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Abstract— We investigate a passivity approach to collective
coordination problems in the presence of quantized measure-
ments and show that coordination tasks can be achieved in
a practical sense for a large class of passive systems. Both
static and time-varying graphs are considered. The results are
then specialized to some particular coordination problems and
compared with existing results.

I. INTRODUCTION

In the very active area of consensus, synchronization and
coordinated control there has been an increasing interest in
the use of quantized measurements and control ([16], [21],
[13], [4], [17], [5] and references therein). As a matter of fact,
since these problems investigate systems or agents which are
distributed over a network, it is very likely that the agents
must exchange information over a digital communication
channel and quantization is one of the basic limitations
induced by finite bandwidth channels. To cope with this
limitation, measurements are processed by quantizers, i.e.
discontinuous maps taking values in a discrete or finite
set. Another reason to consider quantized measurements
descends from the use of coarse sensors.
The use of quantized measurements induces a partition
of the space of measurements: whenever the measurement
function crosses the boundary between two adjacent sets of
the partition, a new value is broadcast through the channel.
As a consequence, when the networked system under con-
sideration evolves in continuous time, as it is often the case
with e.g. problems of coordinated motion, the use of quan-
tized measurements results in a completely asynchronous
exchange of information among the agents of the network.
Despite the asynchronous information exchange and the use
of a discrete set of information values, meaningful examples
of synchronization or coordination can be obtained ([12], [7],
[10]).
In view of the several contributions to quantized coordination
problems available for discrete-time systems ([16], [21], [13],
[4], [17], [5]), one may wonder whether it would be more
convenient simply to derive the sampled-data model of the
system and then apply the discrete-time results. Due to the
distributed nature of the system, a sampled-data approach
to the design of coordinated motion algorithms presents
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a few drawbacks: it might require synchronous sampling
at all the nodes of the network and consequent accurate
synchronization of all the node clocks; it might also require
fast sampling rates, which may not be feasible in a networked
system with a large number of nodes and connections.
Finally, the sampled-data model may not fully preserve some
of the features of the original model. For these reasons, we
focus here on continuous-time coordination problems under
quantized measurements.
Despite the unquestionable interest of the results in papers
such as ([12], [7], [10]), they present an important limita-
tion: they focus on agents with simple dynamics and on
consensus problems. The goal of this paper is to investigate
the potentials of an approach to coordinated motion which
might take into account simultaneously complex dynamics
for the agents of the network, advanced cooperative tasks and
quantized measurements. This motivates us to focus on the
passivity approach to coordinated motion problems proposed
in [1]. In that paper, the author has shown how a number of
coordination tasks could be achieved for a class of passive
nonlinear systems and has been using this approach for
related problems in subsequent work ([2], [3]). Others have
been exploiting passivity in synchronization and coordination
tasks ([23], [25], [8], [26] to name a few). On the other
hand, the passivity approach naturally lends itself to deal
with the presence of quantized measurements. As a matter
of fact, the presence of quantized measurements can be
taken into account by introducing in the feedback law static
discontinuous maps (the previously recalled quantizers). In
the approach of [1], these maps play the role of multivariable
nonlinearities which are designed to achieve the desired
coordination task under appropriate conditions. Although
in the case of quantized measurements these conditions
are not fulfilled due to the discontinuous nature of the
quantizers, one can argue that an approximate or “practical”
([7]) coordination task is achievable under suitably modified
conditions. This is the idea which is pursued in this paper.
In the case of a control system with a single communication
channel this was studied in [6].
The main contribution of the paper is to provide a passivity
approach to coordinated control problems in the presence
of quantization: some of the results of [1] are extended
to deal with the case of quantized measurements. Because
the latter introduce discontinuities in the system, a rigorous
analysis is carried out relying on notions and tools from
nonsmooth control theory and differential inclusions. Both
static and time-varying graphs are considered. The results
are then specialized to some particular coordination problems
and compared with existing results. Although the passivity
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approach allows to consider a large variety of coordination
control problems, in this paper for the sake of simplicity we
mainly focus on agreement problems.

