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Stochastic Optimal Control Design for Nonlinear Networked
Control System via Neuro Dynamic Programming Using Input-
Output Measurements

Hao Xu and S. Jagannathan

Abstract—Neuro dynamic programming (NDP) techniques
for optimal control of nonlinear network control system
(NNCS) are not addressed in the literature. Therefore, in this
paper, a novel NNCS representation incorporating the
unknown system uncertainties and network imperfections is
introduced first by using input and output measurements.
Then, an online neural network (NN) identifier is introduced to
estimate the control coefficient matrix. Subsequently, the critic
NN and action NN are employed along with the NN identifier to
determine the forward-in-time, time-based stochastic optimal
control of NNCS without using value and policy iterations.
Instead, value function and control inputs are updated at every
sampling instant. Lyapunov theory is used to show that all the
closed-loop signals and NN weights are uniformly ultimately
bounded (UUB) while the approximated control input
converges close to its target value with time.

[. INTRODUCTION

eedback control systems with control loops closed

through a real-time communication network are called

networked control systems (NCS) [1]. In NCS, a
communication packet carries the reference input, plant
output, and control input which are exchanged by using a
communication network among control system components
such as sensor, controller and actuators. The primary
advantages of NCS are reducing system wiring, ease of
system diagnosis and maintenance, and increasing system
agility. Adding communication network in the feedback loop
brings challenging issues such as random delays and packet
losses which can cause the system unstable.

Therefore, Walsh [1] considered performance of linear
NCS with constant delays and packet losses. Zhang [2]
conducted a general stability analysis of NCS with delays
and packet losses and proposed a stability region. These
papers [1-2] focused on stability analysis of known linear
NCS connected by a communication network with known
network imperfections.

The work in [3] extended the controller design to a
nonlinear NCS when the dynamics are considered known.
However, optimal controller design is generally preferable
for NCS and especially for NNCS, which is very difficult to
attain. The uncertain dynamics and unknown network
imperfections in the case of NNCS further complicates the
optimal controller design. By using the stochastic optimal
control theory, Nilsson [5] proposed the optimal and
suboptimal controller design for linear NCS with random
delays. Although these optimal [5] and suboptimal controller
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designs [5] have resulted in satisfactory performance, they
are all based on known linear NCS dynamics and require
information on delays which are not known beforehand.

Neuro dynamics programming (NDP) technique, on the
other hand, proposed by Werbos [6] intends to solve optimal
control problem forward-in-time. In NDP, one combines
adaptive critics, a reinforcement learning technique, with
dynamic programming. Although NDP is an effective
technique to solve the optimal control of NNCS, traditional
NDP techniques [6] requires partial knowledge of system
dynamics which becomes a problem for NNCS due to
network imperfections that are not known. In addition, NDP
techniques-based on value and/or policy iterations [6-9] are
not useful for real-time control since a significant number of
iterations may be needed within any sampling interval.
Also, in some cases [8-9], a model may be needed to iterate
the value and policies. Finally, existing state-feedback based
NDP schemes [6-9] are not applicable for NNCS since the
unknown network imperfections such as delays and packet
losses can cause instability [2] if they are not considered
carefully in the controller design.

Thus, in this paper, a novel time-based NDP algorithm is
derived for NNCS with uncertain dynamics and in the
presence of unknown network imperfections such as random
delays and packet losses by wusing input-output
measurements. To learn the partial knowledge of NNCS, an
online NN identifier is introduced first. Then by using an
initial stabilizing control, a critic NN is tuned online to learn
the value function of NNCS since solving the discrete-time
Hamilton-Jacobi-Bellman (HJB) equation requires system
dynamics. Subsequently, an action NN is utilized to
minimize the value function based on the information
provided by the critic NN. Therefore, the proposed novel
input-output feedback-based NDP algorithm relaxes the need
for system dynamics and information on random delays and
packet losses. Value and policy iterations [8-9] are not used
and the value function and control input are updated at each
sampling instant making the proposed NDP scheme a time-
based model-free optimal controller for uncertain NNCS
with unknown network imperfections.

II. NONLINEAR NETWORKED CONTROL SYSTEM (NCS)
BACKGROUND

The feedback control loop in the NNCS considered in this
paper is closed over a wireless network. Due to unreliability
of wireless network, two types of networked-induced delay

and one type of packet losses are included in NCS: (1) 7. (¢) :
sensor-to-controller delay, (2)7,,(f): controller-to-actuator
delay, and (3) y(¢) : indicator of packet losses at actuator.



