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Abstract— This paper proposes a hierarchical MPC approach
to stabilization and autonomous navigation of a formation of
unmanned aerial vehicles (UAVs), under constraints on motor
thrusts, angles and positions, and under collision avoidance
constraints. Each vehicle is of quadcopter type and is stabilized
by a local linear time-invariant (LTI) MPC controller at the
lower level of the control hierarchy around commanded desired
set-points. These are generated at the higher level and at a
slower sampling rate by a linear time-varying (LTV) MPC
controller per vehicle, based on an a simplified dynamical
model of the stabilized UAV and a novel algorithm for convex
under-approximation of the feasible space. Formation flying is
obtained by running the above decentralized scheme in accor-
dance with a leader-follower approach. The performance of the
hierarchical control scheme is assessed through simulations, and
compared to previous work in which a hybrid MPC scheme is
used for planning paths on-line.

I. INTRODUCTION

The last few years have been characterized by an increas-
ing interest in stabilizing and maneuvering a formation of
multiple aerial vehicles. Research areas include both military
and civilian applications (such as intelligence, reconnais-
sance, surveillance, exploration of dangerous environments)
where Unmanned Aerial Vehicles (UAVs) can replace hu-
mans. VTOL (Vertical Take-Off and Landing) UAVs pose
control challenges because of their highly nonlinear and cou-
pled dynamics, and of limitations on actuators and pitch/roll
angles. In particular, quadcopters are a class of VTOL
vehicles for whose stabilization several approaches were
proposed in literature, such as classical PID [1], nonlinear
control [2], H∞ control [3], and recently linear MPC (Model
Predictive Control) [4].

MPC is particularly suitable for control of multivariable
systems governed by costrained dynamics, as it allows one to
operate closer to the boundaries imposed by hard constraints.
In the context of UAVs, MPC techniques have been already
applied for control of formation flight in [5]–[9] and for
spacecraft rendezvous [10]–[12].

In the context of path planning for obstacle avoidance,
several other solutions have been proposed in the litera-
ture, such as potential fields [13], [14], A∗ with visibility
graphs [1], nonlinear trajectory generation (see e.g. the
NTG software package developed at Caltech [5]), vertex-
graph (VGRAPH) algorithms [15], and mixed-integer linear
programming (MILP) [16], [17].
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Fig. 1. Hierarchical control structure for UAV navigation

This paper adopts the two-layer MPC approach depicted
in Figure 1 to stabilization and on-line trajectory gener-
ation for autonomous navigation with obstacle avoidance
of a formation of quadcopters. At the lower level, linear
constrained MPC controllers with integral action take care
of stabilizing the quadcopters with offset-free tracking of
desired set-points. At the higher hierarchical level and at
a lower sampling rate, linear time-varying (LTV) MPC con-
trollers generate on line the paths to follow for the formation
to reach a given target position and shape while avoiding
obstacles. The performance of the strategy adopted in this
paper is assessed through simulations and compared to an
alternative technique based on decentralized hybrid MPC
proposed in a previous work [18]. The lower-level linear
MPC algorithms control motor speeds directly via pulse posi-
tion modulation, under admissible thrust and angle/position
constraints. Based on a leader-follower approach in which
the leader points to the target and the followers track a
given relative position from the leader, the higher-level LTV-
MPCs (one per vehicle) maintain the vehicles in formation
towards a desired target in a decentralized way. Obstacles
and vehicle-to-vehicle collisions are constraining predicted
vehicle positions within a convex polyhedron contained in
the feasible space, generated on-line via a novel approach
proposed in this paper. We assume that target and obstacle
positions may be time-varying and only known at run time,
a situation for which off-line (optimal) planning cannot be
easily accomplished.

The paper is organized as follows. After introducing
the UAV dynamics in Section II, a linear MPC design is
proposed in Section III-A for stabilization under constraints
and trajectory tracking. Section III-B proposes a convex
polyhedral approximation approach for obstacle avoidance,
which is used in Section III-C to formulate the higher-
level LTV-MPC controller for safe path planning. Section IV

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 7488



x

θ

f1

f2

f3

f4

φ

ψ
z

y

mg l τ1

τ2

τ3

τ4

Fig. 2. Quadcopter model

provides simulation results and comparisons to the hybrid
MPC approach described in [18]. Finally, some conclusions
are drawn in Section V.