The passivity approach to coordination problems is re-
called in Section II. In Section III the coordination control
problem in the presence of uniform quantizers is formulated
and the main results in the case of static graphs are presented
along with some examples. The case of coordination with
logarithmically quantized measurements and time-varying
graphs is studied in Section IV. In Section V conclusions are
drawn. In the Appendix some technical tools are reviewed.

II. THE PASSIVITY APPROACH TO THE COORDINATION
PROBLEM

We recall in this section the passivity approach to coor-
dination problems of [1], to which we refer the reader for
more details.
Consider N agents connected over an undirected graph G =
(V,E), where V is a set of N nodes and E ⊆ V × V
is a set of M edges connecting the nodes. Each agent i,
with i = 1, 2, . . . , N , is associated to the node i of the
graph and the edges which connects that node to other nodes
of the graph describe which agents are communicating. We
assume there are N variables xi ∈ Rp which must be
coordinated. Possibly after a preliminary feedback which
uses information available locally, the agent is assumed to
be strictly passive from the control input ui to the velocity
error yi = ẋi − v, where v(t) is the prescribed reference
velocity of the formation, i.e. the velocity to which all the
agent should converge asymptotically. More precisely, it is
assumed that each agent’s dynamics can be described as:

ẋi = yi + v(t)

ξ̇i = fi(ξi) + gi(ξi)ui
yi = hi(ξi), i = 1, 2, . . . , N,

(1)

with ξi ∈ Rni a state variable, ui ∈ Rp, fi(0) = 0,
gi(0) 6= 0, hi(0) = 0, and fi, gi, hi locally Lipschitz.
Moreover, by strict passivity we intend that there exists a
continuously differentiable storage function Si : Rni → R
which is positive definite and radially unbounded and for
which

∂Si
∂ξi

(fi(ξi) + gi(ξi)ui) ≤ −Wi(ξi) + yTi ui (2)

for all ξi ∈ Rni , ui ∈ Rp, and where Wi(ξi) is a positive
definite function. Concisely, the systems (1) are written as

ξ̇ =

 f1(ξ1)
...

fN (ξN )


︸ ︷︷ ︸

f(ξ)

+

 g1(ξ1) . . . 0
...

. . .
...

0 . . . gN (ξN )


︸ ︷︷ ︸

g(ξ)

u

ẋ =

 h1(ξ1)
...

hN (ξN )


︸ ︷︷ ︸

h(ξ)

+

 v
...
v


︸ ︷︷ ︸

1N⊗v

(3)

where ξ = (ξT1 . . . ξ
T
N )T , 1N is the N -dimensional vector

whose entries are all equal to 1 and the symbol ⊗ denotes
the Kronecker product of matrices (see Appendix A for a
definition).

Label one end of each edge in E by a positive sign and
the other one by a negative sign. Now, consider the kth edge
in E, with k ∈ {1, 2, . . . ,M}, and let i, j be the two nodes
connected by the edge. Then, the variable zk which describes
the difference between the variables xi, xj which must be
coordinated can be defined as follows:

zk =

{
xi − xj if i is the positive end of the edge k
xj − xi if i is the negative end of the edge k .

Recall also that the incidence matrix D associated with the
graph G is the N ×M matrix such that

dik =

 +1 if node i is the positive end of edge k
−1 if node i is the negative end of edge k

0 otherwise

By the definition of D,

z = [zT1 . . . z
T
M ]T = (DT ⊗ Ip)x . (4)