Next the following assumption is made similar as the
literature in NCS [12]:
Assumption 1: a). Sensor is time-driven while the controller
and actuator are event-driven [12]; b). Communication
network is a wide areca wireless network so that the two
network-induced delays are considered independent and
unknown whereas their probability distribution functions are
considered known [12]; c¢). the sum of both the delay types is
bounded [12] while the initial state of the nonlinear system is
deterministic [12].

In this paper, a continuous-time nonlinear affine system of
the form x = f(x) + g(x)u, y = Cxis considered, where x,y

and « denotes system states, output and input while f(e) and
g(®) are smooth nonlinear functions of the state. When the

network-induced random delays and packet losses of the
wireless network are considered, the control inputu(?)is
delayed and can be lost at times due to packet losses.
Therefore the original nonlinear affine system by
incorporating the delay and packet loss effects can be
expressed as

x(#) = f(x(0) + y(Og(x()u(t = 7(2)), y(1) = Cx(?)

where

(1

()

with 1" is identity matrix, u(¢ —z(¢)) is delayed control input
vector, x(¢) € R",u(t) e R",y(t) e R", f(t) e R",g(t) e ™™

0™ if control input is lost at timet

and C e R""which is invertible. From Assumption 1, sum

of network-induced delays is bounded above, i.c.
t)=1,()+7, ()< d T where d represents the delay
bound with 7, being the sampling interval.

For wireless network-based NNCS, information is

communicated in the form of packets. As a result, the remote
controller has to convert the control inputs into packets and
transmit them to the actuator through the wireless network.
Then actuator applies the control inputs in response to a
received control command packet. Consequently, the
controller for NNCS is normally referred to as event-driven
and the control input u(z) to the plant is considered piecewise

constant [12] during each

u(t)y=u,, t [kl ,(k+1T)) vk ..

sampling interval, i.e.

According to Assumption 1, there are at mostd various
current and previous control input values that can be
received at the actuator. If several control inputs are received
at the same time, only the latest control input will be applied

to the plant during any sampling interval [kT,,(k+1)T}) Vk
while the others are ignored. System states change at time
instants kT, +¢,, i=0,,..d andt} <t where t* =7 —iT
as illustrated in [12].

Since the controller is event-driven, (the controller
updates the command signal based on the receipt of a sensor

measurement), the term#, can be used to express the

I if control input is received by theactuator at time't
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controller when the sensor signal X, is transmitted to the

controller. Thus, integration (1) over a sampling interval
(KT, (k+1T,) yields
X1 = Zz,y (XU U, 7 )+ Pz,y (U5 U, 7 W,y =Cx, (2)

where x(KT, ) = x,, y(kT.) = y,. y(k ~)T,) = 7,_and

u((k—0)T,) =u,_, i =0,1,2,...d are pervious control inputs,

and Pw (AN NE 'ukﬂi) =7k (jr(:ﬂ)n g(x(t))dt) 3 (XU

S (e 7, e Y,

28

SN (APt T

Using (2),

“'uk,‘?):xk—"_ ‘;714‘

define a new augment state variable

;_J]T e R and a modified state vector

consisting of the current output and input vectors as
y=blul ol ] ew o,
previous control inputs Now equation (2) can be represented

[r 7
Zy _[xk Uy U

whereu, ;,i=1,...,d are

Zkn = H(Zk)+ L(Z/c)uk’ i =C,z (3)
where H(zk): [Z:y sty u,_3)0 u,:] u;‘?]r , L(z,)
=[P (xp oty 3) 1, 004017, I, eR™™is  the
cC 0 0
0 I, 0
identity matrix and C, =| . . )
0 0 1

m
It is important to note that H(z,)e R and
L(z,) e ‘.R("”’”)"" are nonlinear matrix functions in terms of

newly defined augmented state vector z, . Hence, the NNCS
dynamics (3) is still in nonlinear affine form in terms of the
augmented state vector. The output matrix C, is known and

invertible since the output matrix C is considered known and
invertible.

Next, the nonlinear NCS can be expressed in the input-
output form as

Vi = CH(C, y))+ CLC, vy, = FOL) + GO, (4)
where F(3;) = C,H(C,'y)).G{) = C,L(C, 'y}, |6l )

G,, , with "o"F denoting the Frobenius norm [11]. Here due

<
F

to random delays and packet losses, F(y;) and G(y;) are

real-valued functions and F()7), G(y;)can be calculated

based on equation (2) and (3) provided information on
random delays and packet losses are available. In other
words, the network imperfections can make the nonlinear
dynamics uncertain requiring adaptive techniques.

