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Abstract— We develop the framework of decentralised Nav-
igation Functions for the case of multiple agents of arbi-
trary shapes and sensing areas around them moving in N -
dimensional space. Unlike previous approaches utilising the
Navigation Functions methodology, the construction here does
not rely on diffeomorphisms , thus reducing the computational
cost of the algorithm. The resulting potential field is absolutely
locally computable and can be easily adapted to decentralised
aircraft conflict resolution, as shown in the paper. Simulation
results of multi-aircraft conflict resolution are included to
support the efficacy of the complete control scheme.

I. INTRODUCTION

The problem of navigation and motion planning for sin-
gle, as well as for multiple agents is of great interest
to a wide class of applications, ranging from the Control
domain to Robotics and Air Traffic Management (ATM).
Conflict avoidance and convergence to the target are the key
requirements in such problems, while communication and
performance constraints may apply.

Navigation Functions (NFs) have been proposed in [1]
as an integrated solution to the path and motion planning
problems, initially for the case of a single robot inside a
bounded environment with stationary obstacles. The foun-
dation of the NFs methodology emerged as an artificial
potential field approach [2], where collision avoidance is
achieved via repulsion between the robot and the obstacles,
while an attractive component towards the destination is
used for convergence. The key advantage of NFs is that
unlike other potential field methods, no local minima appear
in the potential field. Thus, a hill descent control law can
be used without the risk of stagnation to undesired local
minima. The first form of the methodology applied strictly
to sphere worlds, i.e. problems where all obstacles, the
workspace and the robot itself are perfect spheres. Sub-
sequently, the authors in [3] presented a strategy for the
construction of appropriate diffeomorphisms that transform
star-shaped obstacles and trees of stars to spheres, so that
the construction of [1] can then be applied. Because of the
invariance of NFs’s properties under diffeomorphisms, the
performance guarantees are valid in this more general class
of problems. An alternative approach exploiting the same
property of NFs is presented in [4], where each obstacle and
the robot is transformed to a point and the potential is built
on the resulting point world. However, the construction of the
appropriate diffeomorphisms can become computationally
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challenging, especially when the concept of trees of stars
is employed to handle complex obstacles that cannot be
represented by a single star-shape. Moreover, the deformation
of the physical space introduces an additional logical step
in the construction process and makes the tuning of the
parameters involved more demanding.

NFs for multiple agents have been presented initially for
a centralised control topology, assuming a sphere world,
in [5]. For more general shapes, the algorithm relies on
diffeomorphisms to appropriately transform the physical
workspace into a sphere world. Extensions of this work to the
decentralised case have also followed this approach, using
sphere worlds for the construction of the potential fields [6].
In this approach, decentralisation is introduced by limiting
the knowledge of each agent only to its own destination, thus
the destinations of all other agents are unknown.

Limited sensing is a key factor for decentralisation: it
allows the use of onboard sensors with finite range and
greatly limits the information that each agent needs to
acquire and process, significantly improving the applicability
and scalability of the algorithm in large scenarios. Limited
sensing so far has been introduced in a number of ways
in NFs. In [7] the authors use a C0 sensing scheme, but
assume a priori knowledge of the total number of agents.
This requirement is removed in [8], where a switching
sensing graph is used, resulting in a hybrid system. This
approach does not ensure global convergence, as blocking
situations may be reached. Thus, convergence occurs only
if the switching of the sensing graph eventually stops. A
completely locally computable NF has been presented in [9],
but only for single-agent problems and with the assumption
that at each time instant there is at most one visible obstacle.
This effectively means that the algorithm solves the collision
with one obstacle at a time, which is not practical in a multi-
agent scenario. An initial approach towards the application of
local sensing in a continuous manner for multiple obstacles
has been presented in [10] for a circular sensing area, while
a non-circular sensing scheme has been introduced in [11]
that improves the quality of the resulting paths.

This work presents a generalisation of the NF construction
in scenarios with non-circular agents without the need for
diffeomorphisms, while local sensing is also implemented via
non-circular sensing zones. The construction of the potential
relies on C2 functions that implicitly define the boundaries
of the agents and their sensing areas in the N -dimensional
space. This general and flexible form in which agent and
sensing area shapes are described allows the tailoring of the
methodology to the specific characteristics of aircraft conflict
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resolution. The significant difference between horizontal and
vertical separation minima in Air Traffic Control (ATC) can
be easily taken into account by the algorithm. Moreover,
a specially chosen non-circular sensing area can offer im-
proved trajectories, as already demonstrated for the 2D case
in [11].

