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Abstract— We present necessary and sufficient conditions for
stochastic stabilizability of unstable (non-stationary) noisy lin-
ear systems over channels with memory with feedback. Stochas-
tic stability notions include recurrence, Birkhoff sample path
ergodicity and asymptotic mean stationarity, and the existence
of finite second moments. We extend recent results in the liter-
ature on noiseless and erasure channels for systems driven by
possibly unbounded noise. Our constructive proof uses random-
time state-dependent stochastic drift criteria for stabilization of
Markov chains. For asymptotic mean stationarity, it is sufficient
that the capacity of a channel is (strictly) greater than the
sum of the logarithms of the unstable pole magnitudes for
memoryless channels and a class of channels with memory.
We also present the tightness of the sufficient condition under
a technical condition. We provide sufficiency conditions for the
existence of finite average second moments, for such systems
driven by unbounded noise, which had not been studied in the
literature to our knowledge. Comparison with relevant results
in the literature is presented.

I. PROBLEM FORMULATION

We consider a scalar LTI discrete-time system described

by

xt+1 = axt + but + dt, t ≥ 0, (1)

where xt is the state at time t, ut is the control input, the

initial condition x0 is a second order random variable, and

{dt} is a sequence of zero-mean independent, identically

distributed (i.i.d.) Gaussian random variables with a finite

second moment. It is assumed that |a| ≥ 1 and b 6= 0: The

system is open-loop unstable, but it is stabilizable.

This system is connected over a Discrete Memoryless Chan-

nel with a finite capacity to a controller, as shown in Figure 1.

The channel source consists of state values, taking values

in R. The source is quantized: A quantizer Q is represented

by a map Q : R → R, characterized by a sequence of non-

overlapping Borel-measurable bins {Bi}, such that Q(x) =
qi ∈ R if and only if x ∈ Bi; that is, Q(x) =

∑

i q
i1{x∈Bi}.

The quantizer outputs are transmitted through a channel, after

being subjected to a channel encoder.

Definition 1.1: A finite-alphabet channel with memory is

characterized by a sequence of finite input alphabets Mn+1,

finite output alphabets M′n+1
, and a sequence of conditional

probability measures Pn(q′[0,n]|q[0,n]) : Mn+1 ×M′n+1
→

R, with, q′[0,n] =: {q′0, q
′
1, . . . , q

′
n}, q[0,n] := {q0, q1, . . . , qn}.

Definition 1.2: A Discrete Memoryless Channel (DMC)

is characterized by a finite input alphabet M, a finite output
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alphabet M′, and a conditional probability mass function

P (q′|q), from M×M′ to R. A DMC from Mn+1 to M′n+1

satisfies the following:

Pn+1
DMC(q′[0,n]|q[0,n]) =

n
∏

k=0

PDMC(q′k|qk).

The quantizer outputs are transmitted through a noisy chan-

nel, hence the receiver has access to noisy versions of the

quantizer/coder outputs for each time, which we denote by

q′ ∈ M′. The quantizers and controllers are causal such that

the quantizer function at time t ≥ 0 is generated using the

information vector Is
t available at the encoder for t > 0:

Is
t = {Is

t−1, xt, qt−1, q
′
t−1},

and Is
0 = {ν0(dx), x0}, where ν0 = π0 is the probability

measure for the initial state. The control policies are mea-

surable with respect to the sigma-algebra generated by Ic
t ,

for t ≥ 1: Ic
t = {Ic

t−1, q
′
t}, and are mappings to R.

Channel
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Coder Controller

Fig. 1: Control over a discrete noisy channel with feedback.

The goal of the paper is to identify conditions on the chan-

nel under which the controlled process {xt} is stochastically

stable in each of the following senses:

• {xt} is recurrent: There exists a compact set A such

that {xt ∈ A} infinitely often almost surely.

• {xt} is asymptotically mean stationary and satisfies the

sample path ergodic theorem.

• limT→∞
1
T

∑T−1
t=0 ||xt||

2 exists and finite almost surely.

We will make the definitions more precise, after a literature

review is provided and some review of Markov chains and

ergodic theory is presented.

A. Literature Review

There is a very large literature on stochastic stabilization

of sources via coding, both in the information theory and

control theory communities. We are unable to state the con-

tributions of many researchers in view of space constraints.