The formation control problem consists of designing each
control law ui, with i = 1, 2, . . . , N , in such a way that
it uses only the information available to the agent i and
guarantees the following two specifications:
(i) limt→∞ |ẋi(t)− v(t)| = 0 for each i = 1, 2, . . . , N , with
v(t) a bounded and piece-wise continuous reference velocity
for the formation;
(ii) zk(t)→ Ak as t→∞ for each k = 1, 2, . . . ,M , where
Ak ⊂ Rp are the prescribed sets of convergence1.
The feedback laws proposed in [1] to solve the problem
formulated above is:

ui = −
M∑
k=1

dikψk(zk) , i = 1, 2, . . . , N (5)

where the maps ψk : Rp → Rp are to be designed. Observe
that, as required, each control law ui uses only information
which is available to the agent i: indeed, dik 6= 0 if and only
if the edge k connects i to one of its neighbors. In compact
form, (5) can be rewritten as

u = [uT1 . . . u
T
N ]T = −(D ⊗ Ip)ψ(z) , (6)

having set ψ(z) = [ψ1(z)T . . . ψM (z)T ]T and where z is as
in (4). Before ending the section, we recall that the system
below with input ẋ and output −u, namely (see Figure 2 in
[1] for a pictorial representation of the system)

ż = (DT ⊗ Ip)ẋ
−u = (D ⊗ Ip)ψ(z)

(7)

is passive with storage function
∑M
k=1 Pk(zk), where Pk is

required to be a C2 nonnegative function such that

∇Pk(zk) = ψk(zk) . (8)

1We refer the interested reader to [1] for examples of sets Ak related
to some coordination problems. The sets Ak which are of interest in this
paper will be introduced below.
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The requirement on Pk to be C2 is removed in the next
section. The function Pk(zk) is chosen in such a way that the
region where the variable zk must converge for the system to
achieve the prescribed coordination task coincides with the
set of the global minima of Pk(zk). Hence, the coordination
task guides the design of Pk(zk) which in turn allows to
determine the control functions (5) via (8). The functions
Pk(zk) in the case of agreement problems via quantized
control laws will be designed below.

III. QUANTIZED COORDINATION CONTROL

A. Quantized measurements

In this paper we are interested in control laws which use
quantized measurements. For each k = 1, 2, . . . ,M , instead
of zk, the measurements q∆(zk) are available, where q∆

is the quantizer map. For the sake of simplicity, in this
section we focus on uniform quantizers and static graphs.
We refer the reader to Section IV for the case of logarithmic
quantizers.
Given a positive real number ∆ we let q∆ : R → Z∆ be
the function

q∆(ζ) = ∆

⌊
ζ

∆
+

1

2

⌋
(9)

with b·c the floor function and 1
∆ the precision of the

quantizer. As ∆ → 0, q∆(ζ) → ζ. The vector of quan-
tized measurements corresponding to zk is q∆k

(zk) =
(q∆k1

(zk1) . . .q∆kp
(zkp))

T , with ∆k = (∆k1 . . .∆kp)
T a

vector of positive real numbers. Hence, each entry of zk
is quantized independently of the others and the quantized
information is then used in the control law.

B. A practical agreement problem

Despite the generality allowed by that the passivity ap-
proach, for the sake of simplicity we focus here on an
agreement problem. By an agreement problem it is meant
a special case of coordination in which all the variables
xi connected by a path converge to each other. In the
problem formulation in Section II, this amounts to have
Ak = {0} for all k = 1, 2, . . . ,M . When using quantized
measurements, however, it is a well established fact ([16],
[12], [7]) that a coordination algorithm may only lead to
a practical agreement result, meaning that each variable zk
might converge to a compact set of the origin, rather than
to the origin itself. Motivated by this observation, we set
in this paper a weaker convergence goal, namely for each
k = 1, 2, . . . ,M we ask the target set Ak to be of the form:

Ak =
p

×
j=1

[−akj , akj ] (10)

where ak = (ak1 . . . akp)
T is a vector of positive constants

and the symbol × denotes the Cartesian product. Then
the design procedure of Section II prescribes to choose a
potential function Pk(zk) which is radially unbounded on
its domain of definition and such that

Pk(zk) = 0 and ∇Pk(zk) = 0 if and only if zk ∈ Ak.
(11)

If this is the case then the control law is chosen via (8). To
take into account the presence of quantized measurements,
the nonlinearities (8) should take the form

∇Pk(zk) = ψ̃k(q∆k
(zk)) . (12)

Then a possible function Pk(zk) with the properties (11)
and such that a function ψ̃k exists for which (12) holds, is

