
 

 

 

  

Abstract—Advanced control design for continuous Petri 

nets requires the characterization of positive invariant and 

attractive regions in marking space. Based on such 

characterizations, piecewise constant control design is 

investigated. Sufficient conditions for control design in finite 

time are proposed. An algorithm for piecewise constant control 

design in minimal time is proposed as a consequence. 

I. INTRODUCTION 

EPENDABLE control for manufacturing systems leads to 

advanced methods and models. In this context, timed 

continuous Petri nets (contPNs) can be used in order to 

provide accurate representations of the behaviors of discrete 

event systems and to take benefit from the main advances in 

continuous systems control theory [6, 13]. Controllability 

and control actions for contPNs have been considered by 

adapting linear control theory to contPNs in order to take 

into account their specific properties [10, 19]. In particular 

the markings and flows are positive and mainly often 

bounded and contPNs are piecewise affine models [11]. 

Controllability domains have been defined for contPNs and 

conditions so that a contPN is controllable with bounded 

inputs have been provided [9, 15]. In addition, stationary 

markings resulting from a specific control action have been 

also characterized [14]. Then, optimal controls by mean of 

linear programming problems have been investigated. The 

basic idea is to maximize various linear cost functions that 

depend on control actions, initial marking, steady state and 

net parameters under linear constraints that specify the 

contPNs properties. Affine control laws [2], model 

predictive control [7] and piecewise-linear marking 

trajectories in minimal time [1] have been designed as a 

consequence.  

Based on the characterization of positive invariant and 

attractive regions within finite time intervals, piecewise 

control design is investigated. Sufficient conditions to be 

checked so that a set of piecewise constant control actions 

moves the marking from a given initial value to the 

neighborhood of a desired value are proposed. An algorithm 

for piecewise constant control design in minimal time is 

proposed as a consequence. 

II. CONPNS WITH CONTROL ACTIONS 

A. Petri nets 

A Petri net (PN) is defined as <P, T, WPR, WPO > where P 
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= {Pi} is a set of n places and T = {Tj} is a set of q 

transitions and W = WPO – WPR ∈ (Z)
n×q

 is the incidence 

matrix. <PN, MI> is a markied PN, MI is the PN initial 

marking, M = (mi) ∈ (Z
+
)
n
 denotes the current marking 

vector and R(PN, MI) is the PN reachability set (i.e. the set 

of markings that are reachable from initial marking MI) [6]. 

A Petri net is b-bounded if the marking mi of each place Pi is 

bounded by b (i.e. for all M ∈ R(WPO, WPR, MI) and for all Pi 

∈ P, mi ≤ b). Each transition Tj fires according to the integer 

part of its enabling degree enabj(M): 

enabj(M) = min {mk / w
PR

kj : Pk ∈ °Tj} (1) 

where °Tj stands for the set of Tj upstream places. A firing 

sequence σσσσ is defined as an ordered series of transitions that 

successively fire from initial marking MI to marking M (i.e. 

MI [σσσσ > M). Such a sequence may be represented by the PN 

firing count vector σ = (σj) ∈ (Z
+
)
q
, where σj is the number 

of Tj firings. PNs may have P-semiflows. A P-semiflow y ∈ 

(Z
+
)
n
 is a non-zero solution of equation y

T
.W = 0. Let us 

define Y ∈ (Z
+
)
n x hp

 = (y1 | ...| yhp) as the matrix obtained 

according to all minimal P-semiflows yi, i = 1,...,hp. Y is of 

rank hp and satisfies equation Y
T
.M = C with C = Y

T
.MI. 