In the information theory literature, stochastic stability re-

sults are established mainly for stationary sources, which are

already stable sources. In this literature, the stability of the
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estimation errors as well as the encoder state processes are

studied. These systems mainly involve causal and non-causal

coding of stationary sources [8], [14], asymptotically mean

stationary sources as well as to a limited extent on non-causal

coding for non-stationary sources [12]. Real-time settings

such as sigma-delta quantization schemes have also been

considered in the literature. In contrast, the control theory

literature has mainly considered unstable (or non-stationary)

sources, in the context of networked control systems. In the

following, we will provide a discussion on the contributions

in the literature which are contextually close to our paper.

For Gaussian channels, the fact that real-time linear schemes

are rate-distortion achieving has been observed earlier in [1]

for scalar systems (see also [6] on Gaussian channels re-

garding relevance to Shannon capacity for multi-dimensional

systems). Aside from such results (which involve matching

between rate-distortion achieving test channels and capacity

achieving source distributions), capacity is known not to be

a good measure of information reliability for channels for

real-time control and estimation problems [25]. [13], [27],

and [23], obtained the minimum lower bound needed for

stabilization over noisy channels under a class of assump-

tions on the system noise and channels. [23] considered a

class of quantizer policies for systems driven by noise, with

unbounded support set for its probability measure, controlled

over noiseless channels, and obtained necessary and suffi-

cient conditions for the boundedness in the following sense

lim supt→∞ E[||xt||
2] < ∞. [32] extended the result by

replacing lim sup with lim. The problem of control over

noisy channels has been considered later in a large number

of publications including [25], [15], [16], [19], [18], [22],

[30].

The particular notion of stochastic stability is very im-

portant in characterizing the conditions on the channel. [18]

considered the following, when the system noise is bounded:

lim supt→∞ |xt| < ∞ a.s., and observed that one needs

the zero-error capacity (with feedback) to be greater than

a particular lower bound. A similar observation was made

in [25]. [25] considered systems driven by bounded noise

and considered a number of stability criteria: Almost sure

stability for noise-free systems, moment stability for systems

with bounded noise (lim supt→∞E[|xt|
p] < ∞,) as well

as stability in probability (defined in [18]) for systems with

bounded noise. Stability in probability is defined as follows:

For every p > 0, there exists a ζ such that P (|xt| > ζ) <
p for all t ∈ N. [25] also offered a novel and insightful

characterization for reliability for controlling unstable pro-

cesses, named, any-time capacity, defined for the following

criterion: lim supt→∞E[|xt|
p] < ∞, for positive moments

p. In a related context, [15], [25], [18] and [17] considered

the relevance to Shannon capacity. [15] observed that when

the moment coefficient goes to zero, Shannon capacity is

the right measure for a channel when noise is bounded.

A parallel argument is provided by [25] also for bounded

noise signals. With a departure from the bounded noise as-

sumption, [17], made the discussion in [25] more explicit

and considered a more general model of multi-dimensional

systems driven by an unbounded noise process considering

again stability in probability. [17] also showed that when the

discrete noisy channel has capacity less than log2(|a|), there

exists no stabilizing scheme, and if the capacity is strictly

greater than this number, there exists a stabilizing scheme.

Many network applications and networked control applica-

tions require the access of control and sensor information to

be observed intermittently. Toward generating a general ap-

proach for such problems, [29] and [31] developed random-

time state-dependent drift conditions leading to the existence

of an invariant distribution possibly with moment constraints,

extending the earlier deterministic state dependent results

in [21]. Using drift arguments, [30] considered noisy (both

discrete and continuous alphabet) channels, [32] considered

noiseless channels and [29] considered erasure channels for

positive Harris recurrence and ergodicity. We acknowledge

[22], which also considered erasure channels and obtained

time-varying rate conditions for control over erasure chan-

nels. Recently, [11] also considered the stochastic stability

over erasure channels, parallel to the results of [29].

