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Abstract— This paper proposes a new event-based control
method for nonlinear SISO systems that are input-output
linearizable and have internal dynamics. The main control
objective is disturbance rejection while simultaneously reducing
the feedback communication effort compared to a continuous
control loop. The event-triggered control loop is shown to be
ultimately bounded and, moreover, a bound for the deviation
between this control loop and the continuous reference system is
derived, which depends on the threshold of the event generator.
Hence, by appropriately choosing the event threshold the event-
based controller can be made to mimic the continuous control
with desired accuracy. The novel control approach is evaluated
by its application to a continuous stirred tank reactor.

I. INTRODUCTION

A. Event-based control

Event-based control is a new control paradigm that aims

at reducing the communication between the sensors, the

controller and the actuators within a control loop by initiating

a communication among these components only after an

event has indicated that the control error exceeds a threshold.

A potential application of this control strategy is in the field

of networked control systems with intent to decrease the

network utilization.

The structure of the event-based control loop that is

investigated in this paper is depicted in Fig. 1. It consists

of the following three components:

• the plant with single input u(t), single output y(t), state

x(t) and disturbance d(t),
• the event generator and

• the control input generator, which incorporates the con-

troller.

The solid arrows in Fig. 1 represent a continuous-time

information transfer, whereas the dashed arrow indicates that

this link is only used at the event times tk (k = 0, 1, ...).
The event generator determines these event times tk at

which sensor data and previously processed signals like a

disturbance estimation d̂k is fed back to the control input

generator. The received information is used by the control

input generator in order to update the trajectory of the control

signal u(t) for the time interval t ∈ [tk, tk+1).
This paper proposes a design method for the event-based

control of nonlinear plants that is based on an input-output

linearization approach. Following the idea of [6], the design
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Fig. 1. Event-based control loop

aim is to make the event-based control loop mimic a contin-

uous state-feedback loop, hereafter referred to as reference

system, with prescribed accuracy. Copies of the reference

system are used for the control input generation and the

event generation. As the linearizing state feedback of the

nonlinear plant is applied, the reference system is linear and

so are the copies used in both generators. However, due to the

disturbance d(t) and the event-based sampling, the generated

control input differs from the linearizing input and the main

analysis problem to be solved in this paper concerns the

question how large the deviation of the event-based version

of the feedback from its continuous counterpart is. An upper

bound of this deviation is derived showing that the proposed

event-based control method reaches the control aim.

B. Literature review

The literature on event-based control is predominantly

focused on linear systems, whereas only a few publications

investigate nonlinear systems. Event-based stabilization of

nonlinear plants has been studied in [11]–[13] using a

Lyapunov-based technique.

An event trigger mechanism for the self-triggered stabi-

lization of nonlinear plants is described in [9]. The predeter-

mination of the next event time that has been investigated

in this approach also relies on the knowledge of a Lya-

punov function for the continuously controlled system. This

technique has been refined for homogeneous and polynomial

systems in [1].

Although the nonlinear plant is considered to be undis-

turbed in all mentioned publications the control input update

is indispensable because a zero-order hold (ZOH) was used

as control input generator that keeps the control signal

constant between consecutive events.

[8] extended the work [6] to event-based disturbance

rejection of input-output linearizable systems with relative

degree r = n. This paper develops the control approach

further to systems with internal dynamics where r ≤ n.

In contrast to the methods published in literature the event

trigger mechanism does not depend on a Lyapunov function
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of the continuous closed-loop system. A smart control input

generator is proposed instead of a ZOH, which generates an

exponential control input signal.

C. Outline of the paper

Section II specifies the investigated class of nonlinear

systems and introduces a reference system with desired

disturbance rejection behavior. A novel design method for the

nonlinear event-based control loop is proposed in Section III.

Section IV proves the stability of the closed-loop system and

analyzes the minimum inter-event time. Section V provides

an evaluation of the control approach.

