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Abstract— This paper analyzes the convergence properties
of Ideal Controlled Hopwise Averaging (ICHA) and Controlled
Hopwise Averaging (CHA), two recently proposed asynchronous
distributed averaging algorithms for wireless networks, which
were shown via simulation to be more bandwidth/energy effi-
cient than several existing schemes. We first derive deterministic
upper bounds on the exponential convergence rate of ICHA
on general graphs and specific ones (i.e., path, cycle, regular,
strongly regular, and complete graphs), expressing the bounds
explicitly in terms of the graph invariants. We then show that
such bounds of ICHA are roughly 20% better than the average-
case, stochastic convergence rate of Pairwise Averaging on path,
cycle, and complete graphs. Finally, we obtain upper bounds on
the convergence rate of CHA with respect to iteration and time,
and show that iteration-wise CHA enjoys the same bounds as
ICHA, closely mimicking its behavior while being practical.

I. INTRODUCTION

Distributed averaging is a fundamental problem in dis-

tributed computation that finds many applications in multi-

agent systems, ad hoc networks, sensor networks and the

likes. Due to its significance, the problem has been widely

studied (see, e.g., [1]–[18]) for different network models

(e.g., wired or wireless; undirected or directed links; fixed

or time-varying topologies), with different communication

assumptions (e.g., without delays, errors, and quantization

or with), and in different time domains (e.g., continuous- or

discrete-time; synchronous or asynchronous). The research

efforts have led to a growing set of algorithms, includ-

ing Pairwise Averaging [1], Randomized Gossip Algorithm

[6], Accelerated Gossip Algorithm [7], Distributed Random

Grouping [8], and Linear Prediction-Based Accelerated Av-

eraging [18], to name just a few.

In our recent work [19], we studied the distributed av-

eraging problem in wireless networks with undirected links

and fixed topologies. We showed that although the existing

algorithms could solve the problem over such networks, they

are prone to wasteful communications and, thus, are band-

width/energy inefficient, offering room for improvement. To

increase efficiency, we developed in [19] two new algorithms,

referred to as Ideal Controlled Hopwise Averaging (ICHA)

and Controlled Hopwise Averaging (CHA), which attempt

to “make the most” out of each communication. As these

two algorithms form the backbone of this paper, we briefly

summarize their key features in the next paragraph.

Similar to some of the available distributed averaging

algorithms (e.g., Pairwise Averaging [1] and Distributed Ran-
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dom Grouping [8]), both ICHA and CHA update their state

variables asynchronously by forming convex combinations.

Unlike all of the available algorithms, however, the state

variables are assigned to the links, rather than to the nodes.

Due primarily to this feature, ICHA and CHA are able

to fully exploit the broadcast nature of wireless channels,

requiring only one real-number transmission per iteration.

Moreover, due to a suitably defined common quadratic

Lyapunov function, ICHA and CHA are able to perform what

we call feedback iteration control, using potential drops in

the value of the Lyapunov function as feedback to control

the order by which the asynchronous iterations occur. This

last feature is also what separates the two algorithms: ICHA

assumes that there is a “genie” in the network (hence the term

Ideal in its name), who knows all the potential drops, decides

to be greedy, and keeps selecting the node with the largest

potential drop to initiate the next iteration, resulting in a

networked dynamical system with state-dependent switching,

for which the Lyapunov function value drops maximally

every time (hence the term greedy). In contrast, CHA makes

no such assumption and, instead, lets every node use its

own potential drop to decentralizedly schedule when to

initiate an iteration, leading to a practical discrete event

system that tries to mimic the greedy behavior of ICHA.

Finally, we showed via extensive simulation in [19] that

CHA is markedly more efficient than Pairwise Averaging

[1], Consensus Propagation [11], Algorithm A2 of [12],

and Distributed Random Grouping [8] on random geometric

graphs, achieving convergence with far fewer real-number

transmissions.

