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Abstract— The paper adresses the problem of simultaneous
adaptive feedforward compensation and feedback compensation
of vibrations (or noise) when a correlated measurement with
the disturbance (an image of the disturbance) is available. The
study is carried in the presence of a ”positive” mechanical
coupling between the compensator system and the measurement
of the image of the disturbance, which often occurs in practice.
The positive mechanical coupling introduces a coupling between
the design of the feedback loop and the stability conditions
for the adaptive feedforward compensation. Modifications of
the algorithms for adaptive feedforward compensation has to
be considered. The new algorithms proposed are analyzed
and have been applied to an active vibration control system
featuring internal positive mechanical coupling.

Index Terms— active vibration control, adaptive feedfor-
ward compensation, RS controller, adaptive control, hybrid
feedforward-feedback compensation, parameter estimation

I. INTRODUCTION

Adaptive feedforward for broadband disturbance compen-

sation is widely used when a well correlated signal with

the disturbance (image of the disturbance) is available ([3],

[4], [8], [14]). However in many systems there is a positive

mechanical coupling between the feedforward compensation

system and the measurement of the image of the disturbance.

This often leads to the instability of the system. Different so-

lutions have been proposed taking into account this coupling

(see for example [7], [9], [6]). Analysis of some existing

algorithms in this modified context are also available [13]

Combining adaptive feedforward compensation with feed-

back control has been considered as an issue for further

improving the performance of the adaptive feedforward com-

pensation alone. Several references are available, like [2],

[12], [5].

One of the solutions given in [2], is to use the feedback

controller for reducing the effect of periodic disturbances and

feedforward compensation to reject broadband disturbances.

The main drawback of this work is the absence of any

stability analysis. In [12], it is stated that using a feedback

controller with a good gain margin may improve the stability

and performance of the adaptive feedforward compensation,

but a detailed analysis is not provided.

The objectives of this paper are

• to analyse the interaction between the feedback loop

and the adaptive feedforward compensation.
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• to develop and analyse recursive algorithms for online

estimation and adaptation of the parameters of the feed-

forward filter compensator for broadband disturbances

in the presence of the feedback controller.

• to take into account the internal positive coupling oc-

curing in many AVC and ANC systems.

• to apply the algorithms on an active vibration control

system featuring internal positive mechanical coupling.

One of the important observations resulting from the

analysis developed in this paper, is that the stability condi-

tions for the adaptive feedforward compensation are highly

influenced by the the design of the feedback loop. This

interaction is further enhanced when the internal positive

coupling is present. The major practical consequence is that

the filters used in order to assure the stability conditions for

the adaptive feedforward compensation will depend upon the

elements of the feedback compensation loop built around the

compensation system (called secondary path - see section II).

While the paper is developed in the context of AVC (active

vibration control) systems, the results are applicable to ANC

systems.

II. AN ACTIVE VIBRATION CONTROL SYSTEM USING AN

INERTIAL ACTUATOR

Figures 1 and 2 represent an AVC system using a mea-

surement correlated with the disturbance and an inertial

actuator for reducing the residual acceleration. The structure

is representative for a number of situations encountered in

practice.

The system consists of 5 metallic plates connected by

springs. The plates M1 and M3 are equipped with inertial

actuators. The one on M1 serves as disturbance generator

(inertial actuator 1 in figure 2), the one on M2 serves for

disturbance compensation (inertial actuator 2 in figure 2).

The system is equipped with a measure of the residual

acceleration (on plate M3) and a measure of the image of the

disturbance made by an accelerometer posed on plate M1.

The path between the disturbance (in this case, generated

by the inertial actuator on top of the structure), and the

residual acceleration is called the global primary path. The

path between the measure of the image of the disturbance

and the residual acceleration (in open loop) is called the

primary path and the path between the inertial actuator

for compensation and the residual acceleration is called the

secondary path. When the compensator system is active, the

actuator acts upon the residual acceleration, but also upon

the measurement of the image of the disturbance (a positive

feedback). The measured quantity û(t) will be the sum of
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the correlated disturbance measurement d(t) obtained in the

absence of the feedforward compensation (see figure 3(a))

and of the effect of the actuator used for compensation.