D. Notation

The notation |s| is used to denote the absolute value of

a scalar s. ||x(t)|| denotes an arbitrary norm of an element

x ∈ IRn while ||x(t)||
∞

refers to the supremum norm. A

continuous function α : IR+ → IR+ is said to be of class K
if it is continuous, strictly increasing and satisfies α(0) = 0
and it is called of class K∞ if it is unbounded. A function

β : IR+ × IR+ → IR+ is called of class KL if β(·, t) ∈ K∞

for each t and β(r, t) → 0 as t → ∞.

Given a function λ(x) and a vector field f(x), then the

derivative of λ along f (Lie derivative) is defined as

Lfλ(x) =

n
∑

i=1

∂λ

∂xi

fi(x).

The k-th derivative of λ along f is denoted by Lk
fλ(x) and

satisfies the recursion

Lk
fλ(x) =

∂
(

Lk−1
f λ

)

∂x
f(x)

with L0
fλ(x) = λ(x).

II. PROBLEM STATEMENT

A. Plant and coordinates transformation

The plant is described by the nonlinear input-affine state-

space model

ẋ(t) = fx(x(t)) + gx(x(t))u(t) + dx(t), x(0) = x0 (1)

y(t) = h(x(t)), (2)

where x ∈ IRn denotes the state vector, u ∈ IR represents

the input and y ∈ IR the output. The disturbance is denoted

by dx ∈ D with D being a compact subset of IRn that

contains the origin. fx : IRn → IRn and gx : IRn → IRn are

continuous mappings and fx satisfies the relation fx(0) = 0.

The plant state x(t) is assumed to be measurable.

Consider the plant (1) with the output (2) to have a well-

defined relative degree r ≤ n. The mapping

φ(x(t)) =
(

φ1(x(t)) . . . φn(x(t))
)T

(3)

with

φi(x(t)) = Li−1
fx

h(x(t)), i = 1, ..., r

and the remaining functions φr+1(x(t)), . . . , φn(x(t)) cho-

sen such that

Lgxφi(x(t)) = 0 for all r + 1 ≤ i ≤ n

holds, qualifies as a transformation of the system (1), (2)

into normal form with new coordiates z(t) = φ(x(t)). After

defining

ξ(t) =
(

z1(t) . . . zr(t)
)T

, η(t) =
(

zr+1(t) . . . zn(t)
)T

,

the application of the transformation (3) to the system (1)

yields the normal form

ξ̇(t) =











z2(t)
...

zr(t)
b(z(t))











+











0
...

0
a(z(t))











u(t) + dξ(t) (4)

η̇(t) = q(z(t)) + dη(t) (5)

with the transformed disturbance d(t) =
(

dT
ξ (t) dT

η (t)
)T

and the mapping q : IRn → IRn−r given by

qi(z(t)) = Lfφi(φ
−1(z(t))) for all r + 1 ≤ i ≤ n.

As proved in [5], such transformation exists for all input-

affine systems (1).

The transformation of the nonlinear system (1) into the

form (4), (5) obviously reveals the separation of the system

into two coupled subsystems, which will subsequently be

referred to as input-output dynamics (Eq. (4)) and internal

dynamics (Eq. (5)). The internal dynamics (5) is supposed

to be input-to-state stable (ISS). Thus, there exist functions

θ ∈ KL and γ1, γ2 ∈ K∞, such that the solution to (5) is

bounded by

||η(t)|| ≤ θ(||η(0)|| , t) + γ1(||ξ||∞) + γ2(||dη||
∞
). (6)

B. Control objective

The investigated event-based control scheme aims at dis-

turbance rejection in order to keep the plant state z(t) in

a bounded surrounding of the setpoint z (without loss of

generality z = 0). This control objective is equivalent to the

notion of ultimate boundedness [2], which means that the

relation

z(t) ∈ Ωz ⊂ IRn, ∀t ≥ 0 (7)

holds for an appropriate set Ωz satisfying z ∈ Ωz. From the

objective (7) it follows that the initial state z(0) is required

to be contained in the set Ωz.