We derive the optimal adaptive controller to minimize the
stochastic value function [12] as

V, = E[Z(x,-T Ox; +u) Ru,.)] k=012.. (5)
o7 =k



where Q and R are symmetric positive semi-definite and

symmetric positive definite constant matrices respectively

and £ (-)is the expectation operator (in this case the mean
Yy

value) of Z(foxiJruiTRu,.)based on random networked-
i=k
induced delays and packet losses at different time interval.
The stochastic value function (5) can be expressed in

terms of the augmented state variable z, as

Ve E{Z( 0.z, +u R.u, ):I k=012,... (6)
i=k
0O 0 0
0 ﬁ 0 |
where 0. = d - s and R, =§R,
0 0 R
d

Using the input-output form of NNCS (4), the value function
(6) can be represented as

V.= E[i(y}’rQ}, ¥ +ul Rvu[)} k=012,...
o = k
where 0, =(C;) 0.C;"

R, are still symmetric positive semi-definite and symmetric

(7

,R,=R, . Note the matrices Q, and

positive definite respectively. Equation (7) can be also

expressed as

V= EOL Q¢ +ulRu) + Vi, ®)

Based on the observability condition [4], when y° =0,

V=0,
Lyapunov function [13]. According to Bellman principle of

the stochastic value function V), serves as a

optimality [4], the optimal stochastic value function Vk*

satisfies the discrete-time Hamilton-Jacob-Bellman (HIB)
equation in the infinite horizon optimization case as

= min(E (0, +u{ Ry, ) +V7)

HIB [13] can be represented by using the system inputs and
—LGORTGT ()

outputs as
+V., 9
4 ayk ¥ j k+1 ( )

* 1
Vi = Tb;[yz? Oy +~
where Vk* is the stochastic value function corresponding to the

the discrete-time

aV aVk+]

A+l

optimal control input” (7).

In the general nonlinear case, discrete-time HJB equation
develops backward-in-time and cannot be solved exactly.
This paper introduces a novel scheme in contrast to [7],
which is based on time-based NDP scheme, and that can
solve the optimal control for unknown NNCS when
information on random delays and packet losses are not
accurately known.

I1I.

In this section, for solving the drawbacks of existing
NDP-based schemes and to utilize the HJB equation

STOCHASTIC OPTIMAL REGULATION
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forward-in-time, first a novel online identifier is introduced
to relax the requirement on the partial knowledge of NNCS
dynamics. Subsequently, a novel optimal control of NNCS is
proposed by using critic and action NNs.

A.  Online NN-Based Identifier for G(yy) .

In this part, a novel online NN-based identification is
proposed to identify G(yy) . According to [9], NNCS (4) can

be expressed by using following
representation on a compact set €2 as

Vi =F)+ GO u, =Wey (v DU + &g, (10)
where W =[W; W1 w (i) =10 (i) i)Y

O VP R
& Uy, with "'// c i )" <y, and "‘// eV " <, are
the while the
||§Ck_l " <&y, Vk. Since the NN

0 (9),0,(e),and /. (e) are known, NNCS dynamics G(y;) can

approximation

and

Eials Eap1 =

bounds estimation error satisfies

activation functions

be identified, when NN-based identifier weights W are

learned. Hence, in this section, a suitable update law will be
proposed to tune the NN weights. Here, in Theorem 1, the
inputs are assumed to the bounded for purpose of the
identifier proof whereas it is relaxed during the controller
design and proof in Theorem 3.

The output y¢ can be estimated at timekby using a NN-

based identifier as

= Wch‘//c ViU
Using (10) and (1 1) the identification error is defined as

(11

€k =y -y = Ckl//C(yk DU (12)
The identlﬁcatlon error dynamics (12) are expressed as
€kn = =Vin — Vi =Vin— Wch+1‘//c U, (13)