B. Controlled timed continuous Petri nets 

Timed continuous PNs under infinite server semantic 

(contPNs) have been developed in order to provide 

continuous approximations of the discrete behaviors of PNs 

[6, 13]. The marking of each place is a continuous non 

negative real valued function of time and M(t, MI) ∈ (R
+
)
n
, t 

≥ 0 is the continuous marking trajectory that starts with MI at 

t = 0. Xmax = diag(xmax j) ∈ (R
+
)
qxq

 is the diagonal matrix of 

maximal firing speeds xmax j, j = 1,…q and X(t, MI) = (xj(t, 

MI)) ∈ (R
+
)
q 

is the firing speeds vector at time t in free 

regime that depends continuously on the marking of the 

places. The flow through the transition Tj is defined by (2): 

xj(t, MI) = xmax j.enabj(M(t, MI) ) (2) 

Control actions may be introduced according to a 

reduction of the flow through the transitions [9]. Transitions 

in which a control action can be applied are called 

controllable and Tc is defined as the set of controllable 

transitions. Similarly Tnc is the set of uncontrollable 

transitions. For a contPN with qc controllable transitions, let 

us assume, without any loss of generality that Tc = {T1, …, 

Tqc} (Tc can eventually be empty) and Tnc = {Tqc+1, …, Tq} 

and define Qc = (Iqc | 0qc x (q-qc)) ∈ (Z
+
)
qc x q

 and Qnc = (0(q-qc) x 

qc | Iq-qc) ∈ (Z
+
)
(q-qc) x q

. The control actions are summed up in 
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control vector U(t) = (uj(t)) ∈ (R
+
)
q
. As a consequence, the 

marking variation of contPNs is given by (3): 

dM(t, MI) / dt = W.(X(t, MI)-U(t)) (3) 

with 0 ≤ Qc.U(t) ≤ Qc.X(t, MI) and Qnc.U(t) = 0. 

A control sequence U(t), t ≥ 0 that satisfies the preceding 

conditions for a given marking trajectory is named an 

bounded input control and the set BIC(Tc, MI) of admissible 

control sequences {U(t), t ≥ 0} for initial marking MI is 

defined as a consequence: 

BIC(Tc, MI) = {{U(t), t ≥ 0}, such that 

 0 ≤ Qc.U(t) ≤ Qc.X(t, MI) and Qnc.U(t) = 0} (4) 

C. Regions for contPNs 

For a contPN with P-semiflows represented by matrix Y, any 

reachable marking M(t, MI) ∈ (R
+
)
n
 satisfies Y

T
.M(t, MI) = C. 

So, linear dependencies between marking variables appear 

and the reachable set of contPNs is defined as a 

consequence. The reachable set, R(contPN, MI) ⊂ (R
+
)
n
, of a 

marked contPN, < PN, Xmax, MI >, is defined as the set of all 

reachable markings M(t, MI), t ≥ 0, from a given initial 

marking MI and for all matrices Xmax ∈ (R
+
)
q x q

 of maximal 

firing speeds.  

 

Switches occur in contPNs according to the function 

“min(.)” in the expression of the enabling degree (1). Let us 

define the critical place(s) for transition Tj at time t as the 

place(s) Pi such that i = argmin {mk(t, MI) / w
PR

kj, Pk ∈ °Tj}. 

R(contPN, MI) can be partitioned in K reachable regions (r-

regions) with K ≤ Π{|°Tj|, j = 1,...,q}: R(contPN, MI) = 

A1K…KAk. In the interior of any r-region Ak, each 

transition has a single critical place. PN configurations [14] 

are used to define the r-regions. A configuration is a cover of 

T by its input arcs and assigns to each transition a single 

input place:� config(k) = {(Pi(k,j), Tj), j = 1,...q}, k = 

1,...,Π{|°Tj|, j = 1,...,q}, where Pi(k,j) ∈ °Tj is the single input 

place of transition Tj in configuration k (i(k, j) stands for the 

index of the concerned place). R-regions of marked contPNs 

are defined as: 

 

Definition: The reachable region (r-region) Ak ⊂ R(contPN, 

MI), k = 1,…, K of a marked contPN, < PN, Xmax, MI >, is 

defined for a given configuration config(k), and for all 

matrices Xmax ∈ R
+
)
qxq

 as the set of all reachable markings 

M(t, MI), t ≥ 0, that satisfy (1) Y
T
.M(t, MI) = C, (2) ∀ Tj ∈ T, 

Pi(k,j) is the critical place of transition Tj for marking M(t, 

MI). 