C. Reference system

This section introduces a continuously controlled reference

system that is deemed to have desired disturbance rejection

behavior. The event-based control loop should mimic this

continuous control loop. For linearizable plants, disturbance

rejection can be accomplished by the linearizing state feed-

back

u(t) =
(

a(z(t))
)

−1 (
−b(z(t))− kTξ(t)

)

. (8)

The application of the control input (8) to the plant (4), (5)

results in the closed-loop system

ξ̇(t) = Aξ(t) + dξ(t), ξ(0) = ξ0 (9)

η̇(t) = q(z(t)) + dη(t), η(0) = η0 (10)
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with quadratic r-dimensional matrix

A =











0 1 · · · 0
...

...
. . .

...

0 0 · · · 1
−k1 −k2 · · · −kr











. (11)

In Eq. (11) ki > 0 (i = 1, ..., r) denotes the i-th element

of the static state-feedback gain kT, satisfying stability

and disturbance rejection specifications for the closed-loop

system (9), (10).

Since the reference system (9), (10) is ISS, the plant state

z(t) is bounded by some functions θr ∈ KL, γr ∈ K∞:

||z(t)|| ≤ θr(||z(0)|| , t) + γr(||d||∞).

Hence, the reference system (9), (10) is ultimately bounded

with

Ωz,r = {z| ||z(t)|| ≤ θr(||z(0)|| , t) + γr(||d||∞)} . (12)

III. NONLINEAR EVENT-BASED CONTROL

This section proposes a design method for an event-

based feedback that yields a closed-loop system with similar

disturbance rejection behavior as the previously introduced

reference system.

A. Control input generator

The control input generator applies a model of the ref-

erence system (9), (10), for which the state is denoted by

zs(t) =
(

ξTs (t) ηT
s (t)

)T
, to determine the control input

u(t) according to

ξ̇s(t) = Aξs(t) + d̂ξ,k, ξs(t
+
k ) = ξ(tk) (13)

η̇s(t) = q(zs(t)) + d̂η,k, ηs(t
+
k ) = η(tk) (14)

u(t) =
(

a(zs(t))
)

−1 (
−b(zs(t))− kTξs(t)

)

. (15)

Each event time tk the control input generator receives

the current plant state z(tk) and reinitializes the model

(13), (14). t+k denotes the instant right after the event has

occurred. Since the event generator has no information about

the disturbance d(t) between consecutive events the input

generation needs to rely on d̂ξ,k and d̂η,k which represent

estimates of the disturbances dξ(t) and dη(t), respectively

for the time interval t ∈ [tk, tk+1). Note that this control

approach works with an arbitrary disturbance estimation,

including the trivial one (d̂k = 0). An estimation method

that is based on the assumption that the disturbance d(t) is

a piecewise constant vector d has been proposed in [8].

B. Event generator

The event generator indicates event times tk at which a

feedback is necessary. The following explains how these time

instants are determined. Consider the plant (4), (5) with the

control (15)

ξ̇(t) = Aξ(t) + e1µ(z(t), zs(t)) + dξ(t) (16)

η̇(t) = q(z(t)) + dη(t) (17)

with the r-dimensional vector e1 =
(

0 . . . 0 1
)T

and

µ(z(t), zs(t)) = β(z(t), zs(t)) + kTα(z(t), zs(t)) (18)

β(z(t), zs(t)) = b(z(t))− a(z(t))
(

a(zs(t))
)

−1
b(zs(t))

α(z(t), zs(t)) = z(t)− a(z(t))
(

a(zs(t))
)

−1
zs(t).

A comparison of Eq. (16) with the input-output dynamics of

the reference system (9) reveals that the ideal performance of

the control loop is obtained for µ(z(t), zs(t)) = 0. However,

the fulfillment of this condition would require continuous

state-feedback which is undesired in the event-based control

scheme. Equation (18) can hence only be bounded according

to |µ(z(t), zs(t))| ≤ e with e ∈ IR+ denoting the event

threshold. An event is triggered whenever the relation

|µ(z(t), zs(t))| = e (19)

holds which will subsequently be referred to as trigger

condition.