II. NONLINEAR QUADCOPTER DYNAMICS

An aerial vehicle of quadcopter type is an underactuated
mechanical system with six degrees of freedom and only
four control inputs (see Figure 2). We denote by x, y, z the
position of the vehicle and by θ, φ, ψ its rotations around the
Cartesian axes, relative to the “world” frame. In particular,
x and y are the coordinates in the horizontal plane, z is the
vertical position, ψ is the yaw angle (rotation around the z-
axis), θ is the pitch angle (rotation around the x-axis), and φ
is the roll angle (rotation around the y-axis). The dynamical
model adopted in this paper is mainly based on the model
proposed in [19], simplified to reduce the computational
complexity and to ease the design of the controller. As
described in Figure 2, each of the four motors generate,
respectively, four thrust forces f1, f2, f3, f4, and four torques
τ1, τ2, τ3, τ4, which are adjusted by manipulating motor
speeds. The resulting total force F and torques τθ, τφ, τψ
allow the change of the position and orientation coordinates
of the quadcopter freely in the three-dimensional space:

F = f1 + f2 + f3 + f4, τθ = (f2 − f4)l

τφ = (f3 − f1)l, τψ =

4∑
i=1

τi
(1)

where l is the distance between each motor and the center
of gravity of the vehicle.
Denote by τ = [τθ τφ τψ]′ the torque vector, by η = [θ φ ψ]′

the angular coordinates vector, and by I the inertia matrix
for the full-rotational kinetic energy of the UAV expressed
directly in terms of the generalized coordinates η. The
rotational dynamics of the quadcopter are expressed as

τ = Iη̈ + Iη̇ − 1

2

∂

∂η
(η̇′Iη̇) (2)

As suggested in [2], we make the following simplification

η̈ = τ̃ (3)

where τ̃ = [τ̃θ τ̃φ τ̃ψ]′ is a new vector of control inputs.
Through rotational transformations between the world frame
and the quadcopter’s body frame (placed on its center of

gravity) we obtain the dynamical model

mẍ = −F sin θ − βẋ
mÿ = F cos θ sinφ− βẏ
mz̈ = F cos θ cosφ−mg − βż
θ̈ = τ̃θ, φ̈ = τ̃φ, ψ̈ = τ̃ψ

(4)

where m is the mass of the UAV, and the damping factor β
takes into account friction effects that affect the real vehicle.

Trying to adjust directly the torques is not a practical
approach. Therefore, as in [18], at the price of a slight
increase in model complexity the following relations are
used:

ẍ = (−u1 sin θ − βẋ)
1

m

ÿ = (u1 cos θ sinφ− βẏ)
1

m

z̈ = −g + (u1 cos θ cosφ− βż) 1

m
θ̈ =

u2

Ixx
, φ̈ =

u3

Iyy
, ψ̈ =

u4

Izz

(5)

in which

u1 = f1 + f2 + f3 + f4, u2 = (f2 − f4)l

u3 = (f3 − f1)l, u4 = (−f1 + f2 − f3 + f4)l
(6)

g is the gravity acceleration, and Ixx, Iyy, Izz are the
components of diagonal inertia matrix of the airframe at its
center of mass. The parameters used for the quadcopter in
this work are reported in Table I.

TABLE I
QUADCOPTER PARAMETERS

m [kg] l [m] β [Ns/m] Ixx [Nms2] Iyy [Nms2] Izz [Nms2]