The question of when does a linear system driven by

unbounded noise, controlled over a channel (possibly with

memory) satisfy Birkhoff’s sample path ergodic theorem?,

has not been answered to our knowledge. Also, the finite mo-

ment conditions for an arbitrary discrete memoryless channel

for a system driven by unbounded noise have not been in-

vestigated to our knowledge, except for the bounded noise

analysis in [25]. In this paper, we will show that, the results

in the literature can be strengthened to asymptotic mean sta-

tionarity and ergodicity. We will also consider conditions for

finite second moment stability, which had not been studied

in the literature for systems with unbounded noise.

II. STOCHASTIC STABILITY OF DYNAMICAL SYSTEMS

AND RANDOM PROCESSES

A. Stationary, Ergodic, and Asymptotically Mean Stationary

Processes

In this subsection, we review ergodic theory, in the con-

text of information theory (that is with the transformations

being specific to the shift operation). A comprehensive dis-

cussion is available in Shields [26] and Gray [9], [10]. Let

X be a complete, separable, metric space. Let B(X) de-

note the Borel sigma-field of subsets of X. Let Σ = X
∞

denote the sequence space of all one-sided or two-sided

infinite sequences drawn from X. Thus, if x ∈ Σ then x =
{. . . , x−1, x0, x1, . . . } with xi ∈ X. Let Xn : Σ → X denote

the coordinate function such that Xn(x) = xn. Let T denote

the shift operation on Σ, that is Xn(Tx) = xn+1. Let B(Σ)
denote the smallest sigma-field containing all cylinder sets of

the form {x : xi ∈ Bi,m ≤ i ≤ n} where Bi ∈ B(X), for all

integers m,n. Note that ∩n≥0T
−nB(Σ) is the tail σ−field:

∩nσ(xn, xn+1, · · · ), since T−n(A) = {x : T nx ∈ A}. Let

µ be a stationary measure on (Σ,B(Σ)) in the sense that

µ(TB) = µ(B) for all B ∈ B(Σ). The sequence of random

variables {xn} defined on the probability space (Σ,B(Σ), µ)
is a stationary process.
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Definition 2.1: Let P be the measure on a process. This

random process is ergodic if A = TA implies that P (A) ∈
{0, 1}.

Definition 2.2: A random process with measure P is N−
stationary, (cyclo-stationary or periodically stationary with

period N ) if P (TNB) = µ(B) for all B ∈ B(Σ).

Definition 2.3: A random process is N−ergodic if A =
TNA implies that P (A) ∈ {0, 1}.

Definition 2.4: We say that a coordinate set A ∈ B(X) is

coordinate-recurrent if
∑∞

k=0 1{Xm(T k(x))∈A} = ∞, almost

surely.

Definition 2.5: A process on a measure (Ω,F , P ) is asymp-

totically mean stationary (AMS) if there exists a probability

measure P̄ such that limn→∞
1
n

∑n−1
k=0 P (T−kF ) = P̄ (F ),

for all events F . Here P̄ is called the stationary mean of P ,

and is a stationary process.

P̄ is stationary since, by definition P̄ (F ) = P̄ (T−1F ), for

all events F in the tail sigma field for the shift.

An N−stationary process is AMS, see for example [2],

[10] or [9] (Theorem 7.3.1).

Definition 2.6: A random process is second-moment sta-

ble if

lim
T→∞

1

T
E[

T−1
∑

k=0

Xm(T k(x))2] <∞,

for some m.

Definition 2.7: A random process is second moment sta-

ble almost surely if limT→∞
1
T

∑T−1
k=0 Xm(T k(x))2 < ∞

almost surely, for some m.

B. Stability of Markov Chains and Random-Time State De-

pendent Stochastic Drift Criteria

In this section, we review the theory of stochastic stabil-

ity of Markov chains. The reader is referred to Meyn and

Tweedie [20] for a detailed discussion. We let X = {xt, t ≥
0} denote a Markov chain with state space X, which is

assumed to be a complete, separable, metric space, whose

Borel σ-field is denoted B(X). The transition probability

is denoted by P , so that for any x ∈ X, A ∈ B(X), the

probability of moving from x to A in one step is given by

P (xt+1 ∈ A | xt = x) = P (x,A). The n-step transitions are

obtained via composition in the usual way, P (xt+n ∈ A |
xt = x) = Pn(x,A), for any n ≥ 1. A measure π on B(X)
is called invariant if πP = P . That is,

∫

π(dx)P (x,A) =
π(A), A ∈ B(X). For any initial probability measure ν on

B(X) we can construct a stochastic process with transition

law P , and satisfying x0 ∼ ν. We let Pν denote the resulting

probability measure on sample space, with the usual conven-

tion for ν = δx when the initial state is x ∈ X. When ν = π
then the resulting process is stationary.