Note that the control input u(t), generated according to

Eq. (15) is linearizing only if the model state zs(t) and the

plant state z(t) coincide. Otherwise the signal u(t) deviates

from the linearizing input

ulin(t) =
(

a(z(t))
)

−1 (
b(z(t))− kTξ(t)

)

and the deviation error defined as u∆(t) = u(t)− ulin(t) is

given by

u∆(t) =
(

a(z(t))
)

−1
µ(z(t), zs(t)).

The last equation shows that the event function (18) cor-

relates with deviation error u∆(t) of the input. This result

can be used to specify the event threshold e. It limits the

deviation error since after each event µ(z(t+k ), zs(t
+
k )) = 0

holds due to the reinitialization.

C. Closed-loop system

In summary, the event based control loop consists of

• the plant (4), (5),

• the control input generator (13)–(15) and

• the event generator which triggers an event if the

condition (19) is satisfied.

The generated event marks the time tk at which the feedback

is closed and the information (z(tk), d̂k) is communicated

from the event generator to the control input generator.

IV. ANALYSIS OF THE CLOSED-LOOP SYSTEM

A. Comparison of the event-based control loop and the

reference system

This section shows that the difference between the be-

havior of the event-based control loop (16), (17) and of the

reference system (9), (10) which is subsequently represented

by the model

ξ̇r(t) = Aξr(t) + dξ(t) (20)

η̇r(t) = q(zr(t)) + dη(t) (21)
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with state zr(t) =
(

ξTr (t) ηT
r

)T
is bounded from above by

some bound that depends on the event threshold e. Let

δξ(t) = ξ(t)− ξr(t) (22)

δη(t) = η(t)− ηr(t) (23)

be the difference between the behavior of the event-based

control system (16), (17) and the reference system (20), (21).

Theorem 1: The difference between the reference system

(20), (21) and the event-based control loop (16), (17) is

bounded from above by
∣

∣

∣

∣

∣

∣

∣

∣

(

δξ(t)
δη(t)

)∣

∣

∣

∣

∣

∣

∣

∣

∞

≤ δmax = max {δξmax, δηmax} (24)

with

δξmax = e

∫

∞

0

∣

∣

∣

∣

∣

∣eAτe1

∣

∣

∣

∣

∣

∣

∞

dτ,

δηmax = 2
(

θ(||η(0)|| , t) + γ2(||dη||
∞
)
)

+ γ1(||ξ||∞) + γ1(||ξr||∞).

Proof: Equations (22), (23) are successively investigated

with respect to the boundedness of δξ and δη , beginning with

the difference (23) of the internal dynamics.

Recall that by assumption the boundedness of the internal

dynamics is a property of the uncontrolled system according

to (6). Since both the internal dynamics of the reference

system (21) and of the event-based control loop (17) are

ISS, their difference (23) is ISS as well and bounded by

||δη(t)|| ≤ ||η(t)||+ ||ηr(t)|| .

Substitute (6) into this inequality yields

||δη(t)|| ≤ 2
(

θ(||η(0)|| , t) + γ2(||dη||
∞
)
)

+ γ1(||ξ||∞) + γ1(||ξr||∞)

of which the right-hand side is denoted by δηmax.

For the study of the difference behavior of the input-output

dynamics, consider the system

δ̇ξ(t) = Aδξ(t) + e1µ(z(t), zs(t)), δξ(0) = 0

which follows from (16), (20), (22) and yields

δξ(t) =

∫ t

0

eA(t− τ)e1µ(z(τ), zs(τ))dτ.

An upper bound for this expression is obtained by the

following estimation, exploiting the trigger condition (19):

||δξ(t)||
∞

≤

∫ t

0

∣

∣

∣

∣

∣

∣
eA(t− τ)e1

∣

∣

∣

∣

∣

∣

∞

|µ(z(τ), zs(τ))| dτ

≤ e

∫

∞

0

∣

∣

∣

∣

∣

∣eAτe1

∣

∣

∣

∣

∣

∣

∞

dτ = δξmax.