1.846 0.505 0.2 0.1722 0.1722 0.3424

When using brushless motors, continuous voltage control
is replaced by Electronic Speed Controller (ESC), that ad-
justs motor speed by Pulse Position Modulation (PPM), as
it is standard in RC plane technology. Briefly, PPM is a
phase modulation: The speed of the motor (or the servo
angle) is regulated by the position of an impulse of fixed
amplitude and length within the control signal period. So
an ESC gets that position µm, expressed in microseconds
(µs) as the input value. Standard ESCs input values can vary
in the 1000µs - 2000µs range. Higher velocities (angles)
correspond to higher input values.
All motors are supposed to share the same technical specs
and response, fast enough to neglect actuation delays; they
have a nonlinear behavior that can be approximated by a
piecewise affine function consisting of three affine terms,
pjµmi − qj , i = 1, . . . , 4, j = 1, 2, 3. Therefore, each motor
thrust fi is modeled as a piecewise linear function of the
applied value µmi:

fi =
g(pjµmi − qj)

1000
, i = 1, . . . , 4, j = 1, 2, 3. (7)

In summary, the quadcopter is controlled by regulating
microsecond values according to (6)–(7). The obtained non-
linear dynamical model has twelve states (six positions and
six velocities) and four inputs (the motors microseconds
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µmi), largely coupled through the nonlinear relations (5).
The nonlinear model (5)-(7) will be used to simulate closed-
loop trajectories in Section IV.

III. HIERARCHICAL MPC OF EACH UAV
Consider the hierarchical control system depicted in Fig-

ure 1. At the top layer, LTV-MPC controllers generate on-line
the desired positions (xd, yd, zd) to the lower stabilization
layer, in order to accomplish the main mission, namely reach
a given target position (xt, yt, zt) while avoiding collisions
with possible obstacles and other UAVs. The desired po-
sitions are tracked in real-time by linear MPC controllers
placed at the middle layer of the architecture (these might
be as well replaced by linear controllers). The bottom layer
is the physical layer described by the nonlinear dynamics of
the quadcopter, whose motor speeds are commanded by the
linear MPC controllers. In the next sections we describe in
details each layer of the proposed architecture.

A. Linear MPC for stabilization
In order to design a linear MPC controller to stabilize

the quadcopter vehicle on given desired positions/angles,
we linearize the nonlinear dynamical model (5) around an
equilibrium condition of hovering and approximate the motor
characteristics via a single linear function. The resulting
linear continuous-time state-space system is converted to
discrete-time with sampling time Ts{

ξL(k + 1) = AξL(k) +BuL(k)
yL(k) = ξL(k)

(8)

where ξL(k) = [θ, φ, ψ, x, y, z, θ̇, φ̇, ψ̇, ẋ, ẏ, ż]′ ∈ R12 is
the state vector, uL(k) = [µm1, µm2, µm3, µm4]′ ∈ R4 is
the input vector, yL(k) ∈ R12 is the output vector (that
we assume completely measured or estimated), and A, B,
C, D are matrices of suitable dimensions obtained by the
linearization process. The linear MPC formulation of the
Model Predictive Control Toolbox for MATLAB [20] based
on quadratic programming is used to design the stabilizing
controller under the stated input and output constraints.

B. Convex approximations for obstacle avoidance
Let p = [x y z]′ denote the position of the vehicle and

let M denote the number of obstacles to be avoided. Each
obstacle is described by a convex polyhedron Wi ⊂ R3

centered on a different point qi ∈ R3, that is the set
{qi} ⊕Wi is considered as infeasible, i = 1, . . . ,M . Non-
convex obstacles can be modeled by overlapping several of
such convex shapes.

In order to impose collision avoidance constraints as
(possibly time-varying) linear constraints, the nonconvex
feasible space where the vehicle can navigate must be
under-approximated by a convex polyhedron. A novel fast
greedy algorithm to maximize the size of a polyhedron not
containing a set of points is described in the sequel for a
generic space-dimension d.

Lemma 1: Let p0, q1, q2, . . . , qM ∈ Rd, with p0 6= qi,
∀i = 1, . . . ,M . The polyhedron P = {p ∈ Rd : Acp ≤ bc}
with

Ac =

 (q1 − p0)′

...
(qM − p0)′

 , bc =

 (q1 − p0)′q1

...
(qM − p0)′qN

 (9)

q1

qM

q2

p0

Fig. 3. Convex polyhedron around the current vehicle position p avoiding
point obstacles q1, . . . , qM

contains p0 in its interior and does not contain any of the
points qi in its interior, for all i = 1, . . . ,M .