Pk(zk) =
∑p
j=1

∫ zkj

0

q∆kj
(s)ds. Such a function is defined

on all Rp, is radially unbounded and locally Lipschitz. By
Rademacher’s theorem it is differentiable almost everywhere.
In all the points of Rp where it is differentiable ∇Pk(zk) =
q∆k

(zk) i.e. (12) holds with ψ̃k = Id and Id : Rp → Rp
the identity function. Bearing in mind the definitions (9) and
(10), to satisfy the second equality in (11) on all the points
of Ak where Pk(zk) is differentiable it is necessary and
sufficient to set akj =

∆kj

2 , for all j ∈ 1, 2, . . . , p. With
such a choice, the first equality of (11) is also satisfied.
In what follows we examine the evolution of the system (3)
under the control law:

ui = −
M∑
k=1

dikq∆k
(zk) , i = 1, 2, . . . , N (13)

where ∆k = ak for all k = 1, 2, . . . , N and the vectors ak
define the target sets Ak.

C. Closed-loop system
Similarly to (6), we write the quantized control law as:

u = −(D ⊗ Ip)q(z) , (14)

where q(z) = (q∆1
(z1)T . . .q∆p

(zp)
T )T . The closed-loop

system then takes the following expression:

ξ̇ = f(ξ) + g(ξ)(−(D ⊗ Ip)q(z))
z = (DT ⊗ Ip)x
ẋ = h(ξ) + 1N ⊗ v.

(15)

The system above has a discontinuous right-hand side due
to the presence of the quantization functions and its anal-
ysis requires to introduce a suitable notion of solution. In
this paper we adopt Krasowskii solutions. In fact, it was
shown in [7] that Carathéodory solutions may not exist for
agreement problems. Moreover, Krasowskii solutions include
Carathéodory solutions and the results we derive for the
former also holds for the latter in case they exist.
Denoted by Ẋ(t) = F (t,X) the system (15), a function
X(·) defined on an interval I ⊂ R is a Krasowskii solution
to the system on I if it is absolutely continuous and satisfies
the differential inclusion ([14])

Ẋ(t) ∈ K(F (t,X)) :=
⋂
δ>0

co (F (t, B(X, δ)))

for almost every (a.e.) t ∈ I . Since the right-hand side of (15)
is locally bounded, local existence of Krasowskii solutions
is guaranteed ([14]).
Recalling that (DT ⊗ Ip)(1N ⊗ v) = 0, the system (15) in
the coordinates (ξ, z) writes as

ξ̇ = f(ξ) + g(ξ)(−(D ⊗ Ip)q(z))
ż = (DT ⊗ Ip)h(ξ).

(16)
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Even the system above is discontinuous and again its so-
lutions must be intended in the Krasowskii sense. It is
straightforward to verify that, given any Krasowskii solution
(x, ξ) to (15), the function (z, ξ) = ((DT ⊗ Ip)x, ξ) is a
Krasowskii solution to (16). In what follows we investigate
the asymptotic properties of the Krasowskii solutions to (16)
and infer stability properties of (15). Below, we state two
results whose proofs are omitted for lack of space. The
interested reader is referred to [11].
The first statement concerns system (16).

Lemma 1 Assume that the graph G is connected and that
(2) holds. Then, any Krasowskii solution to (16) converges
to the set of Krasowskii equilibria2

{(ξ, z) : ξ = 0, 0 ∈ (D ⊗ Ip)K(q(z))} . (17)

Based on the previous lemma, one can show the following:

Theorem 1 Assume that the graph G is connected and that
(2) holds. Let v : R≥0 → Rp be a bounded and piecewise
continuous function and ∆k ∈ Rp, k = 1, 2, . . . ,M , be
vectors of positive numbers. Then any Krasowskii solution
to (15) converges to the set

{(x, ξ) : ξ = 0 , z ∈ (A1 × . . .×AM ), z = (DT ⊗ Ip)x},
(18)

where the sets Ak’s are as in (10), with ak = ∆k/2 for all
k = 1, . . . ,M . Moreover, limt→+∞[ẋ(t)− 1N ⊗ v(t)] = 0.