Since for the supremum norm
∣

∣

∣

∣

∣

∣

∣

∣

(

δξ(t)
δη(t)

)∣

∣

∣

∣

∣

∣

∣

∣

∞

= max
{

||δξ(t)||
∞

, ||δη(t)||
∞

}

holds, the maximal deviation between the reference system

(20), (21) and the event-based control loop (16), (17) is

bounded according to (24).

The theorem shows that the state of the event-based control

system always remains in a surrounding

z(t) ∈ Ωδ(zr(t)) = {z(t)| ||z(t)− zr(t)||∞ ≤ δmax}

of the reference system that is ultimately bounded. The

event-based control loop is, hence, proved to be ultimately

bounded, as well. As zr(t) remains in the set Ωz,r given by

(12), the state z(t) of the event-based control loop remains

in the set

Ωz = {z| ||z|| ≤ θ(||z0|| , t) + γ(||d||
∞
) + δmax}

which shows the event-based control scheme to meet the

control objective (7). Moreover, the deviation can be adjusted

by appropriately setting the event threshold e.

B. Minimum inter-event time

This section studies the minimal inter-event time

Tmin = argmin
t

min
z(tk)

min
d(t)

s. t. |µ(z(t), zs(t))| = e (25)

on the assumption that the disturbance d(t) is bounded.

Recall that the event function (18) grows due to a deviation

between the plant state z(t) and the model state zs(t). Since

(18) is nonlinear it reaches the event threshold e for different

deviations

z∆(t) =

(

ξ∆(t)
η∆(t)

)

= z(t)− zs(t). (26)

The following investigation is based on the idea that for the

whole set Ωz there exists a minimal deviation z∆min for

which the trigger condition (19) is satisfied. Define

ζ := min
z,zs

||z(t)− zs(t)||∞ for all z ∈ Ωz

s. t. |µ(z(t), zs(t))| = e
(27)

and note that ζ depends on the event threshold e. In order

to find the minimal inter-event time Tmin, the system

ξ̇∆(t) = Aξ∆(t) + e1µ(z(t), zs(t)) + dξ∆(t), (28)

η̇∆(t) = q(z(t))− q(zs(t)) + dη∆(t), (29)

ξ∆(t
+
k ) = 0, η∆(t

+
k ) = 0

is investigated, which follows from (13), (14) and (16), (17)

and describes the dynamics of the difference state (26). The

transformed disturbance

d∆(t) =

(

dξ∆(t)
dη∆(t)

)

=

(

dξ(t)− d̂ξ,k

dη(t)− d̂η,k

)

is assumed to be bounded by

||dξ∆(t)|| ≤ dξ∆, ||dη∆(t)|| ≤ dη∆

for all t ≥ 0. In the following the function q(·) is considered

to be Lipschitz with Lipschitz constant L

||q(z1(t))− q(z2(t))|| ≤ L · ||z1(t)− z2(t)|| .
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Theorem 2: The minimal time Tmin between consecutive

events is bounded from below Tmin ≥ min
{

T ξ, T η

}

with

T ξ satisfying

∫ T ξ

0

∣

∣

∣

∣

∣

∣eAτ
∣

∣

∣

∣

∣

∣

∞

dτ =
ζ

e+ dξ∆
(30)

and T η given by

T η =
ζ

L · ζ + dη∆
. (31)

Proof: With (27) the definition (25) can be restated as

Tmin ≥ argmin
t

min
d∆(t)

s. t. ||z∆(t)||∞ = ζ.

In what follows the problem of finding the minimal inter-

event time Tmin is separated into the tasks of determining

the times

Tξmin = argmin
t

min
dξ∆(t)

s. t. ||ξ∆(t)||∞ = ζ,

Tηmin = argmin
t

min
dη∆(t)

s. t. ||η∆(t)||∞ = ζ (32)

for which the relation

Tmin ≥ min {Tξmin, Tηmin}

holds. The following estimations develop lower bounds T ξ

and T η on the times Tξmin and Tηmin, respectively.