Proof: As sketched in Figure 3, the halfspace

Hi = {p ∈ Rd : (qi − p0)′p ≤ (qi − p0)′qi} (10)

contains qi on its boundary ∂Hi = {p ∈ Rd : (qi− p0)′p =
(qi − p0)′qi}, and is such that ∂Hi is orthogonal to qi − p0.
Moreover (qi − p0)′p0 = (qi − p0)′(p0 − qi + qi) = −‖qi −
p0‖2 + (qi − p0)′qi < (qi − p0)′qi implies that p0 is in
the interior

◦
Hi = Hi \ ∂Hi = {p ∈ Rd : (qi − p0)′p <

(qi − p0)′qi} of Hi, ∀i = 1, . . . ,M . Since P = ∩Mi=1Hi,
it follows that p ∈

◦
Hi. Assume by contradiction that there

exists a point qi ∈
◦
P . Then there is a scalar σ > 0 such that

qσ = qi+σ(qi−p0) ∈ P , a contradiction since (qi−p0)′qσ =
(qi−p0)′qi+σ‖qi−p0‖2 > (qi−p0)′qi violates an inequality
defining P . �
Note that some of the halfspaces Hi in (10) may be re-
dundant, so (A, b) in (9) may not be a minimal hyperplane
representation of P .

Lemma 2: Let p0, q1, q2, . . . , qM ∈ Rd, with p0 6= qi,
∀i = 1, . . . ,M , and let W1, . . . ,WM be polyhedra in Rd.
Let Ac, bc be defined as in (9) and let g ∈ RM such that its
j-th component gj defined as

gj = minw∈Rd Ajcw
s.t. w ∈Wj

(11)

for j = 1, . . . ,M . Then the polyhedron P = {p ∈ Rd :
Acp ≤ bc+g} does not contain any polyhedron Bj = {qj}⊕
Wj in its interior, ∀j = 1, . . . ,M .

Proof: Assume by contradiction that there exists a point
p ∈

◦
P ∩ Bj , that is Acp < bc + g, p ∈ Bj . The latter

condition implies that p = qj + w for some w ∈ Wj , and
hence bjc + gj > Ajcp = Ajc(qj + w) = Ajcqj + Ajcw ≥
Ajcqj + gj , which implies Ajcqj < bjc. By Lemma 1 this is a
contradiction. �
Note that if Wj’s are polytopes and their vertex representa-
tion Wj = conv{wj1, . . . , wjsj} is available, then (11) can
be simply solved as

gj = min
h=1,...,sj

Ajcwjh (12)

for j = 1, . . . ,M . Moreover, for any given scaling µjWj =
conv{µjwj1, . . . , µjwjsj} of Wj , µj ≥ 0, the corresponding
component gj in (12) simply scales as µjgj .

Figure 4 shows a two-dimensional example including six
obstacles for subsequent positions p0 = p(0), p0 = p(1), . . .,
p0 = p(5), representing an ideal vehicle moving towards
a target xt. The main idea of the proposed approach is
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Fig. 4. Example of feasible polyhedra for navigation among obstacles.
The subsequent position p(j + 1) minimizes the Euclidean distance from
xt within the feasible polyhedron around p(j)

that, by taking into account multiple time steps, the union
of all pointwise-in-time convex approximations provides a
rather good non-convex approximation of the feasible space
of interest for navigation.

To take into account that the size of the UAV is not
negligible compared to the distance between the obstacles
and the vehicle, introduce vectors dh ∈ R3, h = 1, . . . , r
and let the vehicle be contained in the polyhedron {p} +
conv(d1, . . . , dr) (r = 1 and d1 = 0 in case the size of
the UAV is considered negligible). Based on the previous
lemmas, the following theorem is immediate to prove.

Theorem 1: Let V , conv(p0 + d1, . . . , p0 + dr),
p0, d1, . . . , dr ∈ Rd, r ≥ 1, let q1, q2, . . . , qM ∈ Rd, with
p0 6= qi, ∀i = 1, . . . ,M , and let W1, . . . ,WM be polyhedra
in Rd. Let Ac, bc be defined as in (9) and let g ∈ RM defined
as in (11). Let PV = {p ∈ Rd : Acp ≤ bc + g − Acdi, i =
1, . . . , r} and assume that PV is nonempty. Then V ⊆ PV
and

◦
PV ∩Bj = ∅, ∀j = 1, . . . ,M , where Bj = {qj} ⊕Wj .