The disturbance is the position of the mobile part of the

inertial actuator (see figures 1 and 2) located on top of the

structure. The input to the compensator system is the position

of the mobile part of the inertial actuator located on the

bottom of the structure.

Fig. 1. An AVC system using a feedforward compensation - photo
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Fig. 2. An AVC system using a feedforward compensation - scheme

The corresponding block diagrams in open loop operation

and with the hybrid (feedback-feedforward) compensation

system are shown in Figures 3(a) and 3(b), respectively. In

figure 3(b), û(t) denotes the effective output provided by

the measurement device and which will serve as input to

the adaptive feedforward filter N̂. The control signal ŷ(t),
resulting from the difference between the output of the

feedforward filter denoted by ŷ1(t) and the output of the

feedback controller, is applied to the actuator through an

amplifier. The transfer function G (the secondary path) char-

acterizes the dynamics from the control signal to the residual

acceleration measurement (amplifier + actuator + dynamics

of the mechanical system). The transfer function D between

d(t) and the measurement of the residual acceleration (in

open loop operation) characterizes the primary path.

The coupling between the control signal ŷ(t) and the mea-

surement û(t) through the compensator actuator is denoted

by M. As indicated in figure 3(b), this coupling is a ”positive”

feedback. This unwanted coupling raises problems in practice

(source of instabilities) and makes the analysis of adaptive

(estimation) algorithms more difficult.
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Fig. 3. Feedforward AVC: in open loop (a), with RS controller and adaptive
feedforward compensator (b)

At this stage it is important it is important to mention that

very reliable models of the various paths can be obtained

by system identification techniques in the absence of the

feedforward and feedback filters.

III. BASIC EQUATIONS AND NOTATIONS

The description of the various blocks will be made with

respect to Figure 3.

The primary path is characterized by the asymptotically

stable transfer operator1:

D(q−1) =
BD(q

−1)

AD(q−1)
(1)

where

BD(q
−1) = bD

1 q−1 + ...+bD
nBD

q−nBD (2)

AD(q
−1) = 1+aD

1 q−1 + ...+aD
nAD

q−nAD (3)

The unmeasurable value of the output of the primary path

(when the compensation is active) is denoted x(t).
The secondary path is characterized by the asymptotically

stable transfer operator:

G(q−1) =
BG(q

−1)

AG(q−1)
(4)

where:

BG(q
−1) = bG

1 q−1 + ...+bG
nBG

q
−nBG = q−1B∗

G(q
−1) (5)

AG(q
−1) = 1+aG

1 q−1 + ...+aG
nAG

q
−nAG (6)

1The complex variable z−1 will be used for characterizing the system’s
behavior in the frequency domain and the delay operator q−1 will be used
for describing the system’s behavior in the time domain.
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The positive feedback coupling is characterized by the

asymptotically stable transfer operator:

M(q−1) =
BM(q−1)

AM(q−1)
(7)

where:

BM(q−1) = bM
1 q−1 + ...+bM

nBM
q−nBM = q−1B∗

M(q−1) (8)

AM(q−1) = 1+aM
1 q−1 + ...+aM

nAM
q−nAM (9)

The identified models of the secondary path and of the

positive feedback coupling will be denoted Ĝ and M̂, re-

spectively.

The fixed RS controller K, computed on the basis of model

Ĝ to reject broadband disturbances on the output χ , is

characterized by the asymptotically stable transfer function:

K(q−1) =
BK(q

−1)

AK(q−1)
(10)

where:

BK(q
−1) = bK

0 +bK
1 q−1 + ...+bK

nBK
q−nBK (11)

AK(q
−1) = 1+aK

1 q−1 + ...+aK
nAK

q−nAK (12)

The optimal feedforward filter (unknown) is defined by :

N(q−1) =
R(q−1)

S(q−1)
(13)

where:

R(q−1) = r0 + r1q−1 + ...+ rnR
q−nR (14)

S(q−1) = 1+S1q−1 + ...+SnS
q−nS = 1+q−1S∗(q−1) (15)

The estimated filter is denoted by N̂(q−1) or N̂(θ̂ ,q−1) when

it is a linear filter with constant coefficients or N̂(t,q−1)
during estimation (adaptation) of its parameters.

