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Abstract— The coordination of multiple constrained actua-
tors is relevant to several practical systems, including those
in automotive and aerospace applications. Often, the usage
of a specific group of actuators is to be minimized either
because of its operating cost or because of undesired side-
effects. In some cases, controllers for each actuator are already
available and rather than redesigning the whole control strat-
egy, a coordination scheme can be introduced to regulate the
interaction between the different actuator controllers and to
enforce system-wide constraints. In this paper we propose a
design for such a coordination strategy in the case where two
sets of actuators are available, each with a pre-designed and
non-modifiable state-feedback controller. The obtained control
strategy is shown to recursively enforce constraints on the
actuators and on the system state, to be asymptotically stable,
and to use the set of expensive actuators only for finite time.
An example of satellite attitude control is shown.

I. INTRODUCTION

Redundant actuation is typical of many applications. Some

examples in automotive domain include engine idle speed

control [1], [2], where spark timing and throttle are used

to regulate engine speed; hybrid electric vehicles, where

total wheel power is delivered by the engine/fuel cell and

a battery [3]; and vehicle cornering stabilization achieved

by active steering and differential braking [4]. In aerospace

applications, related examples include aircraft control [5],

where multiple aerodynamic surfaces may be coordinated to

result in desired attitude moments, and spacecraft attitude

control by combining reaction wheels and thrusters [6].

As a consequence, a major challenge for control becomes

the coordination of several constrained actuators to achieve

a common control objective, while possibly minimizing the

use of an “expensive” set of actuators, due to high operating

cost, efficiency loss, or undesired side effects. For instance, in

vehicle cornering active steering may be preferred to braking,

to reduce intrusiveness. In spacecraft attitude control, the use

of momentum exchange devices is preferred to the use of

thrusters which consume fuel.

Several control techniques have been proposed for dealing

with control of systems with redundant actuators, including

loop shaping H∞ control [7], and model predictive con-

trol [8]. These techniques take a holistic approach, where a
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single controller is designed to command the actuators, while

accounting for the plant dynamics and all the actuators.

A different approach, that separates the control design in

two stages, is control allocation [9]. A higher level controller

generates virtual commands, which are then allocated to the

available constrained actuators by another control algorithm,

often based on the solution a constrained least-squares prob-

lem [10].

A third approach, which is the one pursued in this paper,

starts from already available controllers for each actuator,

and implements a coordination scheme. This is of particular

interest in applications where the control strategies and

software for the individual actuators are already available,

and need to be combined without redesigning and re-

validating the entire control system. For instance, in vehicle

cornering stabilization by active front steering and differen-

tial braking, rather than completely redesigning the vehicle

stability control architecture [4], the legacy active steering

and braking control algorithms can be retained, while only

the coordination scheme needs to be introduced. In another

example, the International Space Station (ISS) the actuator

configuration may be changing, since ISS can use the attitude

control means of the currently docked spacecrafts (e.g.,

Progress or ESA ATV). Finally, the coordination strategy

may also be used to enforce pointwise-in-time state and

control constraints that are ignored in the single actuator

control design. In this way, if the constraints change either

during the life cycle of the system or due to particular

external conditions only the coordination scheme needs to

be re-designed.

In this paper, in Section II we consider the case when

two actuators (or two groups of actuators) are available,

one of which is to be used only when strictly necessary,

possibly due to higher operating cost, efficiency loss, or

undesired side-effects. We assume that two single actuator

state-feedback controllers were designed without specifically

taking into account either control or state constraints. We

then develop a coordination strategy that decomposes the

system state into “virtual” states that are responded to by the

two individual controllers. The decomposition into virtual

states, based on constraint-admissible invariant sets [11],

ensures that the constraints are satisfied and the use of the

expensive actuator is reduced. The obtained control strategy

is a form of discrete-time controller state resetting [12], [13],

and it is related to the reference governor approach of [14],

[15], which however generates a virtual reference -rather than

a virtual state- and does not address actuator coordination
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issues.

In Section III we show that the proposed coordination

strategy based on virtual state decomposition provides sev-

eral desirable properties, including closed-loop asymptotic

stability, recursive feasibility, and finite-time usage of the

expensive actuator. This last property is a major differences

of the proposed strategy with respect to other constrained

controllers. An application example in aerospace control is

presented in Section IV and the future extensions are briefly

discussed in Section V.