The following results and the proofs are available in [29],

[31]: Let τz , z ≥ 0 be a sequence of stopping times, mea-

surable on a filtration generated by the state process with

τ0 = 0.

Theorem 2.1: [29] [31] Suppose that X is a ϕ-irreducible

Markov chain. Suppose moreover that there is a function

V : X → (0,∞), a petite set C, and constants κ ∈ (0, 1),
b ∈ R, such that the following hold:

E[V (xτz+1) | Fτz
] ≤ (1 − κ)V (xτz

) + b1{xτz∈C}

E[τz+1 − τz | Fτz
] ≤ V (xτz

) , z ≥ 0.
(2)

Then, the Markov chain is positive Harris recurrent.

The following provides a criterion for finite moments.

Theorem 2.2: [29] [31] Suppose that x is a ϕ-irreducible

Markov chain. Suppose moreover that there are functions

V : X → (0,∞), δ : X → [1,∞), f : X → [1,∞), a petite

set C, and a constant b ∈ R, such that the following hold:

E[V (xτz+1) | Fτz
] ≤ V (xτz

) − δ(xτz
) + b1{xτz∈C}

E
[

τz+1−1
∑

k=τz

f(xk) | Fτz

]

≤ δ(xτz
) , z ≥ 0.

(3)

Then X is positive Harris recurrent, and moreover π(f) <
∞, with π being the invariant distribution.

III. STOCHASTIC STABILIZATION OVER A DMC

A. Asymptotic Mean Stationarity and n−ergodicity

Theorem 3.1: For a controlled linear source given in (1)

over a DMC under any causal encoding and controller policy,

to satisfy the AMS property under the following condition:

lim inf
T→∞

1

T
h(xT ) ≤ 0,

the channel capacity C must satisfy

C ≥ log2(|a|).
Proof: See Section V. ⋄
The above condition is almost sufficient as well.

Theorem 3.2: For the existence of a compact recurrent

set, the following is sufficient: C > log2(|a|).
Proof: See Section VI. ⋄
For the proof, we consider the following update algorithm.

The algorithm and its variations have been used in source

coding and networked control literature: See for example

the earlier papers [8], [14], [4] (zooming algorithms); and

more recent ones [23], [19], [18], [17]. Let n be a given

block length. We will consider a class of uniform quantizers,

defined by two parameters, with bin size ∆ > 0, and an even

number K(n) ≥ 2. The uniform quantizer map is defined as

follows: For k = 1, 2 . . . ,K(n),

Q∆
K(n)(x) =











(k − 1
2 (K(n) + 1))∆,

x ∈ [(k − 1 − 1
2K(n))∆, (k − 1

2K(n))∆)

Z, x 6∈ [− 1
2K(n)∆, 1

2K(n)∆),

where Z denotes the overflow symbol in the quantizer. See

Figure 2.

At every sampling instant t = kn, k = 0, 1, 2, . . . , the

source coder Es
t quantizer output symbols in R ∪ {Z} to

a set M(n) = {1, 2, . . . ,K(n) + 1}. A channel encoder Ec
t

maps the elements in M(n) to corresponding channel inputs

q[kn,(k+1)n−1] ∈ Mn.

4682



Bin Size 

Overflow bin Overflow bin

Fig. 2: A modified uniform quantizer.

For each time t = kn − 1, k = 1, 2, 3, . . . , the channel

decoder applies a mapping Dtn : M′n → M(n), such that

c′(k+1)n−1 = Dkn(q′[kn,(k+1)n−1]).