The input of the feedforward filter is denoted by û(t) and

it corresponds to the measurement provided by the primary

transducer (force or acceleration transducer in AVC or a

microphone in ANC). In the absence of the compensation

loop (open loop operation) û(t) = d(t). The ”a posteriori”

output of the feedforward filter is denoted by ŷ1(t + 1) =
ŷ1(t + 1|θ̂(t + 1)). The ”a priori” output of the estimated

feedforward filter is given by:

ŷ0
1(t +1) = ŷ1(t +1|θ̂(t))

= −Ŝ∗(t,q−1)ŷ1(t)+ R̂(t,q−1)û(t +1)]

= θ̂ T (t)φ(t) = [θ̂ T
S (t), θ̂

T
R (t)][

φŷ1
(t)

φû(t)
] (16)

where

θ̂ T (t) = [ŝ1(t)...ŝnS
(t), r̂0(t)...r̂nR

(t)] = [θ̂ T
S (t), θ̂

T
R (t)] (17)

φ T (t) = [−ŷ1(t)...− ŷ1(t −nS +1, û(t +1), û(t)...û(t −nR +1)]

= [φ T
ŷ1
(t),φ T

û (t)] (18)

and ŷ1(t), ŷ1(t − 1) ... are the ”a posteriori” outputs of the

feedforward filter generated by:

ŷ1(t +1) = ŷ1(t +1|θ̂(t +1)) = θ̂ T (t +1)φ(t) (19)

while û(t +1), û(t)... are the measurements provided by the

primary transducer2.

The control signal applied to the secondary path is given by

ŷ(t +1) = ŷ1(t +1)−
BK

AK

χ(t +1) (20)

The unmeasurable ”a priori” output of the secondary path

will be denoted ẑ0(t +1).

ẑ0(t +1) = ẑ(t +1|θ̂(t)) =
B∗

G(q
−1)

AG(q−1)
ŷ(t) (21)

The ”a posteriori” unmeasurable value of the output of the

secondary path is denoted by:

ẑ(t +1) = ẑ(t +1|θ̂(t +1)) (22)

The measured primary signal (called also reference) satisfies

the following equation:

û(t +1) = d(t +1)+
B∗

M(q−1)

AM(q−1)
ŷ(t) (23)

The measured residual error satisfies the following equation:

χ0(t +1) = χ(t +1|θ̂(t)) = ẑ0(t +1)+ x(t +1) (24)

The ”a priori” adaptation error is:

ν0(t +1) =−χ0(t +1) =−x(t +1)− ẑ0(t +1) (25)

The ”a posteriori” adaptation (residual) error (which is

computed) will be given by:

ν(t +1) = ν(t +1|θ̂(t +1)) =−x(t +1)− ẑ(t +1) (26)

When using an estimated filter N̂ with constant parameters:

ŷ0(t) = ŷ(t), ẑ0(t) = ẑ(t) and ν0(t) = ν(t).

IV. DEVELOPMENT AND ANALYSIS OF THE ALGORITHMS

The algorithms for adaptive feedforward compensation in

presence of RS feedback controller will be developed under

the following hypotheses:

1) H1 - The signal d(t) is bounded

i.e.

|d(t)| ≤ α ∀t (0 ≤ α ≤ ∞) (27)

(which is equivalently to say that s(t) is bounded and

W (q−1) in figure 3 is asymptotically stable).