In this paper, we study the convergence properties of

ICHA and CHA. Our goal is to obtain, for the two algo-

rithms, deterministic upper bounds ρ(G) on the rate at which

the Lyapunov function value V (x(k)) converges exponen-

tially to zero on various graphs G, i.e.,

V (x(k)) ≤ ρ(G)V (x(k − 1)), ∀k = 1, 2, . . . ,

where k denotes iteration and x(k) denotes the state vector.

We begin by deriving the bounds ρ(G) of ICHA on general

graphs and several specific ones, including path, cycle,

regular, strongly regular, and complete graphs. We show that

the bounds ρ(G) can be expressed explicitly in terms of

the graph order (i.e., the number of nodes), diameter, and

degrees (i.e., the number of neighbors of each node). We then

proceed to compare such bounds of ICHA—which provide

hard guarantees—with the stochastic convergence rate of

Pairwise Averaging [1] reported in [15]—which provides

guarantees only in the average sense. Despite the difference

in guarantees, we show that the former are roughly 20%
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better than the latter on three common graphs of opposing

densities, namely, path, cycle, and complete graphs. Finally,

we obtain the bounds ρ(G) of CHA with respect to both

iteration and time. We show that iteration-wise, CHA shares

the same bounds as ICHA, suggesting that CHA does closely

mimic ICHA while being practical. Time-wise, CHA con-

verges asymptotically and perhaps exponentially, depending

on its controller parameter.

Although the main contribution of this paper is the con-

vergence rate analysis of ICHA and CHA, we have also

included their development, which is more complete than

in [19]. Moreover, due to space limitations, we have omitted

all the proofs from this paper and refer the reader to [20].

II. IDEAL CONTROLLED HOPWISE AVERAGING

A. Algorithm Development

Consider a multi-hop wireless network consisting of N ≥
2 nodes, connected by L bidirectional links in a fixed

topology. The network is modeled as a connected, undirected

graph G = (V, E), where V = {1, 2, . . . , N} represents the

set of N nodes and E ⊂ {{i, j} : i, j ∈ V, i 6= j} represents

the set of L links. Any two nodes i, j ∈ V are one-hop

neighbors and can communicate if and only if {i, j} ∈ E .

The set of one-hop neighbors of each node i ∈ V is denoted

as Ni = {j ∈ V : {i, j} ∈ E}, and the communications are

assumed to be delay- and error-free, with no quantization.

Each node i ∈ V observes a scalar yi ∈ R, and all the N

nodes wish to determine the network-wide average x∗ ∈ R

of their individual observations, given by

x∗ =
1

N

∑

i∈V

yi. (1)

To solve this problem, consider a networked dynamical

system, defined on the graph G as follows: associated with

each link {i, j} ∈ E are a parameter c{i,j} > 0 and a state

variable x{i,j} ∈ R of the system. In addition, associated

with each node i ∈ V is an output variable x̂i ∈ R, which

represents its estimate of the unknown average x∗ in (1).

Since the graph G has L links and N nodes, the system

has L parameters c{i,j}’s, L state variables x{i,j}’s, and N

output variables x̂i’s. To describe the system dynamics, let

x{i,j}(0) and x̂i(0) represent the initial values of x{i,j} and

x̂i, and x{i,j}(k) and x̂i(k) their values upon completing

each iteration k ∈ P, where P denotes the set of positive

integers. With these notations, the state and output equations

governing the system dynamics may be stated as

x{i,j}(k) =



















∑

ℓ∈Nu(k)
c{u(k),ℓ}x{u(k),ℓ}(k − 1)

∑

ℓ∈Nu(k)
c{u(k),ℓ}

,

if u(k) ∈ {i, j},

x{i,j}(k − 1), otherwise,

∀k ∈ P, ∀{i, j} ∈ E , (2)

x̂i(k) =

∑

j∈Ni
c{i,j}x{i,j}(k)

∑

j∈Ni
c{i,j}

, ∀k ∈ N, ∀i ∈ V,

(3)

where N denotes the set of nonnegative integers and u(k) ∈
V is the node that initiates iteration k ∈ P, so that the

sequence (u(k))∞k=1 fully dictates how the asynchronous

iteration (2) takes place.