 

Each r-region Ak is characterized by a constraint matrix Ak = 

(a
k
ij) ∈ (R

+
)
q x n

, k = 1,…,K, i = 1,..., q and j = 1,..., n: 

• a
k
ji(k,j) = 1/w

PR
i(k,j)j for all Tj ∈ T, 

• a
k
ji = 0 otherwise. 

 

The constraint matrices Ak lead to a linear matrix inequality 

(LMI) that characterizes the r-regions according to 

proposition 1. 

Proposition 1 [12]: Let us consider a contPN with K r-

regions Ak. Each r-region Ak is a polyhedral set 

characterized by the LMI Hk.M ≤ hk with: 

 �� � � ���	
�����
�,   �� �  � 00����  ��� 	
�� �

��
� 	� � 	�…	� � 	���	� � 	���…	� � 	 !"

#  
 

and In is the identity matrix of size n. 

 

The LMI Hk.M ≤ hk is composed of n + q(K-1) + 2hp 

inequalities to be satisfied by n variables. Let us notice that 

the set of inequalities A(k) ≤ 0 include numerous trivial 

inequalities (i.e. 0 ≤ 0) and also several identical inequalities 

that can be removed for rapidity. 

D. Piecewise constant control actions 

The marking variation (3) of contPNs can be rewritten in 

each r-region Ak. For all M(t, MI)∈ Ak, equation (5) holds: 

 

dM(t,MI)/dt = W.(Xmax.Ak.M(t,MI)-U(t)) (5) 

 

with 0 ≤ Qc.U(t) ≤ Qc.Xmax.Ak.M(t, MI) and Qnc.U(t) = 0.  

 

If the control actions are constant in r-region Ak (i.e. U(t) = 

Uk for all M(t, MI) ∈ Ak), contPNs are piecewise-affine 

hybrid systems and for all M(t, MI)∈ Ak, equation (5) leads 

to (6): 

 

dM(t,MI)/dt = W.Xmax.Ak.M(t,MI) - W.Uk  (6) 

 

with 0 ≤ Qc.Uk ≤ Qc.Xmax.Ak.M(t, MI) and Qnc.Uk = 0.  

 

A constant control vector Uk that satisfies the preceding 

conditions for a given marking trajectory included in Ak is 

named an admissible constant bounded input control and the 

sets CBIC(Ak, Tc, MI) of admissible constant control vectors 

for initial marking MI ∈ Ak and CBIC(Ak, Tc) of admissible 

constant control vectors in Ak for all initial marking MI ∈ Ak 

are defined as a consequence: 

 

CBIC(Ak, Tc, MI) = {Uk ∈ (R
+
)

q
 such that 0 ≤ Qc.Uk ≤ 

Qc.Xmax.Ak.M(t, MI), t ≥ 0 and Qnc.Uk = 0} 

CBIC(Ak, Tc) = ∪ {CBIC(Ak, Tc, MI) : MI ∈ Ak} 

 

For numerical issues, discrete time approximations of the 

continuous trajectories of contPNs will be used. First order 

approximations of equation (6) in discrete time with 

sampling period ∆t result from direct or retrograde schemes. 

If the control actions are constant in r-region Ak and Uk ∈ 

CBIC(Ak, Tc, MI), the direct schema is given by (7): 
 

M(t, MI) = (ADk)
t
.MI – Σk(t).Uk (7)

 

 

with ADk = W.Xmax.Ak.∆t.+In. and 

Σ�
$� � %∑ 
	'��(��)(*� +. -.∆$.
 

5863



 

 

 

III. POSITIVE INVARIANCE AND ATTRACTION IN FINITE TIME 

Positive invariance and attraction of polyhedral regions for 

linear and non-linear systems have been investigated 

according to the computation of LMIs and linear 

programming problems (LPPs) [3, 4, 5]. 

A. Positive invariance in finite time 

Let us consider any region A ⊆ Ak. A is positive 

invariant for the contPN (3) in free of forced regime if and 

only if MI ∈ A implies M(t, MI) ∈ A, for all t ≥ 0. From a 

practical point of view, τ - positive invariance is introduced.  