2) H2 - Perfect matching condition. There exists a filter

N(q−1) of finite dimension such that3:

N

(1−NM)
G =−D (28)

and the characteristic polynomials:

of the ”internal” positive coupling loop

P(z−1) = AM(z−1)S(z−1)−BM(z−1)R(z−1) (29)

of the closed loop (G-K):

Pcl(z
−1) = AG(z

−1)AK(z
−1)+BG(z

−1)BK(z
−1) (30)

2û(t +1) is available before adaptation of parameters starts at t +1
3In many cases, the argument q−1 or z−1 will be dropped out
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and the coupled feedforward-feedback loop:

Pf b− f f = AMS[AGAK +BGBK ]−BMRAKAG (31)

are Hurwitz polynomials.

3) H3 - The effect of the measurement noise upon the

measured residual error is neglected (deterministic

context).

Once the algorithms will be developed under these hypothe-

ses, hypotheses 2 and 3 will be removed and the algorithms

will be analyzed in this modified context.

A first step in the development of the algorithms is to

establish a relation between the errors on the estimation of

the parameters of the feedforward filter and the measured

residual acceleration. This is summarized in the following

lemma.

Lemma 4.1: Under hypotheses H1, H2 and H3, for the

system described by equations (1) through (26) using a

feedforward compensator N̂ with constant parameters, one

has:

ν(t +1) =
AM(q−1)AG(q

−1)AK(q
−1)G(q−1)

Pf b− f f (q−1)
[θ − θ̂ ]T φ(t)

(32)

where

θ T = [s1, ...snS
,r0,r1, ...rnR

] = [θ T
S ,θ

T
R ] (33)

is the vector of parameters of the optimal filter N assuring

perfect matching

θ̂ T = [ŝ1...ŝnS
, r̂0...r̂nR

] = [θ̂ T
S , θ̂

T
R ] (34)

is the vector of constant estimated parameters of N̂

φ T (t) = [−ŷ1(t)...− ŷ1(t −nS +1, û(t +1), û(t)...û(t −nR +1)]

= [φ T
ŷ1
(t),φ T

û (t)] (35)

and û(t +1) is given by

û(t +1) = d(t +1)+
B∗

M(q−1)

AM(q−1)
ŷ(t) (36)

The proof is given in the Appendix. The results of Lemma

4.1 can be easily particularized for the case without internal

positive feedback or without RS feedback controller

Filtering the vector φ(t) through an asymptotically stable

filter L(q−1) = BL
AL
, equation (32) for θ̂ =constant becomes:

ν(t +1) =
AM(q−1)AG(q

−1)AK(q
−1)G(q−1)

Pf b− f f (q−1)L(q−1)
[θ − θ̂ ]T φ f (t)

(37)

with:

φ f (t) = L(q−1)φ(t) (38)

Equation (37) will be used to develop the adaptation algo-

rithms neglecting for the moment the non-commutativity of

the operators when θ̂ is time varying (however an exact

algorithm can be derived in such cases - see [11]).

Replacing the fixed estimated parameters by the current

estimated parameters, equation (37) becomes the equation of

the a-posteriori residual error ν(t +1) (which is computed):

ν(t +1) =
AM(q−1)AG(q

−1)AK(q
−1)

Pf b− f f (q−1)L(q−1)
G(q−1)[θ − θ̂(t +1)]T φ f (t)

(39)

Equation (39) has the standard form for an a-posteriori

adaptation error ([11]), which immediately suggests to use

the following parameter adaptation algorithm:

θ̂(t +1) = θ̂(t)+F(t)Φ(t)ν(t +1) ; (40)

ν(t +1) =
ν0(t +1)

1+ΦT (t)F(t)Φ(t)
; (41)

F(t +1) =
1

λ1(t)


F(t)−

F(t)Φ(t)ΦT (t)F(t)
λ1(t)
λ2(t)

+ΦT (t)F(t)Φ(t)


(42)

1 ≥ λ1(t)> 0;0 ≤ λ2(t)< 2;F(0)> 0 (43)

Φ(t) = φ f (t) (44)

where λ1(t) and λ2(t) allow to obtain various profiles for

the matrix adaptation gain F(t) (see section V and [11]). By

taking λ2(t)≡ 0 one gets a constant adaptation gain matrix

(and choosing F = γI, γ > 0 one gets a scalar adaptation

gain).