D. Examples

We provide two examples of application of the quantized
agreement result described above.

Agreement of single integrators by quantized measure-
ments We specialize Lemma 1 and Theorem 1 to the agree-
ment problem for single integrators. The closed-loop system
(15) reduces to

ẋ = −(D ⊗ Ip)q(z)
z = (DT ⊗ Ip)x

(19)

which using the variables z becomes

ż = −(DT ⊗ Ip)(D ⊗ Ip)q(z) = −(DTD ⊗ Ip)q(z) (20)

In this case, Lemma 1 gives that all the Krasowskii so-
lutions to (20) converge to the set of points {z : 0 ∈
(D ⊗ Ip)K(q(z))}. On the other hand, by Theorem 1,
any Krasowskii solution x(t) to (19) is such that z(t) =
(DT⊗Ip)x(t) converges to {x : 0 ∈ (D⊗Ip)K(q(z)), z =
(DT⊗Ip)x} which is included in the set {z : z ∈ A1×. . .×
Ap, z = (DT ⊗ Ip)x}. Let x be any Krasowskii solution
to (19) with z = (DT ⊗ Ip)x. Take any two variables xi, xj
whose agents are connected by the edge k. Consider for the
sake of simplicity that each quantizer has the same parameter
∆. Then zk = xi−xj converges asymptotically to a square of
the origin whose edge is not longer than ∆. If the agents are

2(ξ0, z0) is a Krasowskii equilibrium for (16) if the function
(ξ(t), z(t)) = (ξ0, z0) is a Krasowskii solution to (16) which originates
from the initial condition (ξ0, z0).

not connected by an edge but by a path, then each entry of
xi−xj is in magnitude bounded by ∆·d, with d the diameter
of the graph. The result can be compared with Theorem 4
in [12]. One difference is that, while trees are considered in
[12], connected graphs are considered here. Moreover, in [12]
the scalar states are guaranteed to converge to a ball of radius
||DTD||

√
M

λmin(DTD)
∆. Hence, denoted by ρ the ratio ||DTD||

λmin(DTD)
and

considered the bound M ≤ N−1, any two states xi, xj may
differ for 2

√
N − 1ρ∆. The passivity approach considered

here yields that they differ for not more than d · ∆, where
d grows as O(ρ log(N)) ([9]) for not complete and regular
graphs (graphs with all the nodes having the same degree).

Agreement of double integrators by quantized measure-
ments Consider the case of N agents modeled as

ẍi = fi , i = 1, 2, . . . , N, (21)

with xi, fi ∈ R2, for which we want to solve the agree-
ment problem with quantized measurements. The preliminary
feedback ([1])

fi = −Ki(ẋi − v) + v̇ + ui , Ki = KT
i , (22)

with ui to design, and the change of variables ξi = ẋi − v,
makes the closed-loop system

ẋi = ξi + v

ξ̇i = −Kiξi + ui
yi = ξi

passive with storage function Si(ξi) = 1
2ξ
T
i ξi and Wi(ξi) =

−Kiξ
T
i ξi. The system above is in the form (1). Theorem

1 guarantees that the Krasowskii solutions of (21), (22),
(14) converges asymptotically to the set (18) and that all the
agents’ velocities converge to v. In other words, the forma-
tion achieves practical position agreement and convergence
to the prescribed velocity. A related quantized coordination
problem for double integrators can be found in [18].