Finally, the controller runs an estimator:

x̂kn = (Es
kn)−1(c′(k+1)n−1) × 1{c′

(k+1)n−1
6=Z}

In our setup, the bin size of the uniform quantizer ∆t,
which acts as the state of the quantizer, is assumed to be a

function of the previous state ∆t−1 and the past n channel

outputs. We assume that the encoder has access to the previ-

ous channel outputs. Thus, such a quantizer is implementable

at both the encoder and the decoder. With K(n) > ⌈|a|n⌉,

R(n) = log2(K(n) + 1), let us define R′(n) = log2(K(n))

and let R′(n) > n log2(
|a|
α ), for some α, 0 < α < 1 and

δ > 0 with

a2 ≥ (|a| + δ)α. (4)

We will consider the following update rules in the controller

actions and the quantizers. For t ≥ 0 and with ∆0 > L for

some L ∈ R+, and x̂0 ∈ R, consider:

ut = −1{t=(k+1)n−1}
an

b
x̂kn,

∆(k+1)n = ∆knQ̄(∆kn, c
′
(k+1)n−1), (5)

where c′ denotes the decoder output variable. If we use δ > 0
and L > 0 such that,

Q̄(∆, c′) = (|a| + δ)n if c′ = Z,

Q̄(∆, c′) = αn if c′ 6= Z,∆ > L

Q̄(∆, c′) = 1 if c′ 6= Z,∆ ≤ L, (6)

we will show that a recurrent set exists. We note that the

above imply that ∆t ≥ Lαn =: L′ for all t ≥ 0.

Thus, when the decoder output is the overflow signal,

then the quantizer is zoomed out. Otherwise, the quantizer

is zoomed in, when the current bin size is not smaller than

L.

We note that the stability result for such a scheme can be

verified with random-time stochastic drift conditions. This

is because of the fact that, the quantizer helps reduce the

uncertainty on the system state only when the state is in the

granular region of the quantizer. The times when the state is

in this region are random. Furthermore, correct information

reaches the decoder when there is no error in transmission.

We now make the quantizer bin size process countable and

the sampled process {xtn,∆tn} irreducible. The following

establishes the AMS property.

Theorem 3.3: For an adaptive quantizer satisfying Theo-

rem 3.2, suppose that the quantizer bin sizes are such that

their logarithms are integer multiples of some scalar s, and

log2(Q̄( · )) takes values in integer multiples of s. Suppose

the integers taken are relatively prime (that is they share no

common divisors except for 1). Then the sampled process

{xtn,∆tn} forms a positive Harris recurrent Markov chain

at sampling times on the space of admissible quantizer bins

and state values. Furthermore, the process {xt,∆t} is AMS.

B. Finite Second Moment

For a given coding scheme with block-length n and a

message set M(n) = {1, 2, . . . ,K(n) + 1}, and a decoding

function γ : M′n → {1, 2, . . . ,K(n) + 1} define:

Pe(n) := max
c∈M(n)

P (γ(q′[0,n−1]) 6= c|c is sent),

When the block-length is clear from the context, we drop the

index n. Due to space constraints, the proofs for this section

are not included in the paper.

Theorem 3.4: A sufficient condition for second moment

stability (and second moment stability almost surely) over a

discrete memoryless channel (DMC) is that:

lim
n→∞

eH(κn)(Pe(n))κn(|a| + δ)2n < 1,

lim
n→∞

Pe(n)(|a| + δ)2n + α2 < 1,

R′(n) > n log2(
|a|
α ), H(κ) = −κ log(κ)−(1−κ) log(1−κ)

and

κn =
1

log(|a|+δ)/|a|((|a| + δ)/α) + 1
n log (|a|+δ)

|a|

(2)
.

Remark: For a DMC with block length n, Shannon’s

random coding [5] satisfies: Pe(n) ≤ e−nE(R)+o(n), this

is uniform for all codewords c ∈ {1, 2, . . . ,M(n)} with

c′ being the decoder output. Here
o(n)

n → 0 as n → ∞
and E(R) > 0 for 0 < R < C. Thus, under the above

conditions, the exponent under random coding should satisfy

E(R) > 2 log2(|a|+δ)
κ . ⋄

Assumption A0 The DMC has non-zero zero error capac-

ity. ⋄
Theorem 3.5: Under Assumption A0, a sufficient condi-

tion for second moment stability is:

lim
n→∞

Pe(n)(|a| + δ)2n < 1,

and rate R′(n) > n log2(
|a|
α ).