For the system (2) and (3) to solve the distributed averag-

ing problem, the x̂i(k)’s must satisfy

lim
k→∞

x̂i(k) = x∗, ∀i ∈ V. (4)

Due to (3), condition (4) is met if the x{i,j}(k)’s satisfy

lim
k→∞

x{i,j}(k) = x∗, ∀{i, j} ∈ E . (5)

To ensure (5), the parameters c{i,j}’s and initial states

x{i,j}(0)’s must satisfy a condition. To derive the condition,

observe from (2) that no matter what u(k) is,

∑

{i,j}∈E

c{i,j}x{i,j}(k) =
∑

{i,j}∈E

c{i,j}x{i,j}(k − 1), ∀k ∈ P.

(6)

Therefore, as it follows from (6) and (1), (5) holds only if

the c{i,j}’s and x{i,j}(0)’s satisfy

∑

{i,j}∈E c{i,j}x{i,j}(0)
∑

{i,j}∈E c{i,j}
=

∑

i∈V yi

N
. (7)

To achieve (7), notice that the expressions
∑

{i,j}∈E c{i,j}
and

∑

{i,j}∈E c{i,j}x{i,j}(0) each has L terms, of which |Ni|
terms are associated with links incident to node i, for every

i ∈ V , where | · | denotes the cardinality of a set. Hence, by

letting each node i ∈ V evenly distribute the number 1 to

the |Ni| terms in
∑

{i,j}∈E c{i,j}, i.e.,

c{i,j} =
1

|Ni|
+

1

|Nj |
, ∀{i, j} ∈ E , (8)

we get
∑

{i,j}∈E c{i,j} = N . Similarly, by letting each node

i ∈ V evenly distribute its observation yi to the |Ni| terms

in
∑

{i,j}∈E c{i,j}x{i,j}(0), i.e.,

x{i,j}(0) =

yi

|Ni|
+

yj

|Nj |

c{i,j}
, ∀{i, j} ∈ E , (9)

we get
∑

{i,j}∈E c{i,j}x{i,j}(0) =
∑

i∈V yi. Thus, (8) and

(9) together ensure (7), which is necessary for achieving (5).

To show that the system (2), (3), (8), (9) enables (5) and

(4), consider a quadratic Lyapunov function candidate V :
R

L → R, defined as

V (x(k)) =
∑

{i,j}∈E

c{i,j}(x{i,j}(k)− x∗)2, (10)

where x(k) ∈ R
L denotes the state vector. Clearly, V in (10)

is positive definite with respect to (x∗, x∗, . . . , x∗) ∈ R
L, so

that limk→∞ V (x(k)) = 0 implies (5) and (4). The following

lemma shows that V (x(k)) is always non-increasing and

quantifies its changes:
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Lemma 1 ([19]). Consider the system described by (2), (3),

(8), and (9). Then, for any sequence (u(k))∞k=1, the sequence

(V (x(k)))∞k=0 is non-increasing and satisfies

V (x(k))− V (x(k − 1)) = −
∑

j∈Nu(k)

c{u(k),j}

× (x{u(k),j}(k − 1)− x̂u(k)(k − 1))2, ∀k ∈ P. (11)

Lemma 1 says that V in (10) is a common quadratic

Lyapunov function for the linear switched system. More-

over, since V (x(k)) is nonnegative, it implies that for

any (u(k))∞k=1, limk→∞ V (x(k)) exists and is nonnegative.

Indeed, by using Corollary 3.2 of [15], it can be shown that

almost any (u(k))∞k=1 ensures limk→∞ V (x(k)) = 0 and

thus (5) and (4).

Although almost any (u(k))∞k=1 can drive all the x̂i(k)’s to

any neighborhood of x∗, certain sequences may require fewer

iterations (and, hence, fewer real-number transmissions) to

do so than others, yielding better bandwidth/energy effi-

ciency. Therefore, it is desirable to produce such an efficient

(u(k))∞k=1, perhaps by means of control. To this end, for

each i ∈ V , let ∆Vi : RL → R be a positive semidefinite

quadratic function, defined as

∆Vi(x(k)) =
∑

j∈Ni

c{i,j}(x{i,j}(k)− x̂i(k))
2. (12)

Notice that ∆Vi(x(k)) depends entirely on parameters and

variables associated with links attached to node i or with

node i itself. Also note from (11) and (12) that

V (x(k))− V (x(k − 1)) = −∆Vu(k)(x(k − 1)), ∀k ∈ P.