C. LTV-MPC navigation algorithm

The closed-loop dynamics composed by the quadcopter
and the linear MPC controller can be approximated as a first
order system. The dynamical model of vehicle i is described
by

pi(t+ 1) = Aipi(t) +Bipci(t) (13)

where pci(t) = [xci(t) yci(t) zci(t)]
′ is the position

commanded at time t, pi(t) = [xi(t) yi(t) zi(t)]
′

is the actual current position of the vehicle, Ai =
diag(e−Tsn/τxi , e−Tsn/τyi , e−Tsn/τzi), Bi = I − Ai, and
Tsn is the sampling time. Tsn is chosen large enough
to neglect fast transient dynamics, so that the lower and
upper MPC designs can be conveniently decoupled. Let
{p(t)}+ conv(d1(t), . . . , dr(t)) be a polyhedron containing
the vehicle at time t, r ≥ 1, d1(t), . . . , dr(t) ∈ R3, ∀t ≥ 0
(time-varying values for vectors di(t) can be useful to take
rotations into account and if the vehicle is not treated as a
rigid body).

The linear constraints associated with matrices Ac, bc and
g, obtained by (9) and (12), respectively, to avoid obstacles,
depend on the current position p(t) ∈ R3 and in general vary
as time evolves. Therefore we adopt the following LTV-MPC
algorithm. At time t, the following problem is solved via
quadratic programming

min ρε2 +

N−1∑
k=0

‖wy(p(t+ k)− pd)‖2+

‖w∆u(pc(t+ k)− pc(t+ k − 1))‖2

s.t. pi(t+ k + 1) = Aipi(t+ k) +Bipci(t+ k)
k = 0, . . . , N − 1

∆min ≤ pc(t+ k)− pc(t+ k − 1) ≤ ∆max

k = 0, . . . , Nu − 1

pc(t+ k) = pc(t+Nu − 1), k = Nu, . . . , N

Ac(t+ k)p(t+ k) ≤ bc(t+ k) + g(t+ k)−Ac(t+ k)·
·dh(t+ k) + 1I ε, k = 0, . . . , N − 1, h = 1, . . . , r

(14)
The scalars wy, w∆u ∈ R, wy, w∆u > 0 are the weights
on outputs and inputs, respectively. Matrices Ac(t + k),
bc(t + k), g(t + k) are obtained by (9) and (11) by setting
p0 = p(t) (current vehicle position), qi = qi(t+k) (predicted
obstacle position, where qi(t + k) ≡ qi(t) when obstacles
are considered fixed in prediction), W = conv{w1(t +
k), . . . , ws(t + k)} and µ = µ(t + k) (predicted size and
magnitude of obstacles, respectively, where wi(t + k) ≡
wi(0) and µ = µ(0) when the obstacle shape and size is
assumed time-invariant). Moreover, as it is standard practice
in all practical MPC implementations, the slack variable ε is
used to soften the obstacle avoidance constraints, therefore
avoiding that (14) is infeasible, and is penalized by a large
weight ρ > 0 in (14).

In summary, the proposed hierarchical MPC approach
for stabilization and navigation of each UAV consists of
the following steps: (i) the LTV-MPC control law chooses
the optimal desired position pc(t) every Tsn time units by
solving problem (14) that makes the vehicle position p(t)
approaching the target position pd while avoiding collisions;
(ii) the LTI-MPC control law is executed at a shorter
sampling time Ts to stabilize the vehicle around pc(t) under
actuator and angle/position constraints.

D. Formation flying

The hierarchical MPC structure described above for one
vehicle is extended to coordinate a formation of V cooper-
ating UAVs, V > 1. We use a decentralized leader-follower
approach to manage the formation, where one of the vehicles
(the leader) tracks a desired target position pt and all the
other vehicles (the followers) track a desired constant relative
distance pdi from the leader. Each vehicle treats the other
UAVs in the formation as further obstacles to avoid, so that
the total number of obstacles accounts now for both the real
ones and the other vehicles.