Remark: The non-zero zero-error capacity result is related

to the notion of any-time capacity proposed by Sahai and

Mitter for bounded noise systems: A channel is α− any-

time reliable for a sequential coding scheme if: P (mi(t) 6=
mi(t)) ≤ D2−α(t−i) for all i, t. Here mi is a message

sent at time 1, estimated at time t using received channel

outputs up until time i. Sahai and Mitter also considered a

block-coding setup, for the case when the noise is bounded,

and were able to obtain a similar rate/reliability criterion.

It is worth emphasizing that, the reliability for sending one

symbol for the under-zoom phase allows an improvement in

the reliability requirements drastically. ⋄
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IV. CHANNELS WITH MEMORY

Definition 4.1: Let Class A be the set of channels which

satisfy the Markov chain condition:

q′t ↔ qt, q[0,t−1], q
′
[0,t−1] ↔ x[0,t],

for all t ≥ 0 and whose capacity with feedback is given by:

C = lim
T→∞

max
{P (qt|q[0,t−1],q

′
[0,t−1]

),0≤t≤T−1}

1

T
I(q[0,T−1] → q′[0,T−1]),

where I(q[0,T−1] → q′[0,T−1]) is defined to be

T−1
∑

t=1

I(q[0,t]; q
′
t|q

′
[0,t−1]) + I(q0; q

′
0),

and is called the directed mutual information (see [28]).

Such a class includes discrete memoryless channels, finite

state stationary Markov channels which are indecomposable,

and a class of stationary ergodic symmetric channels with

memory, for example see [28].

Theorem 4.1: For a linear system controlled over a noisy

channel with memory with feedback in Class A, if the chan-

nel capacity is less than log2(|a|) then the AMS property

under the following condition lim infT→∞
1
T h(xT ) ≤ 0,

cannot be satisfied under any policy.

V. SKETCH OF PROOF OF THEOREM 3.1 AND 4.1

Let us define

RT = max
{P (qt|q[0,t−1],q

′
[0,t−1]

),0≤t≤T−1}

1

T

T−1
∑

t=0

I(q′t; q[0,t]|q
′
[0,t−1]). (7)

Observe that for t > 0:

I(q′t; q[0,t]|q
′
[0,t−1])

= H(q′t|q
′
[0,t−1]) −H(q′t|q[0,t], q

′
[0,t−1])

= H(q′t|q
′
[0,t−1]) −H(q′t|q[0,t], xt, q

′
[0,t−1])

≥ H(q′t|q
′
[0,t−1]) −H(q′t|xt, q

′
[0,t−1]) = I(xt; q

′
t|q

′
[0,t−1])

It follows that since RT is assumed to have a limit,

lim
T→∞

RT

≥ lim sup
T→∞

1

T

( T−1
∑

t=1

(

I(xt; q
′
t|q

′
[0,t−1])

)

+ I(x0; q
′
0)

)

= lim sup
T→∞

1

T

( T−1
∑

t=1

h(xt|q
′
[0,t−1]) − h(xt|q

′
[0,t])

)

≥ lim sup
T→∞

1

T

T−1
∑

t=1

(

h(axt−1 + but−1 + dt−1|q
′
[0,t−1])

−h(xt|q
′
[0,t])

)

≥ log2(|a|) − lim inf
T→∞

(

1

T
h(xT−1)

)

In the above, we have skipped a number of steps due to

space constraints. The inequalities follow from the fact that

conditioning reduces entropy, control actions are uniquely

determined from channel outputs and and that the system

noise process is independent. By the hypothesis,

lim inf
t→∞

1

t
h(xt) ≤ 0,

it must be that limT→∞RT ≥ log2(|a|). Thus, the capacity

also needs to satisfy this bound. ⋄

VI. PROOF OF THEOREM 3.2:

For a DMC with block length n, it is known that there exist

coding schemes, by Shannon’s random coding [5], which

satisfy:

Pe(n) := P (c′ 6= c|c is transmitted) ≤ e−nE(R)+o(n),

uniformly for all codewords c ∈ {1, 2, . . . ,M(n)} with c′

being the decoder output. Here
o(n)

n → 0 as n → ∞ and

E(R) > 0 for 0 < R < C.

Toward the proof, we will first obtain a supporting result.

Lemma 6.1: The sampled process (xtn,∆tn) is a Markov

chain.