(13)

Thus, every node i ∈ V at any time knows by how much the

value of V would drop if it suddenly initiates an iteration

(i.e., by ∆Vi(x(·))). This suggests a simple way to produce

an efficient (u(k))∞k=1 that drives (V (x(k)))∞k=0 quickly to

zero: (A1) each node i ∈ V uses ∆Vi(x(·)), which it always

knows, as feedback to control, on its own, when to initiate

an iteration; (A2) the larger ∆Vi(x(·)) is, the sooner node

i initiates an iteration; and (A3) whenever ∆Vi(x(·)) = 0,

node i refrains from initiating an iteration.

Statement A1 describes a fully decentralized feedback

control architecture that requires zero communication cost

to realize. With this architecture, A2 and A3 may be ac-

complished if nodes with larger ∆Vi(x(·))’s would rush

to initiate, while nodes with smaller or zero ∆Vi(x(·))’s
would wait longer or forever. Collectively, A1–A3 describe a

greedy, decentralized approach to feedback iteration control,

where potential drops ∆Vi(x(·))’s in the value of V are

used to drive the asynchronous iterations. This approach

may be viewed as a greedy approach because the nodes

seek to make the value of V drop as much as possible

at each iteration, without considering the future. Because

the nodes also seek to fully exploit the broadcast nature of

every wireless transmission, this approach strives to “make

the most” out of each iteration and represents a new way to

apply Lyapunov stability theory.

The above approach wants the nodes to try to be greedy.

Thus, it is of interest to analyze an ideal scenario where,

instead of just trying, the nodes actually succeed at being

greedy, ensuring that every iteration k ∈ P is initiated by a

node i ∈ V with the maximum ∆Vi(x(k − 1)), i.e.,

u(k) ∈ argmax
i∈V

∆Vi(x(k − 1)), ∀k ∈ P, (14)

so that V (x(k − 1)) drops maximally to V (x(k)) for every

k ∈ P. Equation (14), together with (2), (3), (8), (9), and

(12), defines a networked dynamical system that switches

among N different dynamics, depending on where the state

is in the state space, i.e., if x(k−1) is such that ∆Vi(x(k−
1)) > ∆Vj(x(k − 1)) ∀j ∈ V − {i}, then u(k) = i. To

realize the system over the wireless network, for every link

{i, j} ∈ E , let nodes i and j each maintain a local copy of

x{i,j}, denoted as xij and xji, respectively, where they are

meant to be always equal, so that the order of the subscripts

is only used to indicate where they physically reside. With

this notation, the system may be expressed in the form of an

algorithm, referred to as Ideal Controlled Hopwise Averaging

(ICHA), as follows:

Algorithm 1 (Ideal Controlled Hopwise Averaging [19]).

Initialization:

1) Each node i ∈ V transmits |Ni| and yi to every node

j ∈ Ni.

2) Each node i ∈ V creates variables xij ∈ R ∀j ∈
Ni, x̂i ∈ R, and ∆Vi ∈ [0,∞) and initializes them

sequentially:

xij ←
yi

|Ni|
+

yj

|Nj |

c{i,j}
∀j ∈ Ni, x̂i ←

∑
j∈Ni

c{i,j}xij
∑

j∈Ni
c{i,j}

,

∆Vi ←
∑

j∈Ni
c{i,j}(xij − x̂i)

2.

Operation: At each iteration:

3) Let i ∈ argmaxj∈V ∆Vj .

4) Node i updates xij ∀j ∈ Ni and ∆Vi sequentially:

xij ← x̂i ∀j ∈ Ni, ∆Vi ← 0.
5) Node i transmits x̂i to every node j ∈ Ni.