IV. LOGARITHMIC QUANTIZERS AND AGREEMENT
CONTROL UNDER TIME-VARYING GRAPH TOPOLOGY

In this section we consider the quantized agreement con-
trol problem (19) in the case of logarithmic quantizers.
Moreover, we focus on graphs with a time-varying topology:
the results for static graphs are an immediate consequence
and are omitted. Logarithmic quantizers are continuous at
the origin and this allows us to obtain asymptotic agreement
results rather than practical results as in the previous section.
Moreover, the construction of the functions involved in the
Matrosov Theorem for differential inclusions which is at the
basis of the result is very natural when using logarithmic
quantizers.
We briefly recall the definition of logarithmic quantizers. Let
q0 be a positive real number, δ ∈ (0, 1), and qi = ρiq0 for
i ∈ Z with ρ = 1−δ

1+δ . Then the map q` : R → {±qi : i ∈
Z} ∪ {0} defined as

q`(y) =


qi

qi
1 + δ

< y ≤ qi
1− δ

, i ∈ Z
0 y = 0
−q`(−y) y < 0 ,

(23)
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is the logarithmic quantizer.
The system (19) with a time-varying incidence matrix and
logarithmic quantizers becomes

ẋ = −(D(t)⊗ Ip)q`(z)
z = (D(t)T ⊗ Ip)x

(24)

with q`(z) = (q`(z11) . . .q`(zMp))
T . Let Q be the (N −

1)×N matrix with orthonormal rows orthogonal to the span
of 1N , i.e. Q1N = 0N−1 and QQT = IN−1. The incidence
matrix D(t) is assumed to satisfy the following:

Assumption 1 D(t) is piece-wise continuous and bounded.
Moreover, there exist δ, α > 0 such that for all t0 ≥ 0,∫ t0+δ

t0

QD(t)D(t)TQT dt ≥ αI . (25)

The condition (25), introduced in [1], amounts to a graph
uniform connectivity assumption which reminds analogous
conditions in [15], [20].
Define the new variable ζ = (Q⊗ Ip)x. By definition of Q,
ζ = 0 if and only x belongs to the span of 1N ⊗ Ip, i.e. if
and only if x lies in the agreement set x1 = x2 = . . . = xN .
Using the variable ζ, the system (24) can be rewritten as

ζ̇ = −F (t)q`(F
T (t)ζ) , (26)

where F (t) = QD(t)⊗ Ip. As a consequence of (25), there
exist δ, α > 0 such that for all t0 ≥ 0,∫ t0+δ

t0

F (t)F (t)T dt ≥ αI . (27)

Inspired by [1], we analyze the system (26) above using a
Matrosov theorem. Because of the discontinuities induced
by the quantizers, we resort to a Matrosov theorem for
differential inclusions which is obtained from [24] special-
izing Theorem 4.1 for hybrid systems therein to differential
inclusions. The result is recalled in Appendix B.
Here we prove the following lemma:

Lemma 2 Let F (t) be a piece-wise continuous and bounded
matrix which satisfies (27). Then, the set A = {0} is
uniformly globally asymptotically stable (UGAS) for (26).

Proof: First we prove that A = {0} is UGS. Take
V1(ζ) = 1

2ζ
T ζ. Consider the differential inclusion associated

with (26), namely

ζ̇ ∈ −K(Fq`(F
T ζ)) = −FK(q`(φ)) (28)

where for the sake of notational economy we have dropped
the dependence of F on t, we have defined φ = FT ζ and
where the second equality holds by Theorem 1 in [22]. Let
Λ be the following set of diagonal matrices: Λ = {D ∈
Rν × Rν : D = diag(λ1, . . . , λν) , λi ∈ [−1, 1] , ∀i ∈
{1, . . . , ν}}, where ν = M p. Then, FK(q`(φ)) ⊆ F{(I +
Dδ)φ : D ∈ Λ} where we have exploited the property
that K(q`(φ)) ⊆ ×νi=1K(q`(φi)) ([22]). Hence, for any
f ∈ K(Fq`(φ))

〈∇V1(ζ), f〉 = −ζTF (I +Dδ)φ = −φT (I +Dδ)φ

for some D ∈ Λ. Since 0 < δ < 1 and D is a diag-
onal matrix with diagonal elements in [−1, 1], it follows
that 〈∇V1(ζ), f〉 = −