Based on [10], an auxiliary identification error vector can be

Zyk =Y’ _WCTkAl//Ck—lﬁk—l (14)
where ¥ =[y} Y Vi b AW o, =we (Vi) we(Vin) -

ey, DlandU,  =[U,, U, ,-U,,,],0<l<k-1. Note
equation (14) represents/ previous identification errors
which are recalculated by using most recent NN-based
weights ch .
Similar to (14), the auxiliary identification error dynamics
are revealed to be

o =Y - Wch+1A‘//CkUk 15)
It is desired to tune the NN identifier weights ch such that

the identification error e, converges to zero asymptotically,

yk+1 T

i.e. k—>x,e, — 0. Hence, the update law for NN weights
can be deﬁne'd as

Vf/cm = UkA'/’Ck (A ‘//cr'k UkTUkAl//Ck )" Y- aCzyk)T (16)

where ¢ is the tuning parameter of the NN-based identifier

satisfying 0 <a. <1. Substituting (16) into (15)



Zykﬂ (1 7)

Remark 1: We can define S, =y .(y;))U,, and 3, has to
persistently exiting [11] long enough for the online NN-
based identifier to learn the NNCS dynamics G()}) .

Next, NN-based identifier weight estimation error is
defined asWy =W,-Wy, and recalling (13), the
identification error dynamics can be rewritten as
€k = Vi = Vin = WCTkH‘//C(yZ W, +&q
Usinge,,,, =ace,, from (17), we have
WCTk+1‘//c U, =ac (Wch‘//c DU +0cEgy —Eg (19)

Eventually, the boundedness of the identification error
dynamics e, given by (12) and NN weights estimation error

= aCZyk

(18)

dynamics VIN/Ck given by (19) will be demonstrated.

Theorem 1 (Boundedness of the identifier). Let the proposed
NN-based identifier be defined as (11) and NN weights

update law be given by (16). Under the assumption that 3,
defined in Remark 1 satisfies the PE condition, there exists a
positive constant & satisfying 0 < o <min{l, ‘¥, / \/E‘I’M}
B,,, such that the
identification error (12) and NN weights estimation errors

W, (19) are all uniformly ultimately bounded (UUB) [13]

and computable positive constants B,

with ultimate bounds given by "eyk" < B, and “WCk“ <Byc.
Proof: Combined with the overall stability.
B. NN Approximation of the Value Function and Control
Policy

In [13], by using universal approximation property of NN,
the stochastic value function (7) and control policy can be
represented with critic NN and action NN as

VO = 800 + & 1" ) =W, $(3)) + 2,
where W, and W, represent the constant target NN weights,

(20)

&> €, are the approximation errors for critic NN and action
NN respectively, and .9(-) and ¢(-)are the vector activation
functions for two NNs, respectively. The upper bounds for
the two target NNs weights are defined as ||WV||S W, and
.
the approximation errors are also considered bounded as
] < g ang

constants [7] respectively.
approximation error is

||88Vk/ayll:+l

The critic NN and action NN approximation of (20) can be
expressed as [13]

V() =Wh9(ve) () = Wig(r?) @1)

where W, and W, are the approximation of the target

<W,, where W,,,,W,,, are positive constants [7], and

Eull < €4y Where &y, €,y are  also  positive

Additionally, the gradient of
assumed to be bounded as

< &, with &, being a positive constant [10].

weights W, and W, , respectively. In this work, the activation
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functions 9(e),#(e) are selected to be a basis function set and
linearly independent [10]. Since it

V(y;=0)=0andu(y; =0)=0, the

(o), #(e) are chosen such that I(y} =0)=0,¢(y; =0)=0.
Substituting (21) into equation (8), it can be rewritten as
Wy AI(Va) +r(viu,) = Asy, (22)

where 7(J{ ;) = g(yZTny,‘: +ug Ra) , A = 9(vi,) —

is required that

basis  functions

9(y;)and A¢,, =&, — &, . However, when implementing

the estimated value function (21), equation (22) does not
hold. Therefore, using delayed values for convenience, the
residual error or cost-to-go error with (24) can be expressed

ey =r(yi,u)+ WVZAS(J’Z) (23)
Based on gradient descent algorithm, the update law of

critic NN weights is given by

Wi =Wy —a, T Ao'g(yk) o ;k
AF (YDA +1

Remark 2: 1t is important to note that the stochastic value

function (8) and critic NN approximation (21) all become

24)

zero only when y; =0. Therefore, once the system outputs

have converged to zero, the value function approximation is
no longer updated. This can be also viewed as a PE
requirement for the inputs to the critic NN where the system
outputs must be persistently exiting long enough for the
approximation so that critic NN learns the optimal stochastic
value function. In this paper, PE condition is met by
introducing noise.

