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Abstract—Neuro dynamic programming (NDP) techniques 

for optimal control of nonlinear network control system 

(NNCS) are not addressed in the literature. Therefore, in this 

paper, a novel NNCS representation incorporating the 

unknown system uncertainties and network imperfections is 

introduced first by using input and output measurements. 

Then, an online neural network (NN) identifier is introduced to 

estimate the control coefficient matrix. Subsequently, the critic 

NN and action NN are employed along with the NN identifier to 

determine the forward-in-time, time-based stochastic optimal 

control of NNCS without using value and policy iterations.  

Instead, value function and control inputs are updated at every 

sampling instant. Lyapunov theory is used to show that all the 

closed-loop signals and NN weights are uniformly ultimately 

bounded (UUB) while the approximated control input 

converges close to its target value with time. 

I. INTRODUCTION 

eedback control systems with control loops closed 

through a real-time communication network are called 

networked control systems (NCS) [1]. In NCS, a 

communication packet carries the reference input, plant 

output, and control input which are exchanged by using a 

communication network among control system components 

such as sensor, controller and actuators.  The primary 

advantages of NCS are reducing system wiring, ease of 

system diagnosis and maintenance, and increasing system 

agility. Adding communication network in the feedback loop 

brings challenging issues such as random delays and packet 

losses which can cause the system unstable. 

    Therefore, Walsh [1] considered performance of linear 

NCS with constant delays and packet losses. Zhang [2] 

conducted a general stability analysis of NCS with delays 

and packet losses and proposed a stability region. These 

papers [1-2] focused on stability analysis of known linear 

NCS connected by a communication network with known 

network imperfections.  

     The work in [3] extended the controller design to a 

nonlinear NCS when the dynamics are considered known. 

However, optimal controller design is generally preferable 

for NCS and especially for NNCS, which is very difficult to 

attain. The uncertain dynamics and unknown network 

imperfections in the case of NNCS further complicates the 

optimal controller design. By using the stochastic optimal 

control theory, Nilsson [5] proposed the optimal and 

suboptimal controller design for linear NCS with random 

delays. Although these optimal [5] and suboptimal controller 
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designs [5] have resulted in satisfactory performance, they 

are all based on known linear NCS dynamics and require 

information on delays which are not known beforehand. 

     Neuro dynamics programming (NDP) technique, on the 

other hand, proposed by Werbos [6] intends to solve optimal 

control problem forward-in-time. In NDP, one combines 

adaptive critics, a reinforcement learning technique, with 

dynamic programming. Although NDP is an effective 

technique to solve the optimal control of NNCS, traditional 

NDP techniques [6] requires partial knowledge of system 

dynamics which becomes a problem for NNCS due to 

network imperfections that are not known. In addition, NDP 

techniques-based on value and/or policy iterations [6-9] are 

not useful for real-time control since a significant number of 

iterations may be needed within any sampling interval.   

Also, in some cases [8-9], a model may be needed to iterate 

the value and policies.  Finally, existing state-feedback based 

NDP schemes [6-9] are not applicable for NNCS since the 

unknown network imperfections such as delays and packet 

losses can cause instability [2] if they are not considered 

carefully in the controller design.   

Thus, in this paper, a novel time-based NDP algorithm is 

derived for NNCS with uncertain dynamics and in the 

presence of unknown network imperfections such as random 

delays and packet losses by using input-output 

measurements.  To learn the partial knowledge of NNCS, an 

online NN identifier is introduced first. Then by using an 

initial stabilizing control, a critic NN is tuned online to learn 

the value function of NNCS since solving the discrete-time 

Hamilton-Jacobi-Bellman (HJB) equation requires system 

dynamics. Subsequently, an action NN is utilized to 

minimize the value function based on the information 

provided by the critic NN. Therefore, the proposed novel 

input-output feedback-based NDP algorithm relaxes the need 

for system dynamics and information on random delays and 

packet losses.  Value and policy iterations [8-9] are not used 

and the value function and control input are updated at each 

sampling instant making the proposed NDP scheme a time-

based model-free optimal controller for uncertain NNCS 

with unknown network imperfections. 