∑
i(1 + λiδ)|φi|2 ≤ −

∑
i(1 −

δ)|φi|2 = −(1 − δ)|φ|2 =: Y1(φ), or equivalently
supf∈K(Fq`(φ))〈∇V1(ζ), f〉 ≤ Y1(φ) ≤ 0.
Hence, A is UGS by Theorem 3 in the Appendix.
Pick now V2(t, ζ) = −ζTS(t)ζ, with S(t) :=∫∞
t

e(t−τ)F (τ)FT (τ)dτ . It is easily proven ([1]) that
||S(t)|| ≤ µ2 and ∇tV2(t, ζ) = −ζTS(t)ζ + φTφ.
Moreover, for any f ∈ K(Fq`(φ))

〈∇ζV2(t, ζ), f〉 = −2ζTS(t)F (I+Dδ)φ ≤ 2|ζ|µ3(1+δ)|φ|

where the equality holds for some D ∈ Λ. Hence,

supf∈K(Fq`(φ))〈∇ζV2(t, ζ), f〉+∇tV2(t, ζ) ≤

2|ζ|µ3(1 + δ)|φ| − ζTS(t)ζ + φTφ =: Y2(ζ, φ) .

Recall that Y1(φ) ≤ 0. Moreover, Y1(φ) = 0 implies φ = 0
which in turn implies Y2(ζ, φ) = −ζTS(t)ζ ≤ 0. Hence, all
the conditions of Theorem 4 are satisfied, and this implies
that A = {0} is UGAS. �

Let now x be a Krasowskii solution to (24). Then ζ =
(Q⊗ Ip)x is a Krasowskii solution to (28). Since A = {0}
is UGAS for (28), then ζ converges to the origin and by
definition x must converge to span{1N⊗Ip}. We summarize
as follows:

Theorem 2 Let Assumption 1 hold. For any δ ∈ (0, 1) for
any q0 > 0, all the Krasowskii solutions to (24) converge
asymptotically to span{1N ⊗ Ip}.

We remark that in the theorem above no restriction on
the quantization parameter δ is assumed. Moreover, only
a uniform connectivity assumption is made on the time-
varying graph. These two features mark a major difference
with respect to [12], Theorems 5 and 6.

V. CONCLUSIONS

The passivity approach to coordinated control problems
presents several interesting features such as for instance
the possibility to deal with agents which have complex
high-dimensional dynamics and with advanced coordination
tasks. In this paper we have shown how it also lends itself to
take into account the presence of quantized measurements.
Using the passivity framework along with appropriate tools
from nonsmooth control theory and differential inclusions,
we have shown that many of the results of [1] continue to
hold in an appropriate sense in the presence of quantized
information. We believe that the results presented in the
paper are a promising addition to the existing literature on
continuous-time consensus and coordinated control under
quantization.
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[14] O. Hájek. Discontinuous differential equations, I. Journal of Differ-
ential Equations, 32(2):149–170, 1979.

[15] A. Jadbabaie, J. Lin, and A. S. Morse. Coordination of groups
of mobile autonomous agents using nearest neighbor rules. IEEE
Transactions on Automatic Control, 48(6):988–1001, 2003.

[16] A. Kashyap, T. Basar, and R. Srikant. Quantized consensus. Automat-
ica, 43(7):1192–1203, 2007.

[17] T. Li, M. Fu, L. Xie, and J. Zhang. Distributed consensus with limited
communication data rate. IEEE Transactions on Automatic Control,
56(2):279–292, 2011.

[18] H. Liu, M. Cao, and C. De Persis. Quantization effects on synchro-
nized motion of teams of mobile agents with second-order dynamics.
In Proceedings of the 18th IFAC World Congress, Milan, Italy, August
28-September 02, pages 2376–2381, 2011.

[19] A. Lorı́a, E. Panteley, D. Popovic, and A. R. Teel. A nested Matrosov
theorem and persistency of excitation for uniform convergence in
stable nonautonomous systems. IEEE Transactions on Automatic
Control, 50(2):183–198, 2005.

[20] L. Moreau. Stability of continuous-time distributed consensus algo-
rithms. In Proceedings of the IEEE Conference on Decision and
Control, volume 4, pages 3998–4003, 2004.