Notation and Basic Definitions: In what follows Z, Z+,

Z0+, and R, R+, R0+ denote the sets of integers, positive

and non-negative integers, and the sets of reals, positive and

non-negative reals, respectively. ‖·‖ denotes the vector norm.

Relational operator between vectors are applied componen-

twise, while for matrices they indicate (semi)definiteness.

The notation [A]k where A is a vector, indicates the kth

component of vector A. In is the identity matrix in R
n×n

and 0 indicate a matrix of appropriate dimensions entirely

composed of zeros. Given sets A and B, A ⊕ B is the

Minkowski sum, while int(A) indicates the interior of A.

Definition 1: A function α : R+ → R+ belongs to class

K if it is continuous, strictly increasing and α(0) = 0. It

belongs to class K∞ [16] if α ∈ K and α(s) → ∞ when

s→ ∞.

Definition 2: A function V : R
n → R0+ is a Lyapunov

function [16] for system x(k+ 1) = f(x(k)) in the positive

invariant set X ⊆ R
n if there exist functions α, α, α∆ ∈ K∞

such that for all x ∈ X ,

α(‖x‖) ≤ V(x) ≤ α(‖x‖),

∆V(x) = V(f(x)) − V(x) ≤ −α∆(‖x‖).
Result 1 ( [16]): Let V : R

n → R0+ be a Lyapunov

function for system x(k + 1) = f(x(k)) in the positive

invariant set X ⊆ R
n, then x(k + 1) = f(x(k)) is

asymptotically stable in X .

Definition 3: Given system x(k + 1) = f(x(k)), y(k) =
h(x(k)), and the output set y ∈ Y , the maximum constraint-

admissible set O∞ [11] is the largest set of states such that

if x(k) ∈ O∞, then y(t) ∈ Y for all t ≥ k.

Result 2 ( [11]): Given an asymptotically stable discrete-

time system x(k + 1) = Ax(k), y(k) = Cx(k), where

(A,C) is observable, and constraints y ∈ Y , where Y is a

compact polyhedron and 0 ∈ int(Y), the O∞ set is finitely

determined, i.e., it consists of a finite number of inequalities,

and 0 ∈ int(O∞).

II. ACTUATOR MANAGEMENT BY VIRTUAL STATE

DECOMPOSITION

We consider a linear system with two vector inputs

x(k + 1) = Ax(k) +B1u1(k) +B2u2(k) , (1a)

y(k) = Cx(k) , (1b)

where x ∈ R
n is the state vector, u1 ∈ R

m1 , u2 ∈ R
m2 are

input vectors, y ∈ R
p is the output vector. Being vectors,

each of u1, u2 may represent several inputs, hence even

though we will often refer to ui as ith actuator input, it is

understood that it may refer to a group of actuators. Linear

inequality constraints on u1, u2 and (possibly) on y are also

given, i.e., we want to ensure that ui ∈ Cu,i, i = {1, 2},

and (possibly) y ∈ Cy , where Cy, Cu,i, i = {1, 2} are given

polyhedra. Two non-modifiable controllers are given by

u1 = K1x, u2 = K2x (2)

where Ki, i ∈ {1, 2} are designed separately, so that each

enforces asymptotic stability of x(k+1) = (A+BiKi)x(k),
yet no stability guarantee is given for x(k + 1) = Ax(k) +
B1K1x(k) +B2K2x(k).

We aim at designing a control law g : R
n → R

2n, that

solves the following control problem

Problem 1: Given system (1) and pre-assigned con-

trollers (2), design a control law g : R
n → R

2n,

g(x) =

[

g1(x)
g2(x)

]

=

[

x1

x2

]

(3)

that provides “virtual states” to controllers (2),

u1 = K1x1, u2 = K2x2, (4)

such that the closed-loop system

x(k + 1) = Ax(k) +B1K1x1(k) +B2K2x(k) (5)

(i) enforces the input and (possibly) output constraints, (ii)
is Asymptotically Stable (AS), (iii) u2 6= 0 only when

“strictly necessary”, and only for a finite time interval. 2

The closed-loop plant evolution is as follows: At time k ∈
Z0+, from x = x(k), xi(k) = xi, i ∈ {1, 2} are generated

by (3), then ui(k) = ui, i = {1, 2} are computed by (4), so

that the closed-loop system evolves as

x(k+ 1) = Ax(k) +B1K1g1(x(k)) +B2K2g2(x(k)). (6)

Then the process is repeated starting from x(k + 1) at time

(k + 1) ∈ Z+. Note that control architecture (3), (4) is a

(nonlinear) static state-feedback.