The above follows from the observations that, the channel

is memoryless, the encoding is Shannon’s random-coding

and the control policies use the channel outputs received in

the last block.

Let us define ht := xt

∆t2R′(n)−1 . We will say that the

quantizer is perfectly zoomed when |h1| ≤ 1, and under-

zoomed otherwise. Consider the following sets: Cx = {x :
|x| ≤ F}, Ch = {h : |h| ≤ 1}, with a sufficiently large

F value to be studied below. We will study the recurrence

properties for such a set. Define a sequence of stopping times

for the perfect-zoom case with (where the initial state is

perfectly zoomed) z ∈ Z+:

τ0 = 0, τz+1 = inf{kn > τz : |hkn| ≤ 1, k ∈ Z+},

Denote for k ∈ N, Θk := P (τz+1 − τz ≥ kn|∆τz
, hτz

).
Without any loss, let z = 0 and τ0 = 0, so that Θk = P (τ1 ≥
k|∆τ0 , hτ0). We have the following key result, the proof of

which is omitted.

Lemma 6.2: The discrete probability distribution

P (τz+1 − τz|∆τz
, hτz

)

is asymptotically, in the limit of large ∆τz
, dominated (ma-

jorized) by a geometrically distributed measure.

P (τz+1 − τz ≥ kn|∆τz
, hτz

)

≤ Ξ(∆τz
, n)eH(κn)(k−1)e−(nE(R)−o(n))κn(k−1),

where Ξ(∆τz
, n) <∞ and Ξ(∆τz

, n) → 0 as ∆τz
→ ∞ for

every fixed n and

κn =
1

log(|a|+δ)/|a|((|a| + δ)/α) + 1
n log (|a|+δ)

|a|

(2)
.
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Thus,

E[τ1|∆0] =

∞
∑

k=1

P (τ1 ≥ k) ≤

∞
∑

t=1

P (⌈τ/n⌉n ≥ kn)

≤ nΞ(∆0, n)
1

1 − (eH(κ)e−nκ(E(R)−
o(n)

n
))

=: K ′ <∞.

By the strong Markov property (xτz
, hτz

) is also a Markov

chain. We now apply random-time drift from Theorem 2.1

below. The probability that τz+1 6= τz +n, is upper bounded

by the probability:

Pe + (1 − Pe)2P

(

d̄ ≥ (2R′(n)(
α

|a|
)n − 1)∆0/2

)

≤ Pe + 2P

(

d̄ ≥ (2R′(n)(
α

|a|
)n − 1)∆0/2

)

=: Υ(∆τz
)

If τz+1 6= τz +n, then this means that the error is increasing

on average and the system is once-again under-zoomed at

time t = τz + n: xτz+1 = axτz
+ dτz

with ∆τz+1 ≥ αn∆τz

(when ∆τz
≥ L). The inequality is due to the observation

that, if there is an error in the transmission, the receiver will

enlarge the quantizer bin. We now show that, there exist

ψ > 0, |G| <∞ such that

E[log(∆2
τz+1

)|∆τz
, hτz

] ≤ log(∆2
τz

) − ψ +G1{|∆τz |≤F}. (8)

It follows that,

E[log(∆2
τz+1

)|∆τz
, hτz

]

≤ (1 − Υ(∆τz
))(1 − Pe)

(

2n log(α) + log(∆2
τz

)

)

+(Υ(∆τz
) + Pe − PeΥ(∆τz

))

E

[

2(τz+1 − τz) log(|a| + δ) + 2 log(∆τz
)

]

It now follows from (8) that for every fixed n, if
R′(n)

n >
log2(|a|/α), lim∆→∞ Υ(∆τz

) = Pe(n). For (8) to hold,

it suffices that the following equation is satisfied for large

enough ∆τz
and n values, for some ψ > 0:

(Υ(∆τz
) + Pe(∆τz

))

{

(2K ′) log(|a| + δ)

}

+(1 − Υ(∆τz
))(1 − Pe)2n log(α) ≤ −ψ < 0. (9)

Thus, for a set off a compact set, say {∆0 : ∆0 ≥ F} > 0,

for some large enough F , by limn→∞ Pe(n) = 0, and for

some sufficiently large finite n, there exists a drift towards

a compact set. This implies recurrence by Theorem 2.1.
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