Three choices for the filter L will be considered, leading

to three different algorithms:

Algorithm I: L = G

Algorithm II4: L = Ĝ

Algorithm III:

L =
ÂMÂGAK

P̂f b− f f

Ĝ (45)

where :

P̂f b− f f = ÂM Ŝ[ÂGAK + B̂GBK ]− B̂MR̂AKÂG (46)

is an estimation of the characteristic polynomial of the

coupled feedforward-feedback loop computed on the basis

of available estimates of the parameters of the filter N̂.

For the Algorithm III several options for updating P̂f b− f f

can be considered:

• Run Algorithm II for a certain time to get estimates of

R̂ and Ŝ

• Run a simulation (using the identified models)

• Update P̂f b− f f at each sampling instant or from time

to time using Algorithm III (after a short initialization

horizon using Algorithm II)

A. Analysis of the Algorithms

For algorithms I, II and III the equation for the a-posteriori

adaptation error has the form:

ν(t +1) = H(q−1)[θ − θ̂(t +1)]T Φ(t) (47)

where:

H(q−1) =
AMAGAK

Pf b− f f L(q−1)
G,Φ = φ f (48)

4another option is to use L = Ĝ

1+ĜK
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Neglecting the non-commutativity of time varying operators,

one has the following result:

Lemma 4.2: Assuming that eq. (47) represents the evo-

lution of the a posteriori adaptation error and that the

parameter adaptation algorithm (40) through (44) is used,

one has:

lim
t→∞

ν(t +1) = 0 (49)

lim
t→∞

[ν0(t +1)2]

1+Φ(t)T F(t)Φ(t)
= 0 (50)

||Φ(t)|| is bounded (51)

lim
t→∞

ν0(t +1) = 0 (52)

for any initial conditions θ̂(0),ν0(0),F(0).
The proof is similar to that given in [9] for BK = 0 and AK = 1

(absence of the feedback controller) and it is omitted.

V. EXPERIMENTAL RESULTS

A. System identification

A detailed view of the mechanical structure used for the

experiments has been given in figure 1.

The excitation signal used to identify the different paths of

the system was a PRBS (pseudo-random binary sequence).

More details can be found in [9]. The model orders for the

secondary path and the reverse path have been estimated to

be: nBG
= 17,nAG

= 15,nBM
= 16,nAM

= 16. The estimated

orders of the model of the primary path are nBD
= 26, nAD

=
26. The frequency characteristics of the various paths are

shown in figure 4.

B. Design of the feedback controller

The objective of the feedback RS controller K is to

reduce the disturbance effect on the output χ(t) where the

secondary path G has enough gain and without using the

correlated measurement u(t). To do this, the problem has

been formulated as an H∞ problem by using the appropriate

weighting functions.

This minimization problem has been solved using Pole

Placement with Sensitivity functions shaping techniques pre-

sented in [10],

C. Broadband disturbance rejection

The adaptive feedforward filter structure for most of the

experiments has been nR = 9, nS = 10 (total of 20 parameters)

and this complexity does not allow to verify the ”perfect

matching condition” (not enough parameters). A PRBS ex-

citation on the global primary path will be considered as the

disturbance.

For the adaptive operation the Algorithms II and III have

been used with decreasing adaptation gain (λ1(t)= 1, λ2(t)=
1) combined with a constant trace adaptation gain [11].

The experiments have been carried out by first applying

the disturbance in open loop during 50s and after that closing

the loop with the hybrid adaptive feedforward-feedback algo-

rithms.Time domain results obtained in open loop and with

hybrid control (using adaptive feedforward compensation

algorithm III) on the AVC system are shown in figure 5.

The filter for algorithm III has been computed based on the

parameter estimates obtained with algorithm II at t=3600s

(similar results are obtained if the initialization horizon is of

the order of 200 s). The initial trace of the matrix adaptation

gain was 10 and the constant trace has been fixed at 0.2.