The rationale for g(·) is motivated by considering a system

with two groups of redundant actuators where each actuator

group is capable of stabilizing the system on its own, yet

without accounting for constraints. In addition, the actuators

in one group, for instance the second, are “expensive” to use.

The control function g(·) generates a virtual state that is used

to modulate the control action of each actuator in order to

enforce the constraints, to guarantee asymptotic stability, and

to minimize the use of the “expensive” actuators, in a sense

that is clarified in Section II-B.

A. Virtual State Computation

For the design of (3), the following assumptions are made.

Assumption 1: The pairs (A,Bi), for i = 1, 2, are con-

trollable, and (A,C) is observable. 2

Assumption 2: K1, K2 are designed such that systems

xi(k + 1) = (A + BiKi)xi(k), i = 1, 2, are asymptotically

stable. 2

Assumption 3: Sets Cu,i, i = 1, 2 are finitely determined,

compact and 0 ∈ int(Cu,i), i = 1, 2. If Cy ⊂ R
p, Cy is

finitely determined, compact and 0 ∈ int(Cy). 2
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Fig. 1. Graphical representation of the decomposition operated by the
virtual state controller.

Consider a virtual state controller g(·) that at time k
generates x1(k), x2(k), such that x(k) = x1(k) + x2(k).
Then

x(k + 1) = (A+B1K1)x1(k) + (A+B2K2)x2(k), (7)

and (1) appears to be decomposed into two subsystems

Σ1 : x1(k + 1) = Ax1(k) +B1K1x1(k), (8a)

Σ2 : x2(k + 1) = Ax2(k) +B2K2x2(k). (8b)

Consider first the case where only input constraints are

present, i.e., Cy ≡ R
p can be ignored, and let Oi

∞
be

the maximum constraint-admissible set for the system Σi,
subject to ui ∈ Cu,i, i = 1, 2.

Given x(k), consider the decomposition problem

min
x1,x2

J(x1, x2) (9a)

s.t. x1 + x2 = x(k) (9b)

xi(k) ∈ Oi
∞
, i = 1, 2 (9c)

where J(·) is a cost function. Constraint (9a) decomposes

the state in two vectors, each to be provided to one of the

predefined controllers, i.e., each used for feedback by one

of the available actuators. Cost function (9a) minimizes the

use of the expensive actuator, while (9c) ensures that the

decomposition (9b) satisfies the constraints at every future

time instant. The effect of (9) is depicted in Figure II-A.

The state vector x(k) = x is decomposed into x1 ∈ O1
∞

,

x2 ∈ O2
∞

such that x1 + x2 = x, and (9a) is minimized.

Let [ x∗

1
(x(k))′ x∗

2
(x(k))′ ]

′
be the optimizer of (9), and define

g(x(k)) =

[

g1(x(k))
g2(x(k))

]

=

[

x∗1(x(k))
x∗2(x(k))

]

. (10)

For simplicity, in what follows we call xi(k) = x∗i (x(k)) =
gi(x(k)). Let Xf be the set of states such that (9) is feasible,

i.e.,

Xf , {x ∈ R
n : (9) is feasible for x(k) = x}.

Proposition 1: Optimization problem (9) admits a feasible

solution for all x(k) ∈ (O1
∞

⊕ O2
∞

). For system (6), if (9)

admits a feasible solution at time k ∈ Z0+, then it admits

a feasible solution at all instants t ≥ k, t ∈ Z0+, i.e., Xf is

positively invariant for (6) with g(·) defined by (10). 2

Proposition 1 can be proved using the feasible set properties

due to (9b), and the fact that recursive feasibility is guaran-

teed by the O∞-set properties.