II. NONLINEAR NETWORKED CONTROL SYSTEM (NCS) 

BACKGROUND 

The feedback control loop in the NNCS considered in this 

paper is closed over a wireless network.  Due to unreliability 

of wireless network, two types of networked-induced delay 

and one type of packet losses are included in NCS: (1) )(tsc : 

sensor-to-controller delay, (2) )(tca : controller-to-actuator 

delay, and (3) )(t : indicator of packet losses at actuator.      
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Next the following assumption is made similar as the 

literature in NCS [12]: 

Assumption 1: a). Sensor is time-driven while the controller 

and actuator are event-driven [12]; b). Communication 

network is a wide area wireless network so that the two 

network-induced delays are considered independent and 

unknown whereas their probability distribution functions are 

considered known [12]; c). the sum of both the delay types is 

bounded [12] while the initial state of the nonlinear system is 

deterministic [12]. 

    In this paper, a continuous-time nonlinear affine system of 

the form Cxyuxgxfx  ,)()( is considered, where yx,

and u denotes system states, output and input while )(f and

)(g are smooth nonlinear functions of the state.  When the 

network-induced random delays and packet losses of the 

wireless network are considered, the control input )(tu is 

delayed and can be lost at times due to packet losses. 

Therefore the original nonlinear affine system by 

incorporating the delay and packet loss effects can be 

expressed as 

)()()),(())(()())(()( tCxtyttutxgttxftx             (1) 

where 
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I is identity matrix,   ttu  is delayed control input 

vector,
mnnnmn tgtftytutx  )(,)(,)(,)(,)(

and nnC  which is invertible. From Assumption 1, sum 

of network-induced delays is bounded above, i.e.

scasc Tdttt  )()()(  where d represents the delay 

bound with sT being the sampling interval. 

     For wireless network-based NNCS, information is 

communicated in the form of packets. As a result, the remote 

controller has to convert the control inputs into packets and 

transmit them to the actuator through the wireless network. 

Then actuator applies the control inputs in response to a 

received control command packet. Consequently, the 

controller for NNCS is normally referred to as event-driven 

and the control input )(tu to the plant is considered piecewise 

constant [12] during each sampling interval, i.e.
 

))1(,[,)( ssk TkkTtutu  k ..  

    According to Assumption 1, there are at most d various 

current and previous control input values that can be 

received at the actuator. If several control inputs are received 

at the same time, only the latest control input will be applied 

to the plant during any sampling interval kTkkT ss  ))1(,[  

while the others are ignored. System states change at time 

instants ,k

is tkT   di ,..,1,0 and
k

i

k

i tt 1 where s
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i

k

i iTt 

as illustrated in [12]. 

     Since the controller is event-driven, (the controller 

updates the command signal based on the receipt of a sensor 

measurement), the term ku can be used to express the 

controller when the sensor signal kx is transmitted to the 

controller.  Thus, integration (1) over a sampling interval

))1(,[ ss TkkT  yields 
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Using (2), define a new augment state variable

  mdnTT

dk

T

k

T

kk uuxz 

  1 and a modified state vector 

consisting of the current output and input vectors as 

  mdnTT

dk

T

k

T

k

o

k uuyy 

  1 , where diu ik ,...,1,  are 

previous control inputs Now equation (2) can be represented  
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      It is important to note that
mdn

kzH )( and

  mmdn

kzL )( are nonlinear matrix functions in terms of 

newly defined augmented state vector kz . Hence, the NNCS 

dynamics (3) is still in nonlinear affine form in terms of the 

augmented state vector. The output matrix oC is known and 

invertible since the output matrix C is considered known and 

invertible.  

Next, the nonlinear NCS can be expressed in the input-

output form as 

k

o

k

o

kk

o

koo

o

koo

o

k uyGyFuyCLCyCHCy )()()()( 11

1  

   (4) 

where ),()(),()( 11 o
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o
k

o
koo

o
k yCLCyGyCHCyF     

F

o
kyG

MG , with
F

 denoting the Frobenius norm [11].  Here due 

to random delays and packet losses,
 

)(and)( o

k

o

k yGyF are 

real-valued functions and )(),( o

k

o

k yGyF can be calculated 

based on equation (2) and (3) provided information on 

random delays and packet losses are available.  In other 

words, the network imperfections can make the nonlinear 

dynamics uncertain requiring adaptive techniques. 

We derive the optimal adaptive controller to minimize the 

stochastic value function [12] as 
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where Q and R are symmetric positive semi-definite and 

symmetric positive definite constant matrices respectively 

and  
 ,

E is the expectation operator (in this case the mean 

value) of  





ki

i

T

ii

T

i RuuQxx based on random networked-

induced delays and packet losses at different time interval.  