To begin with, consider the solution to (28)

ξ∆(t) =

∫ t

tk

eA(t− τ)
(

e1µ(z(τ), zs(τ)) + dξ∆(τ)
)

dτ,

which is bounded by

||ξ∆(t)||∞ ≤

∫ t

0

∣

∣

∣

∣

∣

∣
eAτ

∣

∣

∣

∣

∣

∣

∞

dτ
(

e+ dξ∆
)

.

The minimal time for which the right-hand side of this

inequality is equal to the value ζ is denoted by T ξ and

represents a lower bound on Tξmin. This time is obtained as

the upper integral bound for which the relation (30) holds.

According to (32), Tηmin is the minimal time for which

the solution to (29) satisfies the equation

||η∆(t)|| =

∣

∣

∣

∣

∣

∣

∣

∣

∫ t

0

(

q(z(τ))− q(zs(τ)) + dη∆(τ)
)

dτ

∣

∣

∣

∣

∣

∣

∣

∣

= ζ.

An estimation of the left-hand side is obtained as follows:

||η∆(t)|| ≤

∫ t

0

(

||q(z(τ))− q(zs(τ))||+ ||dη∆(τ)||
)

dτ

≤

∫ t

0

(

L · ||z(τ)− zs(τ)||+ dη∆

)

dτ

≤

∫ t

0

(

L · ζ + dη∆

)

dτ. (33)

The time for which (33) equals ζ is denoted by T η and is

given by (31).

V. APPLICATION EXAMPLE

A. Continuously stirred tank reactor model

The event-based control approach is applied to control

a chemical reaction in a continuous stirred tank reactor

(CSTR), which is illustrated in Fig. 2. The tank is fed by a

constant inflow q of the reactant A with temperature ϑin and

concentration cin. The temperature ϑc of the cooling jacket

is affected by the cooling power Q̇ that serves as the input

to the system. The liquid in the tank is supposed to be at a

constant level. The reactions inside the liquid are described

by the “van de Vusse” reaction scheme [10]

A → B → C, 2A → D

comprising the reaction of educt A to the desired product

B and the parallel reactions to the undesired byproducts C

and D. The liquid in the tank has the temperature ϑ. The

concentration cin and the temperature ϑin of the inflow are

subject to uncertainty and the deviations ∆cin and ∆ϑin from

the nominal values are considered as disturbances of the

process. The control aim is to keep the temperature ϑ of

the liquid in the reactor in the setpoint ϑSP.

A CSTR of this type has been investigated in [4], accord-

ing to which the dynamics of the chemical reaction inside

the tank are described by the state-space model








ċA
ċB
ϑ̇

ϑ̇c









=









−k1(ϑ)cA − k2(ϑ)c
2
A + (cin − cA) q

k1(ϑ)cA − k1(ϑ)cB − cBq

h(cA, cB, ϑ) + (ϑc − ϑ)κ1 + (ϑin − ϑ)q
(ϑ− ϑc)κ2









+
(

0 0 0 κ3

)T
Q̇+

(

∆cinq 0 ∆ϑinq 0
)T

, (34)

where cA and cB denote the concentrations of the educt A

and the product B, respectively. The temperature dependent

reaction rates k1(·) and k2(·) are modeled with the Arrhenius

function

ki(ϑ) = ki0 exp

(

−Ei

ϑ+ 273.15

)

, i = 1, 2.

The reaction-induced change in temperature ϑ is described

by

h(cA, cB, ϑ) = −κ4

(

k1(ϑ)
(

cA∆HAB + cB∆HBC

)

+ k2(ϑ)c
2
A∆HAD

)

.