For the case of constraints on system’s output, let Cy ,

{x ∈ R
n : HCx ≤ h}, where H ∈ R

ℓ×p, h ∈ R
ℓ. Compute

the maximum constraint admissible set, Ōi
∞

, for each of the

augmented systems

xi(k + 1) = (A+BiKi)xi(k) (11a)

εi(k + 1) = εi(k) (11b)

HCxi(k) ≤ φ+ εi(k) (11c)

0 ≤ εi(k) ≤ h− φ (11d)

where i ∈ {1, 2}, and φ ∈ [0, h] is a fixed constant vector,

finite yet possibly arbitrarily small, such that 0 ∈ int(H),
H = {x ∈ R

n : HCx ≤ φ}. Note that Ōi
∞

is defined for

(xi, εi) ∈ R
n+ℓ. Given εi, we call Oi

∞
(εi) , {xi ∈ R

n :
(xi, εi) ∈ Oi

∞
}, i.e., the cross-section of Ōi

∞
for the given

value of εi. Note that the standard theory for the O∞ set

(Result 2) does not apply in this case, since (11a), (11b)

is not asymptotically stable. However, we can prove the

following general result that ensures that under appropriate

assumptions, sets Ōi
∞

, i ∈ {1, 2} are compact and finitely

determined.

Theorem 1: Let A be strictly Schur, (A,C) be observable,

and consider the constraints Hy ≤ φ, where H ∈ R
ℓ×p,

φ ∈ R
ℓ. Let Y = {y ∈ R

ℓ : Hy ≤ φ} be a compact set

with 0 ∈ int(Y). Then the set O∞ = {(x, ε) ∈ R
n+ℓ :

HCAkx ≤ φ+ ε, 0 ≤ ε ≤ εmax, k ∈ Z0+} is compact and

finitely determined.

The proof of this technical theorem is omitted here. The

result can be proved by showing that the feasible set is

compact for every ε ≥ 0, and then using observability

of (A,C) and asymptotic stability of A to prove finite

determination and compactness of O∞.

As a direct consequence of (11) and of Theorem 1, for

any εi ∈ [0, h− φ], 0 ∈ int(Oi
∞

(εi)), i = 1, 2, Given x(k),
consider the following optimization problem

min
x1,x2,ε1,ε2

J(x1, x2, ε1, ε2) (12a)

s.t. x1 + x2 = x(k) (12b)

xi ∈ Oi
∞

(εi), i = 1, 2 (12c)

ε1 + ε2 ≤ h− 2φ (12d)

let [ x∗

1
(x(k))′ x∗

2
(x(k))′ ε∗

1
(x(k))′ ε∗

2
(x(k))′ ]

′
be the optimizer,

and define g(·) again by (10), where ε∗1, ε∗2 do not (explicitly)

appear.

With (12), the controller decomposes not only the state

between the different subsystems, but also the constraint

bounds. Constraint (12c) ensures Hxi(k) ≤ εi(k), i ∈
{1, 2}, and, by constraints (12b),(12d), Hx(k) = H(x1(k)+
x2(k)) ≤ ε1(k) + ε2(k) + 2φ ≤ h. If (12) is used in

place of (9), the set of feasible states is Xf , {x ∈ R
n :

(12) is feasible for x(k) = x}.
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Proposition 2: The set Xf = {x(k) ∈ R
n :

(12) is feasible} is convex and, if Ōi
∞

, i ∈ {1, 2} are

compact and finitely determined, Xf is compact and finitely

determined. For system (6), if (12) is feasible at time k ∈
Z0+, then the constraints are satisfied at any time instant

t ≥ k, t ∈ Z0+, i.e., Xf is positively invariant for (6) where

g(·) is implemented by (9). 2

The proof of Proposition 2 is analogous to the one of

Proposition 1.

B. Selection of the Cost Function

The choice of cost function (9) (or (12)) is important for

achieving objectives (ii) and (iii) in Problem 1.

The purpose of the control strategy (10) is to minimize

the use of the “expensive” actuators, let us say u2 for (1).

In (9), (12), a possible choice is to minimize ‖K2x2‖
2, or

in other words

J(x1, x2) = J(x2) = x′2K
′

2K2x2. (13)

While (13) has a clear physical meaning in terms of

pointwise minimization of actuator energy, in the general

case it lacks desirable properties, and it may not lead to the

minimization of the overall use of u2 over time. In particular,

(13) may not be strictly convex with respect to x2, e.g., when

m2 < n. Strict convexity with respect to x2 is important to

achieve stability, as it will be clear later. In what follows we

will show that by choosing a weighted version of this cost,

J(·) = J(x2) = ‖P
1/2
2 x2‖

2 = x′2P2x2, (14)

the desired closed-loop system properties can be obtained.