6) Each node j ∈ Ni updates xji, x̂j , and ∆Vj sequen-

tially:

xji ← x̂i, x̂j ←

∑
ℓ∈Nj

c{j,ℓ}xjℓ
∑

ℓ∈Nj
c{j,ℓ}

,

∆Vj ←
∑

ℓ∈Nj
c{j,ℓ}(xjℓ − x̂j)

2. �

Algorithm 1, or ICHA, requires 2N real-number trans-

missions to initialize, in Step 1, and only one real-number

transmission per iteration, in Step 5, because it can fully

exploit the broadcast nature of wireless medium. Also, each

iteration is initiated by a node i experiencing the maximum

∆Vi, in Step 3, which is what makes ICHA ideal. Note

that “∆Vi ← 0” in Step 4 is equivalent to “∆Vi ←
∑

j∈Ni
c{i,j}(xij− x̂i)

2” since xij ∀j ∈ Ni and x̂i are equal

at that point. The fact that ∆Vi goes from being maximum

to zero whenever node i initiates an iteration also suggests

that it may be a while before ∆Vi becomes maximum again,

causing node i to initiate another iteration.
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B. Convergence Rate Analysis

The convergence properties of ICHA on general networks

are characterized in the following theorem, in which 1n ∈
R

n and x̂(k) ∈ R
N denote, respectively, the vectors obtained

by stacking n 1’s and the N x̂i(k)’s:

Theorem 1. Consider the use of ICHA described in Algo-

rithm 1. Then,

V (x(k)) ≤ (1− 1
γ )V (x(k − 1)), ∀k ∈ P, (15)

‖x(k)− x∗
1L‖ ≤

√

V (x(0))max
i∈V

|Ni|

2 (1− 1
γ )

k/2, ∀k ∈ N,

(16)

‖x̂(k)− x∗
1N‖ ≤

√

2V (x(0))max
i∈V

|Ni|

min
i∈V

|Ni|+max
i∈V

|Ni|
(1− 1

γ )
k/2, ∀k ∈ N,

(17)

where γ ∈ [N2 + 1, N3 − 2N2 + N
2 + 1] is given by

γ =
N

2
+ α+

(N2 − β)(3(N − 1)−D)(D + 1)

2N
, (18)

and where α = max{i,j}∈E
bi+bj
c{i,j}

∈ [1, N2−2N+2
2 ], β =

∑

i∈V

∑

j∈Ni∪{i} bibj ∈ [N + L
2 (1 + 1

N−1 )
2, N2], bi =

1
2

∑

j∈Ni
c{i,j} ∀i ∈ V , and D is the network diameter.

Theorem 1 says that ICHA is exponentially convergent

on any connected network, ensuring that V (x(k)), ‖x(k)−
x∗

1L‖, and ‖x̂(k)−x∗
1N‖ all go to zero exponentially fast,

at a rate that is no worse than 1− 1
γ or (1− 1

γ )
1/2, so that γ in

(18) represents a bound on the convergence rate. It also says

that the bound γ is between Ω(N) and O(N3) and depends

only on N , D, and the |Ni|’s, making it easy to compute.

The following corollary lists the bound γ for a number of

common graphs:

Corollary 1. The constant γ in (18) becomes:

G1) γ = N3−4N2+ 9
2N+ 5

4 for a path graph with N ≥ 5,

G2) γ = 5
8N

3 − 15
8 N2 − 1

8N + 31
8 if N is odd and γ =

5
8N

3− 11
8 N2− 5

2N+ 13
2 if N is even for a cycle graph,

G3) γ = N
2 + K + (N−K−1)(3(N−1)−D)(D+1)

2 for a K-

regular graph with K ≥ 2,

G4) γ = 3
2N − 1 for a complete graph.

Each bound γ in Corollary 1 is obtained by specializing

(18) for arbitrary graphs to a specific one. Conceivably,

tighter bounds may be obtained by working with each of

these graphs individually, exploiting their particular structure.