Definition: A region A ⊆ Ak is τ -positive invariant for the 

contPN (3) in free of forced regime if and only if MI ∈ A 

implies M(t, MI) ∈ A, for all t = 0,..., τ. 

 

LMIs can be used to check the τ - positive invariance of a 

given region A ⊆ Ak. 

Proposition 2: Let us consider a contPN with Tc = {T1, …, 

Tqc} and Tnc = {Tqc+1, …, Tq} and K r-regions Ak. Let us also 

consider an arbitrary region A ⊆ Ai defined by H.M ≤ h. The 

region A is τ - positive invariant for initial marking MI ∈ A 

and system (7) under constant control actions Ui if and only 

MI and Ui satisfy LMI (8): 

 

 
�
���
���

�. 	'.
::::�. 
	'.�τ

��. Σ.
1�
::::��. Σ.
τ��01. 2345. 	.

::::�01. 2345. 	. . 
	'.�τ��00
01
::::01. %�672345. 	. . Σ.
τ � 1�+��60�1 !

"""
""# . 89:;. <  ≤ 

�
���
��

�
::::�0
::::000!
"""
"#
 

 (8) 

 

Proof: the proof is a direct consequence of r-regions and 

polyhedral sets characterization (proposition 1), CBIC and τ 
- positive invariance definitions. The first group of 

inequalities (rows 1 to 3 of (8)) ensures that M(t, MI) ∈ A, 0 

≤ t < τ. The second group of inequalities (rows 4 to 8 of (8)) 

ensures that the constant control actions are admissible 

CBIC according to Tc and Tnc. 

 

Let us notice that proposition 2 can also be used to work out 

the set of CBIC control actions and also the set of initial 

markings such that the region A is τ - positive invariant. 

LPPs are used for that purpose. 

B. Attraction in finite time 

The region A ⊂ R
n
 is attractive for the contPN (3) with 

initial marking MI if and only if ∃ ∆ > 0, ∀ ε > 0, there is τ > 

0 such that inf{|| MI - M
*
 || : M

*
 ∈ A} < ∆ implies inf{|| M(t, 

MI) - M
*
 || : M

*
 ∈ A} < ε, t > τ. For engineering needs, it is 

more important to ensure attraction with finite attraction 

time τ [8]. A region A ⊂ R
n
 is attractive with finite attraction 

time τ for the contPN (3) if and only if ∃ ∆ > 0, ∀ MI such 

that inf{|| MI - M
*
 || : M

*
 ∈ A} < ∆ implies inf{|| M(t, MI) - 

M
*
 || : M

*
 ∈ A} = 0, t ≥ τ. The time τ is called the finite 

attraction time. For practical issues (τ,τ’) – attractivity is 

introduced.  

 

Definition: The region A ⊂ (R
+
)
n
 is (τ,τ’) - attractive for the 

contPN (3) if and only if ∃ ∆ > 0, ∀ MI such that inf{|| MI - 

M
*
 || : M

*
 ∈ A} < ∆ implies inf{|| M(t, MI) - M

*
 || : M

*
 ∈ A} 

= 0 for τ ≤ t < τ + τ’ + 1. 

 

LMIs can be used to check the (τ,τ’) – attractivity of a given 

region A ⊆ Ak. 

Proposition 3: Let us consider a contPN with Tc = {T1,…, 

Tqc}, Tnc = {Tqc+1, …, Tq} and K r-regions Ak. Let us also 

consider an arbitrary region A ⊆ Ai defined by H.M ≤ h. The 

region A is (τ,τ’) - attractive for system (7) under constant 

control actions Ui if there exists a non empty set of initial 

markings MI ∈ Ai such that MI and Ui satisfy the LMI (9): 

�
���
���
���

�.
::::�. . 
	'.�τ���. 
	'.�τ

::::�. 
	'.����

��. . Σ.
0�
::::��.. Σ.
τ � 1���. Σ.
τ�
::::��. Σ.
� 7 1��01. 2345. 	.

::::�01. 2345. 	. . 
	'.��00
01 . %�672345. 	. . Σ.
0�+

::::01. %�672345. 	. . Σ.
��+��60�1 !
"""
"""
""#

. 89:;. <  ≤ 
�
���
���
��.