The weight P2 in (14) is chosen so that x′2P2x2 is a

Lyapunov function for system x2(k+1) = (A+B2K2)x2(k).
With cost (14), (10) selects x2 that belongs to the minimum

achievable level set of the Lyapunov function of Σ2. Thus,

(10) minimizes the “energy” in the closed-loop system

x2(k + 1) = (A + B2K2)x2(k), which corresponds to the

closed-loop dynamics generated by the expensive actuator.

Since for linear systems subject to linear constraints the

sets Oi
∞

, i = 1, 2 are polyhedra, by choosing (14) as

cost function, optimization problems (9), (12) are quadratic

programs, for which efficient algorithms exist [17]. Basing

on multiparametric programming results [18], we also note

that function (9) is piecewise affine and can be computed

online, thus reducing the on-line implementation to the

evaluation of affine expressions and inequalities.

III. CLOSED-LOOP ASYMPTOTIC STABILITY

In this section we analyze the stability of the closed-loop

system (6), where g(·) is defined by (10), (12). In what

follows we will often refer to (9), while it is understood

that (12) is used, when output constraints are present. Due

to limited space we cannot report here the complete proofs.

We only sketch the proofs of the essential results.

Consider the control strategy described in Section II, let

µi = ‖A + BiKi‖ be the induced 2-norm of the closed-

loop matrix, and Vi(xi) be Lyapunov functions for xi(k +
1) = (A + BiKi)xi(k), for i = 1, 2. We want to prove

that there exists γ > 0 such that the function V(x) =
V1(x1) + γV(x2) is a Lyapunov function for x(k + 1) =
Ax(k) + B1K1g1(x(k)) + B2K2g2(x(k)), where gi(x(k)),
i = 1, 2, are defined by (10). Since systems in (8) are linear,

we consider Lyapunov functions Vi(xi) = x′iPixi, i = 1, 2,

where Pi > 0, such that (A+BiKi)
′Pi(A+BiKi)− Pi =

−Qi, for some Qi > 0, i ∈ {1, 2}. We make the following

assumption.

Assumption 4: Let either at least one of Oi
∞

, i = 1, 2 be

bounded, or the minimum of (9) be bounded at k = 0.

First, we introduce the two following lemmas, whose proofs

are technical and not reported here for conciseness.

Lemma 1: Along the closed loop trajectories of (6) with

g(·) defined by (10) and cost function (14), there exists ci >
0, i = 1, 2, such that for all k ∈ Z0+, ‖xi(k)‖ ≤ ci‖x(k)‖,

i = 1, 2. 2

Lemma 2: Let xi(k) ∈ Oi
∞
, i = 1, 2 be given, let x̃2(k+

1) = (A+B2K2)x2(k), and solve (2) with cost function (14)

to obtain x2(k + 1). Then there exists c ∈ R+ such that for

all k ∈ Z0+, ‖x2(k + 1) − x̃2(k + 1)‖ ≤ c‖x̃2(k + 1)‖ ≤
c‖x2(k)‖. 2

Theorem 2: Let Vi(xi) = x′iPixi be a Lyapunov function

for xi(k+1) = (A+BiKi)xi(k). Then, there exists γ ∈ R+

such that V(x) = V1(x1) + γV2(x2) is a Lyapunov function

within Xf for closed-loop system (6), with g(x(k)) defined

by (10) and cost function (14). 2

Proof sketch: The set of feasible states Xf is positively

invariant for the closed loop dynamics by Proposition 1

(or Proposition 2). The existence of α, α ∈ K∞ such that

α(‖x‖) ≤ V(x) ≤ α(‖x‖) is proved by using Lemma 1

and standard manipulations. The proof that there exists

α∆(‖x‖) ∈ K∞ such that ∆V(x) ≤ −α∆(‖x‖) is demon-

strated by analyzing the closed-loop system as if composed

of two parts: the continuous evolution of the two subsys-

tems (8) resulting in x̃i = (A+BiKi)xi, i = 1, 2, then the

reset of the subsystem states by (10), i.e, x+
i = gi(x̃1, x̃2),

i = 1, 2, where x+ = x+
1 + x+

2 . As a consequence,

∆V(x) = V(x+) − V(x) = (15)

∆Ṽ(x1, x2, x̃1, x̃2) + φ(x̃1, x̃2, x
+
1 , x

+
2 )

where ∆Ṽ(x1, x2, x̃1, x̃2) is the change of the Lyapunov

function value during the continuous execution of the subsys-

tems, while φ(x̃1, x̃2, x1, x2) is the change of V(x) induced

by the reset operated by (10).