As a final step in the critic NN design, define the weight

estimation error asW,, =W, —W,, . Sincer’ (y{,u,)=

~AS (P ) W, + AE,Z{ in equation (24), the dynamics of the
critic NN weights estimation error can be rewritten as
ASOAS (W + Asyy)
AS (YOAS() +1

Now we need to find the control policy via action NN
which minimizes the approximated value function (21).
First, the action NN estimation errors are defined to be the
difference between the optimal controls applied to NNCS (4)
and the control signal that minimizes the estimated value
function (21) with identified NNCS dynamics é(y,f) , Which

can be expressed as

Wy =Wy —ay

(25)

- o l -1 A o a'97‘( 0+ ) -
e =W i += RGN () S, (26)
2 ayk+]
Next, the update law for action NN weights is defined as
Wukﬂ = Vf/uk 0L uTk 27N

- au T o o
¢ (V)P +1
where 0<a, <lis a positive constant. By selecting the

control policy ¥, to minimize the desired value function
(20), the following equation results
‘9T (yZH) /4

T
" L+ ag:k )=0 (28)
k+1

k+1

. 1 ar, o0
W, o)+ e + ER;GT(yk X



Substituting (28) into (26), the action NN estimation error
dynamics can be rewritten as

APPITN gy 08" (vi.)
u =D -2 RIGT 0 T
X oo Wia (29)
+=—RIGT(y) e g
2 y (yk ) ﬁy,fﬂ ek
~ N 1 e
where G(3}) = G(y}) — GO ey =64 + = R,'G' (¥ )
2 8ylf+l
&,y with €, being a positive constant, and
Oy, '
ayZH o

The action NN weight estimation error dynamics can be
represented as

uk

o #(v;)
P D) +1

C. Closed-loop Stability
Start Proposed
Algorithm

Initialization

V,=0,u, =u,

T
uk

(30)

VVukﬂ =

<
«

Y
Update the NN identifier weights

k+l

yh+1 (A+| '//LkUk

Wctfn =UkAV’c1f( A'I/CAU A'/’Ck)_ ( Yin—acE A)

T

y

Update critic NN weights and value function

g ) b)eag i

Wi (57)

k+]

A 4
Update action NN weights and control policy

#loi.)
¢T y:—l

=W, -

T
Cuk—1

Vi )1

et

k=k+1,Vk=12,...

W

u, =

wig(v)

k-1 Wurk—l¢(yl’:—l )

1 A ~
+-R;'G" W,

2

Update the time interval

Fig.1. Flowchart of the proposed optimal control for unknown NNCS.

In this section before introducing the theorem on system
stability, we present the flowchart in Fig. 1 of the proposed
time-based NDP for NNCS with uncertain system dynamics
and unknown network imperfections.

For the closed-loop stability and convergence proof, the
initial system outputs are considered to reside in a compact

set Q€ R" due to the initial admissible control input u, (y,f)

Also, in compact set Q) , the critic NN basis function and its
gradient as well as the activation function of the action NN

<9, Joslvi Vavi] < 5,

are considered bounded with ||9(y,f]
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and ||¢(y,‘:]| < ¢, , respectively. Further, sufficient conditions

for the three NNs tuning parameters, Q-,Qy and@,, are

derived to guarantee that all future output states never leave
the compact set.
Theorem 2: (Convergence of the Optimal Control Signal).

Letu,(y;) be any initial stabilizing control policy for the
NNCS described in (4) when0<k"<1/2. Let the NN

weight tuning for the identifier, critic and the action NN be

provided by (16), (24) and (27), respectively. Then, there
exists positive constant 0,0, ,0, satisfying 0 < o < min{

v 3+\/§
12

u’

min

242w,

constants b , by, byc.b,, and bu such that the system output

1 , and positive

}s

1 1 1
—<a, and—<a, <—
4 6 3

vector y;, NN identification error e, weight estimation

errors W, , critic NN and action NN weight estimation errors

VIN/Vk and VIN/uk , respectively, are all UUB for allk >k, +T

Ck

with ultimate bounds given by"y,f"Sby,"eyk”Sbey, v

< bWC,“WVk“ <b,and “VIN/MH <b,.
Proof: Consider the Lyapunov function candidate
L=L,, +L,+L,y+Loy+L,y+Lgy

uN

€20
where L, =(¥)) y? , L>Lyy>Ley»L,yand Ly, are defined
w =G} Ly = r AW ) (32)
tr{e‘,{e k} + tr{WCTkOWCk}
= (tr{ WG T }) Ly = ri5 0 )

with = w 1A= 288 E A, D)
¢mmA‘92

9, 2g2 =2 . AE?
( VMWMZ) Dot +6(2y,) ¢2 ¢M (M

min min ¢mm\Pm|n
I - (85 | E¥ut) 2(A8% +1) j1and @ = (’24(‘—‘1//M¢M) M are
Pmin N Pin

positive definite matrices, I is identity matrix, Zis defined

as A (R™3,G,, , and A, (R")is the maximum singular
value of R. The first difference of (31) is given by

AL=AL,, +AL,, +AL,, +AL., +AL ,,, + AL, .