::::�.�
::::�0
::::000 !

"""
"""
#
 (9) 

with  k = τ + τ’ – 1. 

Proof: the proof is a direct consequence of the definition of 

(τ,τ’) – attractivity. The first group of inequalities (rows 1 to 

3 of (9)) ensures that M(t, MI) ∈ Ai, 0 ≤ t < τ. The second 

group of inequalities (rows 4 to 6 of (9)) ensures that M(t, 

MI) ∈ A, τ ≤ t < τ + τ’ +1.  The last group of inequalities 

(rows 7 to 11 of (9)) ensures that the constant control actions 

are admissible CBIC according to Tc and Tnc. Proposition 3 

holds as a consequence. 

Let us notice that proposition 3 can also be considered as a 

LPPs in order to work out the set of CBIC control actions 

such that the region A is (τ,τ’) - attractive. 

C. Control for r-regions switching in finite time 

Proposition 3 and LMIs can be used to provide conditions on 

control actions such that the marking switches from r-region 

Ai to r-region Aj in a specific number τ of steps. Such a 

characterization is equivalent to (τ, 0) – attractivity of region 

Aj. 

Proposition 4: Let us consider a contPN with Tc = {T1,…, 

Tqc}, Tnc = {Tqc+1, …, Tq} and K r-regions Ak. The region Aj 

is (τ, 0) - attractive for the system (7) from initial markings 

MI ∈ Ai and for control actions Ui if and only if MI and Ui 

satisfy the LMI (10): 
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 (10) 

Proof: the proof is also a consequence of the definition of 

(τ,τ’) – attractivity. The first group of inequalities (rows 1 to 

3 of (10)) ensures that M(t, MI) ∈ Ai, 1 ≤ t < τ. The second 

group of inequalities (row 4 of (10)) ensures that M(τ, MI) ∈ 

Aj, (i.e. the marking switches from region Ai to Aj). The last 

group of inequalities (rows 6 to 10 of (10)) ensures that the 

constant control actions are admissible CBIC according to Tc 

and Tnc. Proposition 4 holds as a consequence. 

Let us notice that proposition 4 can also be considered as a 

LPPs in order to work out the set of CBIC control actions 

and the set of initial markings such that the region Aj is (τ, 
0) - attractive. 

IV. PIECEWISE CONSTANT CONTROLS ACTIONS FOR 

FINITE TIME CONTROL DESIGN 

The results of the section III can be used in order to design 

piecewise constant control actions suitable to drive the 

marking vector from an initial marking MI to the 

neighborhood of a desired marking Md according to a 

sequence S = s(1)...s(L) of L ≤ K r-regions to be crossed in 

finite times τ1,τ2,...,τL. The i
th

 r-region in sequence S will be 

referred as s(i). It is assumed that S satisfies: 

(1) MI ∈ s(1) and Md ∈ s(L)  

(2) two successive r-regions in S have nonempty 

intersections: s(i) ∩ s(i+1) ≠ ∅ for i = 1,..., L-1, 

(3) each r-region does not appear more than once in S: s(i) ≠ 

s(j) for i ≠ j. 

For any initial marking MI and desired marking Md, such 

sequences S exist as long as the R(contPN, MI) is a convex 

set that is partitioned according to the r-regions. Without any 

loss of generality one can label the r-regions according to the 

sequence S: S = A1... AL and s(i) = Ai, i =1,...,L. Let us also 

consider a polyhedral neighborhood A ⊂ AL of the desired 

marking Md (i.e. Md ∈ A) defined by H.M ≤ h. The 

piecewise constant control actions that drive the marking 

vector from MI to region A in finite time and according to S 

can be worked out with proposition 5: 