Theorem 2 below shows that this is indeed the case with

path and cycle graphs (6 and 15 times tighter, respectively),

besides providing additional bounds for regular and strongly

regular graphs:

Theorem 2. Consider the use of ICHA described in Algo-

rithm 1. Then, (15)–(17) hold with:

S1) γ = N3

6 −
13
6 N + 3 for a path graph with N ≥ 4,

S2) γ = N3

24 + 7
12N − 2 + 11

8N if N is odd and γ = N3

24 +
5
6N − 3 + 4

N if N is even for a cycle graph,
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Fig. 1. Comparison between the stochastic convergence rate 1 − 1

γPA
of

PA and the deterministic bound 1 − 1

γICHA
on convergence rate of ICHA

for path, cycle, and complete graphs.

S3) γ = N
2 + K + KD(D+1)(N−K−1)

2 for a K-regular

graph with K ≥ 2,

S4) γ = N
2 + K + K(µ+2)(N−K−1)

µ for a (N,K, λ, µ)-
strongly regular graph with µ ≥ 1.

Recently, [15] studied, among other things, the conver-

gence rate of Pairwise Averaging (PA) [1]. The results in

[15] are different from those above in three notable ways:

first, the convergence rate of PA is defined in [15] as the

decay rate of the expected value of a Lyapunov-like function

d(k). Although this stochastic measure captures the average

behavior of PA, it offers little guarantee on the decay rate

of each realization (d(k))∞k=0. In contrast, the bounds γ on

convergence rate of ICHA above are deterministic, providing

hard guarantees on the decay rate of (V (x(k)))∞k=0. Second,

even if the first difference is disregarded, the bounds of ICHA

are still roughly 20% better than the convergence rate of PA

for a few common graphs. To justify this claim, let 1− 1
γPA

denote the convergence rate of PA. Since PA requires two

real-number transmissions per iteration while ICHA requires

only one, to enable a fair comparison we introduce a two-

iteration bound γICHA for ICHA, defined as γICHA = γ2

2γ−1

so that 1 − 1
γICHA

= (1 − 1
γ )

2. Figure 1 plots the ratio γICHA

γPA

versus N for path, cycle, and complete graphs, where γPA is

computed according to [15], while γICHA is computed using

γ in S1, S2, and G4. Observe that for N > 50, γICHA

is 18% smaller than γPA for path and cycle graphs, and

25% so for complete graphs. The latter can also be shown

analytically: since γPA = N − 1 and γICHA =
( 3
2N−1)2

2( 3
2N−1)−1

,

limN→∞
γICHA

γPA
= 3

4 . This justifies the claim. Finally, unlike

γ and γICHA, γPA in general cannot be expressed in a form

that explicitly reveals its dependence on the graph invariants.

Indeed, it generally can only be computed by numerically

finding the spectral radius of an invariant subspace of an

N2-by-N2 matrix, which may be prohibitive for large N .

III. CONTROLLED HOPWISE AVERAGING

A. Algorithm Development

The strong convergence properties of ICHA suggest that

its greedy behavior may be worthy of emulating. In this
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subsection, we derive a practical algorithm that closely

mimics such behavior.

Reconsider the system (2), (3), (8), (9) and suppose this

system evolves in a discrete event fashion, according to the

following description: associated with the system is global

time, which is real-valued, nonnegative, and denoted as t ∈
[0,∞), where t = 0 represents the time instant at which

the nodes have observed the yi’s but have yet to execute an

iteration. In addition, associated with each node i ∈ V is an

event, which is scheduled to occur at time τi ∈ (0,∞] and

is marked by node i initiating an iteration, where τi = ∞
means the event will not occur. Each event time τi is a

variable, which is initialized at time t = 0 to τi(0), is

updated only at each iteration k ∈ P from τi(k − 1) to

τi(k), and is no less than t at any time t, so that no event

is scheduled to occur in the past. Starting from t = 0, time

advances to t = mini∈V τi(0), at which an event, marked by

node u(1) ∈ argmini∈V τi(0) initiating iteration 1, occurs,

during which τi(1) ∀i ∈ V are determined. Time then

advances to t = mini∈V τi(1), at which a subsequent event,

marked by node u(2) ∈ argmini∈V τi(1) initiating iteration

2, occurs, during which τi(2) ∀i ∈ V are determined. In

the same way, time continues to advance toward infinity,

while events continue to occur one after another, except if

τi(k) = ∞ ∀i ∈ V for some k ∈ N, for which the system

terminates.