Loy

x(G2, +12¢2,

min

s

2 2
x AN, 0=2w2 +

max

=) Yia =D W
using the NNCS dynamics (4), and applying the Cauchy-
Schwartz inequality reveals that the first difference becomes

F(y{)+Gu (v -G (v))

Considering first difference AL,

2
)"y (33)

DN A
+G(y)u(y)) = GHu(y)+G)u(y)
2 2 2
+8Gi

A IR A e

Next, first different L, can be expressed as
Ba, =6l (ag+a)=’[0]
bir +1 26" 0e+D

2
AL,y <

worsonll



2 = 2 ~ 4

S |

(2a +a,)Ey,)’ |9 " NVk"4
¢y, +DGyy

where 0.< ¢, < |#(7)

+efasl, (34)

@2 DE Y[~
T L]

is ensured by the PE condition

aeul
@ GO +D)

< Ag?,, , which is a bounded positive constant.

described in Remarksl and 2, ||Agw,(||

Next, first difference L ,,,, L, can be expressed as

(@ —2a; —)Mémllfll {2
Alay <= (A9;+1)

AA > 4’
A Sl g 2

M
“ 822 0| |~
st sl s B AL g
2

Next, using (33), (34), (35) and (36) to formAL as

_2a§_i)HVIN/VkHZ—(1—a§)Heka2

" ap(i-4a ‘PM )HWCkH

~24G2 4% B, — 60 —7)\

uk

1
216(a, —2a? - g)(a Vi)

- 7z, 7ol (7)
_ 6(E '//M¢M)
1-sat By O g7
2 =2 6 = AZ2
where, ;7 = ["1’1\24 9(5VM1//M) e (= '//M) ¢M M ]and
2¢min ¢mm min
2 =2 l// 2
p="t = G2 +12M) are positive constant and &, is
2 2 2 42
ey =8G 3y +16-0 pg2, 4 20 * DO 2
L (23Gy %), > 72<eVMwM> puE’ 48Eyydy)’ |
T Mgy + A&y > w4 A&y
¢mmA‘9mm ¢l‘ﬂlll ¢l‘nll’l‘}’l‘ﬂlﬂ
n 96(EW 1 Py ) Ag:/lM + (68EV/M¢M) Agl/M + 96(EV/,M) ¢MA8C/W
Frind Inin( ATy +1) Pin i Pinoin
Therefore, ALis less than zero when the following
inequalities hold
2
le.d] > / S=b, o A S —
4(¥ min — 4aCLPM n (3 8)
Emm “me¢mm > } = bWC or ||VIN/Vk || > max{
6( min 8aClPM)('—“//M¢M)
’ Emm T ¢§\in1 }Eby or
4
\I 288p(ay — 24 — ) | 216ay ~2a; ~ DEVidy)’
£ £
|| uk || 2 & 5] = bu or o — = bv
8G; ¢r, 9a, —18a> —1) a-2k) -

provided the tuning gains are selected according to (16), (24)
and (27). Using the standard Lyapunov extension [10], the
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system outputs, NN identifier and weight estimation errors,
critic NN and action NN estimation errors are UUB.

Simulation results are not included due to space
constraints.

IV. CONCLUSIONS

In this work, an online time-based approximate dynamic
programming technique for NNCS was proposed using three
NN to solve the stochastic optimal regulation of NNCS with
unknown dynamics in presence of random delays and packet
losses. The NN identifier relaxed the requirement of input
gain matrix for NNCS. The history of past cost-to-go values
relaxed the need for value and policy iterations while
rendering a truly forward-in-time scheme that can be
implemented in practical NNCS.

The initial admissible control policy ensured that NNCS is
stable while NN identifier learns the input gain matrix, the

critic NN approximates the stochastic value function V' (y}),

and the action NN generates the approximate stochastic
optimal control. All NN weights were tuned online using
proposed update laws and Lyapunov theory demonstrates the
asymptotic convergence of the approximated control input to
its optimal value over time.
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