[21] A. Nedic, A. Olshevsky, A. Ozdaglar, and J. N. Tsitsiklis. On
distributed averaging algorithms and quantization effects. IEEE
Transactions on Automatic Control, 54(11):2506–2517, 2009.

[22] Brad E. Paden and Shankar S. Sastry. Calculus for computing Filip-
pov’s differential inclusion with application to the variable structure
control of robot manipulators. IEEE Transactions on Circuits and
Systems, 3(1):73–82, 1987.

[23] A. Pogromsky and H. Nijmeijer. Cooperative oscillatory behavior of
mutually coupled dynamical systems. IEEE Transactions on Circuits
and Systems I: Fundamental Theory and Applications, 48(2):152–162,
2001.

[24] R. G. Sanfelice and A. R. Teel. Asymptotic stability in hybrid systems
via nested Matrosov functions. IEEE Transactions on Automatic
Control, 54(7):1569–1574, 2009.

[25] L. Scardovi and R. Sepulchre. Synchronization in networks of identical
linear systems. Automatica, 45(11):2557–2562, 2009.

[26] A.J. van der Schaft and B. Maschke. Port-Hamiltonian dynamics
on graphs: Consensus and coordination control algorithms. In Pro-
ceedings of the 2nd IFAC Symposium on Distributed Estimation and
Control in Networked Systems, Annecy, France, September 13-14,
pages 175–178, 2010.

APPENDIX

A. Notation
The Kronecker product of the matrices A ∈ Rm×n, B ∈

Rp×q is the matrix

A⊗B =

 a11B . . . a1nB
...

. . .
...

am1B . . . amnB

 .

See e.g. [1], [25] for some basic properties.

B. Results for UGS and UGAS of sets in differential inclu-
sions

Consider the differential inclusion:

ẋ ∈ F (t, x) , x ∈ Rn . (29)

The following results give sufficient conditions for global
uniform stability (UGS) and global uniform asymptotic sta-
bility (UGAS) for (29). The interested reader is referred to
[19], [24] for a definition of these concepts.

Theorem 3 ([24], Theorem 2.4) The closed set A ⊂ Rn
is UGS for (29) if there exist a continuously differentiable
function V : Rn → R≥0 and class-K∞ functions α1, α2

such that
α1(|x|A) ≤ V (x) ≤ α2(|x|A)

sup
f∈F (t,x)

〈∇V (x), f〉 ≤ 0 , for all (t, x) ∈ R× Rn ,

where |x|A denotes the distance of x from A, i.e. |x|A =
infω∈A|x− ω|.

In the statement below (Matrosov Theorem) the following
notation is in use: ΩA(δ,∆) = {x ∈ Rn : δ ≤ |x|A ≤ ∆}
and ΥA(δ,∆) = R≥0 × ΩA(δ,∆).

Theorem 4 (Matrosov) Let A ⊂ Rn be a compact set
which is UGS for (29). A is uniformly globally asymptot-
ically stable (UGAS) for (29) if:
Assumption 1: There exist m, s ∈ Z≥1 and, for each 0 <
δ < ∆,
• a number µ > 0
• a function φ : Rn × R≥0 → Rs
• continuous functions Yi : ΩA(δ,∆) × Rs → R, i ∈
{1, 2, . . . ,m}

• functions Vi : R≥0 × Rn → R, i ∈ {1, 2, . . . ,m},
continuously differentiable on an open set of ΥA(δ,∆)

such that, for each i ∈ {1, 2, . . . ,m},
max{|Vi(t, x)|, |φ(t, x)|} ≤ µ

sup
f∈F (t,x)

∇Vif(t, x) +∇tVi(t, x) ≤ Yi(x, φ(t, x))

for all (t, x) ∈ ΥA(δ,∆);
Assumption 2: For each j ∈ {0, 1, 2, . . . ,m}

x ∈ ΩA(δ,∆), |ψ| ≤ µ, Yi(x, ψ) = 0 ∀i ∈ {0, 1, 2, . . . , j}
⇓

Yj+1(x, ψ) = 0

with Y0, Ym+1 : Rn × Rs → {0} identically zero functions.
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