Having described how the system evolves, we now specify

how τi(k) ∀k ∈ N ∀i ∈ V are recursively determined. First,

consider the time instant t = 0, at which τi(0) ∀i ∈ V need to

be determined. To behave greedily, nodes with the maximum

∆Vi(x(0))’s should have the minimum τi(0)’s. This may be

accomplished by letting

τi(0) = Φ(∆Vi(x(0))), ∀i ∈ V, (19)

where Φ : [0,∞) → (0,∞] is a continuous and strictly de-

creasing function satisfying limv→0 Φ(v) = ∞ and Φ(0) =
∞. Although, mathematically, (19) ensures that V (x(0))
drops maximally to V (x(1)), in reality it is possible that

multiple nodes have the same minimum τi(0)’s, leading to

wireless collisions. To address this issue, we insert a little

randomness into (19), rewriting it as

τi(0) = Φ(∆Vi(x(0))) + ε(∆Vi(x(0))) · rand(), ∀i ∈ V,
(20)

where ε : [0,∞)→ (0,∞) is a continuous function meant to

take on small positive values and each call to rand() returns

a uniformly distributed random number in (0, 1). With (20),

with high probability iteration 1 is initiated by a node i with

the maximum, or a near-maximum, ∆Vi(x(0)).

Next, pick any k ∈ P and consider the time instant t =
mini∈V τi(k−1), at which node u(k) ∈ argmini∈V τi(k−1)
initiates iteration k, during which τi(k) ∀i ∈ V need to be

determined. Again, to be greedy, nodes with the maximum

∆Vi(x(k))’s should have the minimum τi(k)’s. At first

glance, this may be approximately accomplished following

ideas from (20), i.e., by letting

τi(k) = Φ(∆Vi(x(k))) + ε(∆Vi(x(k))) · rand(), ∀i ∈ V.
(21)

However, with (21), it is possible that τi(k) turns out to be

smaller than t, causing an event to be scheduled in the past.

Moreover, nodes who are two or more hops away from node

u(k) are unaware of the ongoing iteration k and, thus, are

unable to perform an update. Fortunately, these issues may

be overcome by slightly modifying (21) as follows:

τi(k) =











max{Φ(∆Vi(x(k))), t}+ ε(∆Vi(x(k))) · rand(),

if i ∈ Nu(k) ∪ {u(k)},

τi(k − 1), otherwise,

∀i ∈ V. (22)

Using (20) and (22) and by induction on k′ ∈ P, it can be

shown that τi(k
′) satisfies

max{Φ(∆Vi(x(k
′))), t′}≤τi(k

′)≤max{Φ(∆Vi(x(k
′))), t′}

+ ε(∆Vi(x(k
′))), ∀k′ ∈ P, ∀i ∈ V,

where t′ = minj∈V τj(k
′ − 1). Hence, with (22), it is

highly probable that iteration k + 1 is initiated by a node

i with the maximum or a near-maximum ∆Vi(x(k)). It

follows that with (20) and (22), the nodes closely mimic the

greedy behavior of ICHA. Note that (20) and (22) represent

a feedback iteration controller, which uses architecture A1

and follows the spirit of A2 (since Φ is strictly decreasing

and ε is small) and A3 (since Φ(0) = ∞). Also, Φ and ε

represent the controller parameters, which may be selected

based on practical wireless networking considerations (e.g.,

all else being equal, Φ(v) = 1
v and ε(v) = 0.001 yield

faster convergence time than Φ(v) = 10
v and ε(v) = 0.01

but higher collision probability).

The above description defines a discrete event system,

which can be realized via a distributed asynchronous algo-

rithm, referred to as Controlled Hopwise Averaging (CHA)

and stated as follows:

Algorithm 2 (Controlled Hopwise Averaging [19]).

Initialization:

1) Let time t = 0.

2) Each node i ∈ V transmits |Ni| and yi to every node

j ∈ Ni.