Proposition 5: Let us consider a contPN with Tc = {T1,…, 

Tqc}, Tnc = {Tqc+1, …, Tq}, K r-regions Ak, an initial marking 

MI and a desired marking Md. Let us also consider a 

sequence of r-regions S = s(1)...s(L) = A1... AL, a set of finite 

times τ = {τ1,τ2,...,τL} and a region A ⊂ AL defined by H.M 

≤ h, such that MI ∈ A1 and Md ∈ A. There exists a set of 

piecewise constant control actions {Ui, i = 1,…L} that drive 

the marking of the system (7) from MI to A in finite time τ1 

+ τ2 + ... +τL if Ui, i = 1,…L, satisfy the LMI (11): 

��
� =
1,1� 0=
2,1� =
2,2� … 0? @@ @=
A, 1�=
A 7 1,1� =
A, 2�=
A 7 1,2�

? 0… =
A, A�=
A 7 1, A�!"
# . �;�;B@;C

�  ≤ 
��
� �B@CC��!"

#
  (11) 

 

with: 
 =
A 7 1, D� � �. 
	'.�τE . π
F, D�. Σ(%τ(+, D G A 7 1  =
A 7 1, A� � ��. Σ.
τ.�  C�� � � � �. 
	'.�τE . π
F, 0�. 9: 
 

=
F, D� �
�
���
���
� ��. . 
	'.�H. π
F, D�. Σ(%τ(+@��. . 
	'.�τE��. π
F, D�. Σ(%τ(+01. 2345. 	. . 
	'.�H. π
F, D�. Σ(%τ(+@01. 2345. 	. . 
	'.�τE��. π
F, D�. Σ(%τ(+00 !

"""
"""
#

,      F � 1, … , A, F I D 

 

  . �
�
���
��

�. � �. . 
	'.�H. π
F, 0�. 9:@�. � �. . 
	'.�τE��. π
F, 0�. 9:01. 2345. 	. . 
	'.�H. π
F, 0�. 9:@01 . 2345. 	. . 
	'.�τE��. π
F, 0�. 9:00 !
"""
"# ,   F � 1, … , A 

 

=
F, F� �
�
��
��
� ��. . Σ.
0�@��. . Σ.
τ. � 1�01701. 2345. 	. . Σ.
0�@01701 . 2345. 	. . Σ.
τ. � 1���60�1 !

""
""
#

,   π
F, D� � � J %	'
.���+τEKL.��
�*(�� � 

 

Proof: The marking trajectory is detailed in any region s(i) = 

Ai, i =1,...L, according to the following equation: 

 9
τ� 7 M 7 τ.�� 7 $, 9:�
� 
	'.�). NJ%	'
.���+τEKL.��
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� 
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(*� . Σ(%τ(+. ;(�Σ.
$�. ;. ,

$ � 0, … , τ. � 1 
 

Then, the proof results directly from the application of the 

results established for regions switching and (τ,τ’) – 

attractivity.  

 

Remarks: 

1. The computation of equation (11) provides all 

sequences of CBIC control actions that drive the 

marking vector from MI to A according to the sequence 

S and to the set τ. The solutions are described as a set of  

L regions in (R
+
)

q
. 

2. Let us notice that the proposition 5 can also be used to 

work out simultaneously the region of initial marking in 
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region s(1) = A1 and the sequences of CBIC control 

actions that drive the marking vector in A. In that case 

the LMI (12) is considered: 
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3. The proposition 5 can be combined with an optimization 

procedure in order to work out the control actions that 

drive the marking vector from MI to A according to the 

sequence S in minimal time (figure 4). The idea is to start 

the computation by considering only the first line of 

equation (11) with τ1 = 1. Then τ1 increases as long as no 

solution is found to reach A2 from MI in finite time τ1. 

When a non empty region of solution is found, the 

restriction LMI(2) of equation (11), given by (13) is 

considered with set τ(2) = {τ1, 1}, and the computation 

starts again.  

 

         LMI(2):    8=
1,1� 0=
2,1� =
2,2� … 0? @< . 8;�;B<  ≤ 8�B<  (13) 

 

The same optimization continues with the restrictions 

LMI(2), LMI(3),..., LMI(L) and sets of finite times τ(2) 

= {τ1, 1}, τ(3) = {τ1, τ2, 1}, …, τ(L)  = {τ1, τ2, ... ,1}. A 

failing test τi ≤ τmax i can be also considered to limit the 

computation time. In case the algorithm fails in region Ai 

(i.e. τi > τmax i), τi-1 is increased and LMI(i-1) is 

considered again. This algorithm leads to all sequences 

of piecewise constant control actions that drive the 

marking vector from MI to A according to the sequence S 

in minimal time.  