Since Vi(x), i = 1, 2 are Lyapunov functions for subsys-

tems in (8), it follows that x̃′iPix̃i − x′iPixi = −x′iQixi,
Qi > 0, i = 1, 2. Thus in (15), for any γ > 0, whenever

‖x1‖ + ‖x2‖ > 0,

∆Ṽ(x1, x2, x̃1, x̃2) =

−x′1Q1x1 − γx′2Q2x2 < 0.

In (15), the term related to the reset is

φ(x̃1, x̃2, x
+
1 , x

+
2 ) = (V1(x

+
1 ) − V1(x̃1)) +

γ(V2(x
+
2 ) − V2(x̃2)).
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Since x̃i, i = 1, 2 is feasible for problem (9) with cost

function (14), while x+
i , i = 1, 2 is the optimizer,

V2(x
+
2 ) − V2(x̃2) ≤ 0.

Thus, the following bound on (15) holds

−∆V(x) ≥ ϕ(x1, x2, x̃1, x
+
1 ) =

x′1Q1x1 + γx′2Q2x2 − (V1(x
+
1 ) − V1(x̃1)).

The fact that ϕ is lower bounded by a class-K function is

demonstrated using Lemma 2 and optimality of x+
1 , x+

2 to

show that there exists γ for which the decrease of V1 + γV2

during the continuous evolution always offsets the increase

of V1 during the reset. This demonstrated by algebraic

manipulations and bounding. 2

Corollary 1: Consider system (6) where g(·) is defined

by (10) and cost function (14) is used. Let x(0) be such

that (9) has a feasible solution with finite cost. Then, the

closed-loop trajectory is such that there exists a finite index

k̄ ∈ Z0+ such that x2(k) = 0, for all k ≥ k̄. 2

The proof of Corollary 1 follows from the existence of

α∆(‖x‖) ∈ K∞, such that ∆V(x) ≤ −α∆(‖x‖) and by the

fact that O1
∞

is closed, compact, invariant and 0 ∈ int(O1
∞

).

IV. APPLICATION TO SPACECRAFT ATTITUDE CONTROL

We consider the attitude regulation for a satellite where

two sets of actuators are available, namely, reaction wheels

and thrusters. Reaction wheels, which are powered by solar

energy, are relatively inexpensive to operate but have small

authority. On the other hand, thrusters have larger authority

but they consume fuel, which is available in a limited

quantity, and hence their usage shall be minimized. We

consider a reference frame aligned with the satellite principal

axes and located at the satellite center of mass. We call φ, ϑ,

ψ the three Euler angles defining the satellite attitude with

respect to such frame, and φ̇, ϑ̇, ψ̇ are the related angular

rates. For small angles, the linearized attitude dynamics are

described by [19]

Jscω̇(t) = −Jrwα(t) + τ(t) (16)

where ω = [ φ̇ ϑ̇ ψ̇ ]
′
∈ R

3 is the vector of angular rates,

τ = [ τφ τϑ τψ ] ∈ R
3 is the vector of torques with respect

frame axes obtained by the thrusters, and α = [ αφ αϑ αψ ]
is the vector of angular accelerations of the reaction wheels

with respect to the frame axes. In (16), Jsc,Jrw ∈ R
3×3 are

the matrices of the moments of inertia of the spacecraft and

of the reaction wheels with respect to the frame, respectively.

Due to the choice of principal axes as the reference frame,

Jsc,Jrw are diagonal matrices.