Each UAV is equipped with its own MPC control hierarchy
and takes decisions autonomously, measuring its own state
and the positions of the other vehicles and obstacles. The
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formation must be capable of reconfiguring, making deci-
sions (for instance, changing relative distances to modify the
formation shape), and achieving mission goals (e.g., target
tracking). To take into account the nonzero dimensions of
the UAVs, these are modeled as constant parallelepipeds
conv(d1, . . . , dr) = conv(w1, . . . , ws), r = s = 8, whose
height (defined along the z-axis) is half their width and depth.

To improve cooperativeness of the UAVs, at the current
time t vehicle #i, besides knowing the position qj(t) of
the other vehicles, j = 1, . . . , V , j 6= i, each follower is
aware of the previous optimal sequence computed by the
other vehicles pjc(t|t−1), pjc(t+1|t−1), . . . , pjc(t+N−2|t−
1). Such sequences are used to predict the future obstacle
positions qj(t + k) via the dynamical model (13) in which
j replaces i, under the assumption pjc(t + N − 1|t − 1) =
pjc(t + N − 2|t − 1). This provides a better estimate of the
free polyhedral space for collision avoidance.

IV. SIMULATION RESULTS

We test the proposed decentralized and hierarchical MPC
scheme for navigation of a formation of three quadcopters
moving to a target point in the presence of four obstacles
(tetrahedra) to avoid.

The linear MPC controller for constrained stabilization is
designed by using the standard setup of the Model Predictive
Control Toolbox for MATLAB [21], along with the following
specifications: input constraints 1130 µs≤ µmj ≤1540 µs
and constant weight w∆u = 0.1 on each input increment
∆µmj , j = 1, 2, 3, 4, output constraint z ≥ 0 m on vehicle
altitude and −π6 ≤ θ, φ ≤ π

6 on pitch and roll angles,
output weights wy = 0 on θ and φ tracking errors, and
wy = 10 on all remaining tracking errors. The chosen set
of weights ensures a good trade-off between fast system
response and energy spent for actuation. The prediction
horizon is NL = 20, the control horizon is NLu = 3, which,
together with the choice of weights, allow obtaining a good
compromise between tracking performance, robustness,
and computational complexity. The sampling time of the
controller is Ts = 1

14 s. The remaining parameters of the
MPC controller are defaulted by the Model Predictive
Control Toolbox for MATLAB.

For LTV-MPC control, the MPCSofT Toolbox for MAT-
LAB is adopted, that has been developed at the Univer-
sity of Trento within the activities of the European Space
Agency project “ROBMPC”. The MPCSofT Toolbox allows
one to specify rather arbitrary LTV prediction models and
constraints in Embedded MATLAB and to efficiently set
up and solve the quadratic programming problem associated
with the MPC problem in real-time.

The following parameters are employed for model (13):
τxi=2.82 s τyi=2.85 s, τzi=2.12 s, for all UAVs, i = 1, 2, 3.
For the LTV-MPC setup we set prediction horizon N = 10,
control horizon Nu = 5, sampling time Tsn=1.5 s, weights
wy = 0.1 on all outputs, w∆u = 0.1 on all input increments,
and ∆max = −∆min = 0.5 m as the maximum rate of
change of the desired position pc of each vehicle. The
obstacles are modeled as tetrahedra

W = conv(

[
−1/3
−1/3
−1/2

]
,

[
2/3
−1/3
−1/2

]
,

[
−1/3
2/3
−1/2

]
,
[

0
0

1/2

]
)