V. EXAMPLE 

Let us consider the marked contPN in figure 1 with 2 P-

semiflows Y = ((0 0 0 1 1)
T
 | (1 1 2 1 0)

T
) ∈ (Z

+
)

5 x 2
, C = (4 

5)
T
, maximal firing rates µ = (1, 1, 1, 1)

T
, and Tc = {T1, T2, 

T3, T4}. Three r-regions A1 to A3 exist for this contPN. 

 
 

Figure 1: An example of contPN with MI = (5 0 0 0 4)T 

Let us also consider Xmax = diag(µ) with µ = (1, 1, 1, 1)
T
, ∆t 

= 0.05, MI = (4 0.3 0.1 0.5 3.5)
T
 ∈ A1 and Md = (2 0.5 0.75 1 

3)
T∈ A1. In that simple case the sequence S = A1 is 

considered. Let also consider a neighborhood of Md 

according to the LMI: 

In.M ≤ (ε + 1).Md 

-In.M ≤ (ε - 1).Md (14) 

with ε = 0.25. The computation of equation (11) for optimal 

finite time τ1 = 25 (τ1 is obtained according to the 

optimization algorithm described in section III) leads to the 

region of constant control actions depicted in figure 2. 

Considering the particular constant action U1 = (0.69, 0.19, 

0.02, 0.1)
T
, the marking trajectory in figure 3 is obtained. 

The computation of the LMI given by equation (12) also 

provides the set of initial markings in r-region A1 so that 

there exist CBIC control actions to reach A in finite time τ1 
= 25 (figure 3, grey color). 

  

 
Figure 2: Control design in finite time in a single region: region of CBIC 

control actions in plan (u1, u2) to drive M(t, MI) from MI to Md in A1. 

 
Figure 3: Control design in finite time in a single region: marking trajectory 

in plan (m1, m4) to drive M(t, MI) from MI to Md in A1. 

 

For the same contPN with µ = (5, 1, 8, 8)
T
 and same set Tc, 

let us now consider MI = (2 1 0.5 1 3)
T
 ∈ A1 and Md = (1 0.1 

0.1 3.7 0.3)
T∈ A3. In that case the sequence S = A1.A2.A3 is 

considered. Let also consider a neighborhood of Md 

according to (14) with ε = 0.5. The computation of the LMI 

given by equation (11) with the set of finite times τ = 

{τ1,τ2,τ3} = {10, 80, 20} leads to a non empty region of 
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solutions. Considering the particular constant action U1 = 

(1.54, 0.40, 1.88, 0.89)
T
 in A1, U2 = (2.43, 0.53, 5, 2)

T
, in A2 

and U3 = (1.07, 0.31, 0.09, 0.06)
T
 in A3, the marking 

trajectory in figure 4 is obtained. The application of the LMI 

given by equation (12) also provides the set of initial 

markings in r-region A1 so that A is reached according to S 

and τ. This region (figure 4, in grey color) coincides with A1. 

 
Figure 4: Control design in finite time with sequence S = A1.A2.A3: marking 

trajectory in plan (m1, m4) to drive M(t, MI) from MI to Md in A3. 

IV. CONCLUSIONS 

Positive invariant and attractive regions in finite time 

have been characterized for contPNs with piecewise constant 

control actions. Linear matrix inequalities are used to that 

purpose. The computation of such LMIs with LPP not only 

checks the invariance or attractivity of a given polyhedral 

region, but also provides the set of admissible, bounded 

input, constant control actions. Piecewise constant controls 

in finite and minimal time result as a consequence.  

In future works we will continue the investigation of 

control problems for contPNs and also the approximation of 

stochastic Petri nets by contPNs with piecewise-constant 

maximal firing speeds. 
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Figure 4 : Optimization algorithm 
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