3) Each node i ∈ V creates variables xij ∈ R ∀j ∈ Ni,

x̂i ∈ R, ∆Vi ∈ [0,∞), and τi ∈ (0,∞] and initializes

them sequentially:

xij ←
yi

|Ni|
+

yj

|Nj |

c{i,j}
∀j ∈ Ni, x̂i ←

∑
j∈Ni

c{i,j}xij
∑

j∈Ni
c{i,j}

,

∆Vi ←
∑

j∈Ni
c{i,j}(xij − x̂i)

2,

τi ← Φ(∆Vi) + ε(∆Vi) · rand().
Operation: At each iteration:

4) Let t = minj∈V τj and i ∈ argminj∈V τj .

5) Node i updates xij ∀j ∈ Ni, ∆Vi, and τi sequentially:

xij ← x̂i ∀j ∈ Ni, ∆Vi ← 0, τi ←∞.

6) Node i transmits x̂i to every node j ∈ Ni.
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7) Each node j ∈ Ni updates xji, x̂j , ∆Vj , and τj
sequentially:

xji ← x̂i, x̂j ←

∑
ℓ∈Nj

c{j,ℓ}xjℓ
∑

ℓ∈Nj
c{j,ℓ}

,

∆Vj ←
∑

ℓ∈Nj
c{j,ℓ}(xjℓ − x̂j)

2,

τj ← max{Φ(∆Vj), t}+ ε(∆Vj) · rand(). �

Algorithm 2, or CHA, is similar to ICHA in Algorithm 1

except that each node i maintains an additional variable τi,

in Steps 3, 5, and 7, and that each iteration is initiated, in

a discrete event fashion, by a node i having the minimum

τi, in Step 4. Note that “τi ← ∞” in Step 5 is due to

“∆Vi ← 0” and to Φ(0) =∞. Moreover, every step of CHA

is implementable in a fully decentralized manner, making it

a practical algorithm.

B. Convergence Rate Analysis

To analyze the behavior of CHA, recall that ε is meant to

take on small positive values, creating just a little randomness

so that the probability of wireless collisions is zero. For the

purpose of analysis, we turn this feature off (i.e., set ε(v) = 0
∀v ∈ [0,∞)) and let the symbol “∈” in Step 4 take care

of the randomness (i.e., randomly pick an element i from

the set argminj∈V τj whenever it has multiple elements).

We also allow Φ to be arbitrary (but satisfy the conditions

stated when it was introduced). With this setup, the following

convergence properties of CHA can be established:

Theorem 3. Theorems 1 and 2, intended for ICHA de-

scribed in Algorithm 1, hold verbatim for CHA described

in Algorithm 2 with any Φ and with ε satisfying ε(v) = 0
∀v ∈ [0,∞). In addition, limk→∞ t(k) =∞ and V (x(k)) ≤
(γ − 1)Φ−1(t(k)) ∀k ∈ P, where t(0) = 0 and t(k) is the

time instant at which iteration k occurs.

Theorem 3 characterizes the convergence of CHA in two

senses: iteration and time. Iteration-wise, it says that CHA

converges exponentially and shares the same bounds γ on

convergence rate as ICHA, regardless of Φ. This result

suggests that CHA does closely emulate ICHA. Time-wise,

the theorem says that CHA converges asymptotically and

perhaps exponentially, depending on Φ. For example, Φ(v) =
1
v does not guarantee exponential convergence in time (since

Φ−1(v) = 1
v ), but Φ(v) = W ( 1v ), where W is the Lambert

W function, does (since Φ−1(v) = 1
v e

−v). Therefore, the

controller parameter Φ may be used to shape the temporal

convergence of CHA.

IV. CONCLUSION

In this paper, we have presented closed-form formulas

describing upper bounds on the convergence rates of ICHA

and CHA on various graphs, including both arbitrary and

structured ones. We have also indicated how the bounds are

different from the convergence rate of PA, and for which

wirelessly connected graphs are they better. The results

obtained provide a theoretical justification for the benefit of

feedback iteration control in distributed averaging. In particu-

lar, they confirm the effectiveness of CHA’s Lyapunov-based,

greedy decentralized approach to feedback iteration control.
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