A B Cr r

2A Dr

k1 k1

k2

A
q, cin in, ϑ

A B C D, , ,

c cA B, ,ϑ

ϑc

Q

Fig. 2. Continuously stirred tank reactor
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TABLE I

PARAMETERS OF THE CSTR MODEL (34)

Symbol Value Unit Symbol Value Unit

κ1 30.828 h−1 κ2 86.688 h−1

κ3 0.1 K/kJ κ4 3.522 · 10−4 m3K/kJ

ϑin 104.9 ◦C cin 5.1 · 103 mol/m3

k10 1.287 · 1012 h−1 k20 9.043 · 106 m3/(mol h)

E1 9758.3 K E2 8560.0 K

∆HAB 4.2 kJ/mol ∆HBC -11.0 kJ/mol

∆HAD -41.85 kJ/mol ϑSP 100 ◦C

All other symbols and parameters are taken from [3] and [7]

and are summarized in Table I. Taking the temperature ϑ as

the output the system has the relative degree r = 2 and the

model of the CSTR in normal form (4), (5) is obtained by

use of the transformation

z1 = ϑ, z2 = ϑ̇, z3 = cA, z4 = cB

with ξ =
(

z1 z2
)T

and η =
(

z3 z4
)T

.

B. Event-based control of the reactor temperature

The reference system (9), (10) with state-feedback gain

kT =
(

18 9
)

is defined to have satisfactory disturbance

rejection behavior. This controller is, hence, applied in the

control input generator and event generator, as well.

The following analysis investigates the event-based con-

trolled system subject to a piecewise constant disturbance

d(t). The event threshold is set to e = 2·104. The simulation

results for this setting are illustrated in Fig. 3. The first

two subplots show the disturbances as dashed lines and the

respective estimation derived with the method given in [8] as

black solid lines. Subplots three and four depict the course

of the reactor temperature ϑ and of the temperature ϑc of

the cooling jacket. The dashed lines represent the behavior

of the reference system and the solid lines the one of the

event-based controlled system. The last subplot indicates the

event times.

At the beginning of the simulation the temperature and

concentration of the inflow q does not deviate from the

nominal values and the reactor temperature hence remains

in the setpoint. At time t = 20 min the change of the

inflow temperature triggers an event. After the disturbance

has been estimated correctly at a second event at t = 20.4
min no further feedback is required until the temperature

and concentration changes again at t = 60 min. During the

simulation time of 200 minutes only seven events, including

the initial one, are generated.

VI. CONCLUSION

The paper proposed a new event-based control scheme

for nonlinear, input-output linearizable systems with internal

dynamics. The deviation between the behavior of the event-

based control loop and a continuous state-feedback reference

system with ideal disturbance rejection was shown to be

bounded. This bound can be made arbitrarily small by ap-

propriately decreasing the event threshold. The event-based
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Fig. 3. Disturbance rejection behavior of the CSTR (e = 2 · 104)

control scheme was proved to have a minimal time between

consecutive events. An application example of the event-

based control of the temperature in a continuously stirred

tank reactor showed that the event-based control scheme

works well in the sense that the frequency of feedback

is considerable reduced, while a maintaining a satisfactory

disturbance rejection behavior.
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[8] C. Stöcker and J. Lunze, Event-based control of input-output lineariz-
able systems, Proceedings of 18th IFAC World Congress, accepted.

[9] P. Tabuada, Event-triggered real-time scheduling of stabilizing control
tasks, IEEE Transactions on Automatic Control, vol. 52, no. 9, pp.
1680–1685, 2007.

[10] J.G. van de Vusse. Plug-flow type reactor versus tank reactor. Chemical

Engineering Science, vol. 19, no. 12, pp. 994–996, 1964.
[11] X. Wang and M. D. Lemmon, Event design in event-triggered feedback

control systems. Proceedings of 47th IEEE Conference on Decision

and Control, pp. 2105–2110, 2008.
[12] X. Wang and M. D. Lemmon, Event-triggered broadcasting feedback

control systems, Proceedings of American Control Conference, pp.
3139–3144, 2008.

[13] X. Wang and M. D. Lemmon, Event-triggering n distributed networked
systems with data dropouts and delays, Proceedings of Hybrid Sys-

tems: Computation and Control, pp. 366–380, 2009.

2546