The stochastic value function (5) can be expressed in 

terms of the augmented state variable kz as  
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Using the input-output form of NNCS (4), the value function 

(6) can be represented as 
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where zyoz

T

oy RRCQCQ   ,)( 11
. Note the matrices

yQ and

yR are still symmetric positive semi-definite and symmetric 

positive definite respectively.  Equation (7) can be also 

expressed as 

1
,

)(  kky

T

k

o

iy

oT

kk VuRuyQyEV


                                     

(8) 

    Based on the observability condition [4], when ,0oy

0V , the stochastic value function kV serves as a 

Lyapunov function [13]. According to Bellman principle of 

optimality [4], the optimal stochastic value function
*

kV

satisfies the discrete-time Hamilton-Jacob-Bellman (HJB) 

equation in the infinite horizon optimization case as
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* (min )*

1 kV , the discrete-time 

HJB [13] can be represented by using the system inputs and 

outputs as 
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(9) 

where
*

kV is the stochastic value function corresponding to the 

 optimal control input )(* o

kyu .  

In the general nonlinear case, discrete-time HJB equation 

develops backward-in-time and cannot be solved exactly.  

This paper introduces a novel scheme in contrast to [7], 

which is based on time-based NDP scheme, and that can 

solve the optimal control for unknown NNCS when 

information on random delays and packet losses are not 

accurately known. 

III. STOCHASTIC OPTIMAL REGULATION 

     In this section, for solving the drawbacks of existing 

NDP-based schemes and to utilize the HJB equation 

forward-in-time, first a novel online identifier is introduced 

to relax the requirement on the partial knowledge of NNCS 

dynamics. Subsequently, a novel optimal control of NNCS is 

proposed by using critic and action NNs.  

A.  Online NN-Based Identifier for )( o

kyG . 

     In this part, a novel online NN-based identification is 

proposed to identify )( o

kyG . According to [9], NNCS (4) can 

be expressed by using following approximation 

representation on a compact set as 
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kC Uy  11)( are 

the bounds while the estimation error satisfies

kCMCk    ,1  . Since the NN activation functions

)(and),(),(  CGF  are known, NNCS dynamics )( o

kyG can 

be identified, when NN-based identifier weights CW are 

learned. Hence, in this section, a suitable update law will be 

proposed to tune the NN weights. Here, in Theorem 1, the 

inputs are assumed to the bounded for purpose of the 

identifier proof whereas it is relaxed during the controller 

design and proof in Theorem 3. 

     The output o

ky can be estimated at time k by using a NN-

based identifier as 

11)(ˆˆ
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Using (10) and (11), the identification error is defined as 
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The identification error dynamics (12) are expressed as 
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Based on [10], an auxiliary identification error vector can be  
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equation (14) represents l previous identification errors 

which are recalculated by using most recent NN-based 

weights CkŴ .  

     Similar to (14), the auxiliary identification error dynamics 

are revealed to be 
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ˆ                                               (15) 

It is desired to tune the NN identifier weights CkŴ such that 

the identification error yke converges to zero asymptotically, 

i.e. 0,  ykek . Hence, the update law for NN weights 

can be defined as 
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where C is the tuning parameter of the NN-based identifier 

satisfying 10  C . Substituting (16) into (15) 
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ykCyk   1                                                                    
(17) 

Remark 1: We can define k

o

kCk Uy )(  , and k has to 

persistently exiting [11] long enough for the online NN-

based identifier to learn the NNCS dynamics )( o

kyG .     

   Next, NN-based identifier weight estimation error is 

defined as CkCCk WWW ˆ~
 , and recalling (13), the 

identification error dynamics can be rewritten as 
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Eventually, the boundedness of the identification error 

dynamics
yke given by (12) and NN weights estimation error 

dynamics CkW
~

given by (19) will be demonstrated.  

Theorem 1 (Boundedness of the identifier). Let the proposed 

NN-based identifier be defined as (11) and NN weights 

update law be given by (16). Under the assumption that k

defined in Remark 1 satisfies the PE condition, there exists a 

positive constant C satisfying ,1min{0  C }2min M

and computable positive constants
eyWC BB , , such that the 

identification error (12) and NN weights estimation errors

CkW
~

(19) are all uniformly ultimately bounded (UUB) [13] 

with ultimate bounds given by eyyk Be  and
WCCk BW 

~
. 

Proof: Combined with the overall stability. 