From (16), by taking the angles and the angular rates

as states, the vector of thrusters torques and the vector of

reaction wheels accelerations as inputs, and by discretizing

with sampling period Ts = 1s, the system dynamics are

x(k + 1) = Ax(k) +B1u2(k) +B2u2(k) (17)

where x ∈ R
6 is the state vector, x = [ φ ϑ ψ φ̇ ϑ̇ ψ̇ ]

′
,

and u1 = α, u2 = τ , u1, u2 ∈ R
3, are the input vectors

Fig. 2. Trajectory of the satellite attitude angles, and section of O1
∞

,O2
∞

.

corresponding to the two set of actuators, reaction wheels

and thrusters, respectively. In (17), A =
[

I3 I3
0 I3

]

, B1 =

[ 0 (J−1

sc
Jw)′ ]

′
, B2 = [ 0 I3 ]

′
. The inputs are subject to

saturation, −0.2
[

1
1
1

]

≤ u1 ≤ 0.2
[

1
1
1

]

,
[

1
1
1

]

≤ u2 ≤
[

1
1
1

]

.

Two controllers are pre-assigned for the actuators, Ki, i =
1, 2, that are the solutions of the LQR problems

min
∞
∑

k=1

x(k)′Qix(k) + u(k)′Riu(k) (18a)

s.t. x(k + 1) = Aix(k) +Biui(k), i = 1, 2 (18b)

respectively, where Q1 = Q2 =
[

10·I3 0
0 0.1·I3

]

, R1 = 3.6 · I3,

R2 = I3. Note that the pre-assigned controllers do not

enforce saturation constraints. The cost function of (9) is im-

plemented by x2(k)
′P2x2(k), where P2 is the solution of the

Riccati equation associated with the LQR problem (18). Sets

Oi
∞

, i = 1, 2 are computed by using the procedure in [11]

and are described by 62 and 34 inequalities, respectively.

We show here the regulation performance starting from

initial state x0 = [−0.2 0.5 0.64 −0.075 0.0025 0.0032 ]
′
. It can

be verified that x0 /∈ O1
∞

, x0 /∈ O2
∞

, but x0 ∈ (O1
∞

⊕O2
∞

).
The angles trajectory obtained by applying the virtual state

controller from this initial condition is shown in Figure 2,

where also the cross-sections of O1
∞
,O2

∞
for [x]i = 0, i =

4, 5, 6 are shown in blue and in red, respectively.

Figure 3 shows the time history of the control inputs,

divided in the groups of reaction wheels and thrusters, during

a simulation of 60s, where one can see that the actuation

constraints are enforced. Since x0 /∈ O1
∞

, at the beginning

both actuators are used, but the thrusters (u2) are used only

for a finite amount of time, and in fact they are shutoff at

t = 19s. Figure 4 reports the state history and the optimum

cost function profile over time. Note that the optimum drops

to 0 (the y-axis is in logarithmic scale to better highlight

small values) at t = 19s, according to Corollary 1. In

fact, at t = 19s virtual state x2 is reset to 0, and it is

maintained at that value, even though the system state has

not yet reached the equilibrium, since from that time on the

reaction wheels are sufficient for stabilization. Although not

reported here due to space limitations, it can be shown that

V1(x1(k)) = x1(k)
′Px1(k) is not monotonically decreasing
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Fig. 3. Time history of the control inputs in the example.
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in time, due to the effect of (9) on x1(k), while V2(x2(k)) =
x2(k)

′Px2(k) is monotonically decreasing in time, due to

recursive feasibility of (9) and the results of Proposition 1.

In addition, it is easy to identify a constant γ > 0 such that

V1(x1(k))+γV2(x2(k)) is monotonically decreasing in time,

as guaranteed by Theorem 2.

V. CONCLUSION AND FUTURE RESEARCH

We have presented a virtual state governor approach for

coordinating two constrained actuators (or actuator groups)

in the case when controllers are available for each actuator,

individually. Basing on the constraint-admissible invariant set

of the plant dynamics in closed-loop with each actuator, and

according to a given cost function, the coordination strategy

generates virtual states that are fed to the controllers to

modulate each actuator’s actions. We have indicated a choice

of the cost function such that, under reasonable assumptions,

the resulting closed-loop response satisfies the constraints,

is asymptotically stable, and uses the “expensive” actuators

only when needed, and for a finite period of time.

The developments can be generalized to the case of N ∈
Z+ actuator groups by using a recursive procedure, for which

the stability analysis of Section III can be repeated. However,

such analysis becomes more involved in the technicalities,

hence an extensive and more precise discussion of the N
actuators case will be a subject for a future publication.

Furthermore in future research, extensions to other classes of

controllers, for instance dynamic feedback using a modeling

approach similar to the one used in [20], will be investigated.
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