the scaling factor is µ = 7, and ρ1=1000 is used to
weight the slack variable ε used for soft constraints on
obstacle avoidance. The initial positions of the UAVs are
pL(0) , [xL(0) yL(0) zL(0)]′ = [6 6 0]′ for the leader
(all quantities are expressed in MKS international units),
pF1(0) , [xF1(0) yF1(0) zF1(0)]′ = [4 4 0]′, and pF2(0) ,
[xF2(0) yF2(0) zF2(0)]′ = [2 2 0]′ for the followers; the
target point for the leader is located at pt = [x̄t ȳt z̄t] =
[40 40 6]′; the followers take off with a delay of 2.5 and 5
seconds respectively, and should follow the leader at given
distances pL−pd1, pd1 = [6 1 0]′ and pL−pd2, pd2 = [1 6 0]′,
respectively. The results were obtained on a Core 2 Duo
running MATLAB R2009b, the Model Predictive Control
Toolbox for MATLAB, and the MPCSofT Toolbox under MS
Windows. The trajectories obtained by using the proposed
decentralized hierarchical LTV-MPC + LTI-MPC approach
are shown in Figure 5. The performance is quite satisfactory:
The trajectories circumvent obstacles without collisions and
finally the quadcopters settle at the target points, while
maintaining the desired formation as much as the obstacles
allow for keeping it. On average the LTV-MPC action for
set-point generation requires about 75 ms per sample step
(Tsn=1.5 s), the linear MPC control action about 150 µs per
sample step (Ts=1/14 s).

Fig. 5. Trajectories of formation flying under obstacle avoidance con-
straints, LTV-MPC approach

A. Comparison with decentralized hybrid MPC

A decentralized hybrid MPC approach for solving the
same problem tackled in this paper was proposed in [18].
In order to compare the two strategies we use the same
simulation scenario described in the previous section. The
resulting performance figures of the two approaches are
similar, as shown in Figure 6. The hybrid MPC approach
takes an average CPU time of 45 ms per time step (Tsn=1.5
s) to compute the control action using the commercial and
highly optimized MIQP solver IBM CPLEX [22]. Note that
while the CPU time for the navigation algorithm is similar
in both approaches, the complexity of the hybrid MPC code
is much higher, being based on the CPLEX library. On the
other hand, the LTV-MPC code is immediately deployable by
using the C-code generation functionality of the MATLAB
environment.

Finally, a quantitative comparison of the two different
control strategies is reported in Table II. The following
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Fig. 6. Trajectories of formation flying under obstacle avoidance con-
straints, hybrid MPC approach

three performance indices defined on the simulation interval
25÷220 s (i.e., 350÷3080 samples) are considered:

Jtt =

3080∑
k=350

‖pL(k)− pt‖22

Jfpt =

3080∑
k=350

‖pL(k)− pF1(k)− pd1‖22 + ‖pL(k)− pF2(k)− pd2‖22

Ju =

3080∑
k=350

‖u(k)− u(k − 1)‖1

where Jtt represents the target tracking Integral Square Error
(ISE) index, Jfpt the formation pattern tracking ISE index,
and Ju the absolute derivative of input signals (IADU) index
for checking the smoothness of control signals [3]. The
indices are normalized with respect to the values obtained
using the decentralized hybrid MPC strategy. It is apparent
that the two strategies have similar performance figures in
target tracking and IADU (this is due to a similar setup of
MPC weights and constraints), while in keeping the desired
formation the LTV-MPC approach is superior to the hybrid
MPC method.

TABLE II
COMPARISON OF LTV-MPC AND HYBRID MPC APPROACHES

Jtt Jfpt Ju

decentralized hybrid MPC 1 1 1
decentralized LTV MPC -2.46% -16.30% +9.20%

V. CONCLUSIONS

This paper has proposed a decentralized hierarchical MPC
approach to stabilization and navigation of a formation of
UAVs under various constraints. In particular, despite the
convex approximation of the obstacle-free space, an LTV-
MPC approach was proved very effective in navigating
under obstacle avoidance conditions, the conservativeness
of the convex approximation being mitigated by its time-
varying nature and by the receding-horizon approach of
MPC. The obtained performance is comparable to that
achievable by using more complex methods, such as hybrid
MPC approaches. Compared to off-line planning methods,

the proposed hierarchical MPC scheme generates the 3D path
to follow completely on-line, which is particularly appealing
in realistic scenarios where the positions of the target and of
the obstacles, and the shapes of the latter, may not be known
in advance, but rather acquired (and possibly time-varying)
during flight operations.
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