
behavior of the proposed estimator.

From Proposition 2 it is known that the estimation error
decreases when Qωm(vw) is increasing. It can also be shown
[8], that the error will increase if Qωm(vw) is decreasing.4

In other words, if (18) does not hold, the estimator will not
behave correctly only in a finite interval of motor speeds, but
will tend to converge to the true value outside this interval.5

Interestingly, the “good” intervals include the low and high
speed ranges, as well as the optimal speed. Unfortunately,
this information is not enough to predict the global behavior
of the system—hence the need for assumptions (18) or (19).

Current research is under way to explore the possibility
of introducing, in the spirit of [11], a reparametrization
of the wind speed to relax the conditions (18) or (19).
Also, to improve the performance of the overall system,
we are investigating the use of other, possibly nonlinear,
controllers to replace the PI reported here. For instance, for

4Changing the sign of γ would correct the problem. Alas, these intervals
are not known.

5Typically, there are only two positive roots of κ(λ), hence only one
“bad” interval. But the possibility of having more than one cannot be ruled
out without further assumptions on Cp(λ).

stand–alone applications, in [10] the PI controller is replaced
by an nonlinear passivity–based controller designed taking
into account the dynamics of the generator and the power
converter. Currently, we are investigating windmill systems
connected to the network. The results of these researches
will be reported in the near future.
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