B. NN Approximation of the Value Function and Control 

Policy 

    In [13], by using universal approximation property of NN, 

the stochastic value function (7) and control policy can be 

represented with critic NN and action NN as 
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where VW and uW represent the constant target NN weights,

ukVk  , are the approximation errors for critic NN and action 

NN respectively, and   and   are the vector activation 

functions for two NNs, respectively. The upper bounds for 

the two target NNs weights are defined as VMV WW  and

uMu WW  where uMVM WW , are positive constants [7], and 

the approximation errors are also considered bounded as

VMVk   and uMuk   where uMVM  , are also positive 

constants [7] respectively.  Additionally, the gradient of 

approximation error is assumed to be bounded as
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    The critic NN and action NN approximation of (20) can be 

expressed as [13] 

)(ˆ)(ˆ o

k

T

Vk

o

k yWyV  , )(ˆ)(ˆ o

k

T

uk

o

k yWyu                                (21) 

where VkŴ and ukŴ are the approximation of the target 

weights VW and uW , respectively. In this work, the activation 

functions      , are selected to be a basis function set and 

linearly independent [10]. Since it is required that

0)0( o
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     Substituting (21) into equation (8), it can be rewritten as 
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hold. Therefore, using delayed values for convenience, the 

residual error or cost-to-go error with (24) can be expressed 
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    Based on gradient descent algorithm, the update law of 

critic NN weights is given by 
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Remark 2: It is important to note that the stochastic value 

function (8) and critic NN approximation (21) all become 

zero only when 0o

ky . Therefore, once the system outputs 

have converged to zero, the value function approximation is 

no longer updated. This can be also viewed as a PE 

requirement for the inputs to the critic NN where the system 

outputs must be persistently exiting long enough for the 

approximation so that critic NN learns the optimal stochastic 

value function. In this paper, PE condition is met by 

introducing noise. 
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     Now we need to find the control policy via action NN 

which minimizes the approximated value function (21). 

First, the action NN estimation errors are defined to be the 

difference between the optimal controls applied to NNCS (4) 

and the control signal that minimizes the estimated value 

function (21) with identified NNCS dynamics )(ˆ o
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can be expressed as 
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Next, the update law for action NN weights is defined as 
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where 10  u is a positive constant. By selecting the 

control policy ku to minimize the desired value function 

(20), the following equation results 
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Substituting (28) into (26), the action NN estimation error 

dynamics can be rewritten as 
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The action NN weight estimation error dynamics can be 

represented as 
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C. Closed-loop Stability  
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Fig.1. Flowchart of the proposed optimal control for unknown NNCS. 

 

In this section before introducing the theorem on system 

stability, we present the flowchart in Fig. 1 of the proposed 

time-based NDP for NNCS with uncertain system dynamics 

and unknown network imperfections.  

For the closed-loop stability and convergence proof, the 

initial system outputs are considered to reside in a compact 

set
n due to the initial admissible control input  o

kyu0 . 

Also, in compact set , the critic NN basis function and its 

gradient as well as the activation function of the action NN 

are considered bounded with     ', M
o
k

o
kM

o
k yyy   , 

and   M

o

ky   , respectively. Further, sufficient conditions 

for the three NNs tuning parameters, VC  , and u , are 

derived to guarantee that all future output states never leave 

the compact set.  

Theorem 2: (Convergence of the Optimal Control Signal). 
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kyu be any initial stabilizing control policy for the 

NNCS described in (4) when 2/10  k . Let the NN 
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Proof: Consider the Lyapunov function candidate 
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provided the tuning gains are selected according to (16), (24) 

and (27). Using the standard Lyapunov extension [10], the 

system outputs, NN identifier and weight estimation errors, 

critic NN and action NN estimation errors are UUB. 

     Simulation results are not included due to space 

constraints.

 
IV. CONCLUSIONS 

In this work, an online time-based approximate dynamic 

programming technique for NNCS was proposed using three 

NNs to solve the stochastic optimal regulation of NNCS with 

unknown dynamics in presence of random delays and packet 

losses.  The NN identifier relaxed the requirement of input 

gain matrix for NNCS.  The history of past cost-to-go values 

relaxed the need for value and policy iterations while 

rendering a truly forward-in-time scheme that can be 

implemented in practical NNCS. 

The initial admissible control policy ensured that NNCS is 

stable while NN identifier learns the input gain matrix, the 

critic NN approximates the stochastic value function )( o

kyV , 

and the action NN generates the approximate stochastic 

optimal control. All NN weights were tuned online using 

proposed update laws and Lyapunov theory demonstrates the 

asymptotic convergence of the approximated control input to 

its optimal value over time.  
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