The variance of the residual force without the feedback con-
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Fig. 5. Real time results obtained with feedback RS controller and adaptive
feedforward Algorithm III

troller and feedforward compensator is: var(χ(t) = x(t)) =
0.0354. With the feedback RS controller, the variance is:

var(χ(t)) = 0.0067 (14.40dB). Using a model based com-

pensator with an optimal H∞ feedforward compensator([1])

and the constant feedback used in the previous experi-

ments, one obtains a variance of the residual acceleration

of var(χ(t)) = 0.0042 (18.42dB) (no adaptation capabilities

for this two compensation schemes). When in addition to

the feedback controller, the adaptive feedforward compen-

sation is active (algorithm III) the variance of the residual

acceleration is: var(χ(t)) = 0.0033 (20.53dB). When using

only adaptive feedforward compensation (algorithm III) the

variance of the residual acceleration is var(χ(t)) = 0.0054

(16.23dB). Clearly, hybrid adaptive feedforward-feedback

scheme brings a significant improvement in performance

with respect to the other schemes offering in addition adap-

tation capabilities with respect to the disturbance character-

istics or changes in the primary path model.

Figure 6 shows the power spectral densities of the residual

acceleration measured on the AVC for the cases discussed
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above. The corresponding global attenuations are also given.
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VI. CONCLUSIONS

The introduction of a feedback controller on one hand

modifies the stability conditions and on the other hand

improves significantly the performances of the adaptive feed-

forward compensation schemes.

VII. APPENDIX- PROOF OF LEMMA 4.1

Under the assumption H2 (perfect matching condition) the

output of the primary path can be expressed as:

x(t) =−z(t) =−G(q−1)y(t) (53)

where y(t) is a dummy variable given by:

y(t +1) = −S∗(q−1)y(t)+R(q−1)u(t +1)

= θ T ϕ(t) = [θ T
S ,θ

T
R ][

ϕy(t)
ϕu(t)

] (54)

and:

θ T = [s1, ...snS
,r0,r1, ...rnR

] = [θ T
S ,θ

T
R ] (55)

ϕT (t) = [−y(t)...− y(t −nS +1),u(t +1)...u(t −nR +1)]

= [ϕT
y (t),ϕ

T
u (t)] (56)

and u(t) is given by:

u(t +1) = d(t +1)+
B∗

M(q−1)

AM(q−1)
y(t) (57)

For a fixed value of the parameter vector θ̂ characterizing

the estimated filter N̂(q−1) of same dimension as the optimal

filter N(q−1), the output of the secondary path can be

expressed by (in this case ẑ(t) = ẑ0(t) and ŷ(t) = ŷ0(t)):

ẑ(t) = G(q−1)[ŷ(t)] (58)

with:

ŷ(t) = ŷ1(t)+
BK

AK

ν(t) (59)

where ŷ1(t + 1) = θ̂ T φ(t). The key observation is that the
dummy variable y(t+1) can be expressed as:

y(t +1) = θ T φ(t)+θ T [ϕ(t)−φ(t)]

= θ T φ(t)−S∗[y(t)− ŷ1(t)]+R[u(t +1)− û(t +1)] (60)

Define the dummy error (for a fixed vector θ̂ )

ε(t +1) = y(t +1)− ŷ(t +1)

= y(t +1)− ŷ1(t +1)−KGε(t +1)

=
1

1+KG
[y(t +1)− ŷ1(t +1)] (61)

and the residual error becomes:

ν(t +1) = z(t +1)− ẑ(t +1) = G(q−1)ε(t +1) (62)

By taking into account the equations (59) and (62), y(t +1)
becomes:

y(t +1) = θ T φ(t)−S∗[y(t)− ŷ(t)+
BKBG

AKAG

ε(t)]

+R[u(t +1)− û(t +1)] (63)

It results from (63) by taking into account the expressions
of u(t) and û(t) given by (57) and (23) (or (36)) that:

y(t +1) = θ T φ(t)− [S∗(q−1)(1+
BKBG

AKAG
)−

R(q−1)B∗
M(q−1)

AM(q−1)
]ε(t)

(64)

Using equations (59), (61) and (62), one gets (after passing

all terms in ε on the left hand side) equation (32). End of

the proof.
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