The rest of the paper is organised as follows: in section
II we review the basic structure of decentralised Navigation
Functions (NFs) that we employ, along with its components.
In the next section the proposed construction for the collision
function is presented for the general case of non-circular
shapes. In section IV the adaptation of the algorithm to
the problem of aircraft conflict resolution in 3D space is
developed. Simulation results are presented in section V,
followed by our conclusions in section VI.

II. COMPLETELY DECENTRALISED NAVIGATION

FUNCTIONS

The NF construction we present here is intended to cover
a general class of problems where a group of N agents
of various shapes and sensing characteristics operate in a
common environment. Specifically, our work here focuses
on the construction of the collision function βij , which is
a key component of the complete potential. The proposed
approach inherently takes into account the shape of each
agent i, Oi, and the shape of the sensing region Ai, within
which it can detect other agents and obstacles, as in Fig. 1.

Oi

Ai

qi

Fig. 1: Agent i located at qi. Its shape is represented by Oi and its sensing
area by Ai

The basic form of the decentralised NF Φi for agent i is
based on previous multi-agent NF approaches [6]:

Φi =
γdi + fi

((γdi + fi)k +Gi · β0i)
1/k

, (1)

where Gi quantifies the proximity to collisions involving
agent i: it is zero when the ith agent participates in a
conflict, and positive otherwise. γdi is the goal function,
fading at the destination of agent i, qid, and increasing away
from it. Function fi = fi(Gi) enables cooperation between
neighboring agents as explained in [6], while β0i is the

workspace bounding obstacle that limits the motion of agents
inside the available workspace.

Our contribution in this paper, as described in the next
section, lies mostly in the construction of the individual
collision functions βij that model the effect of other agents
and obstacles to agent i. The product of all βij forms the
overall collision function Gi that is used in the potential:

Gi =
∏
j∈Ti

βij (2)

where Ti = {1, . . . , N} \ i.
For the target function γi we use the normalised form

introduced in [10]:

γi =
||qi − qdi||

2

R2
n

(3)

where Rn is a reference length used for the normalisation
that reflects the physical scale of the problem, eg. the largest
dimension of the workspace.

The cooperation function fi is used here as in [7]:

fi (Gi) =

{
a0 +

∑
3

l=1
alG

l
i, Gi ≤ X

0, Gi > X
(4)

where a0 = Y , a1 = 0, a2 = −3Y
X2 , a3 = 2Y

X3 and X , Y
are positive parameters. Values of Gi lower than X activate
the cooperation function fi, while Y defines the maximum
value of fi, which is attained when Gi = 0.

III. CONSTRUCTING THE COLLISION FUNCTION

The repulsive function βij introduced here is redesigned
to handle a more general class of shapes for the obstacles
as well as the agents and their sensing regions. Instead of
building the NF potential on a virtual sphere world, we adapt
the methodology to real shapes that can be implicitly defined
through the level sets of some functions.

A. Implicit obstacle description

In order to derive the contribution of an intruding agent j
to agent i’s potential Φi, βij , we use an implicit obstacle
function δij as in [12], such that the boundary of collision
between agents i and j corresponds to its zero level set:

Oij
�

= {(qi, qj)|δij ≤ 0}

∂Oij = {(qi, qj)|δij = 0}

where Oij is the set that represents all possible collisions
between agents i and j. The obstacle function δij is a
measure of collision between agents i and j: it is negative
when the agents are in collision, fades to 0 when they touch
and becomes positive when they are separated.

In applications where the collision avoidance requirements
are expressed directly in terms of the relative position qij =
qj−qi between agents, the collision set Oij can be described
via a relative obstacle function δ̃ij(qij), such that δ̃ij(qij) ≤
0 when agents i and j collide, i.e. (0, qij) ∈ Oij . The
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implicit obstacle function δij(qj) of the absolute position qj
can be then derived directly as:

δij(qi, qj) = δ̃ij(qj − qi)

Alternatively, the shape Õi of each individual agent i may
be given as the zero level set of a relative shape function δ̃i:

Õi
�

=
{
qi|δ̃i(q

i) ≤ 0
}

∂Õi =
{
qi|δ̃i(q

i) = 0
}

where qi = q − qi is the position in the local frame of
agent i, originated at qi. For an arbitrary position of agent
i the absolute shape function δi(qi, q) defines the shape Oi

of agent i in the global frame, via a translation of Õi by qi:

δi(qi, q) = δ̃i(q − qi)

Oi(qi)
�

= {q : δi(qi, q) ≤ 0}

∂Oi(qi) =
{
qi : δi(qi, q) = 0

}
The collision set Oij between two agents i and j will
comprise all (qi, qj) pairs that cause Oi(qi) and Oj(qj)
to overlap. The intersection of Oi(qi) and Oj(qj) can be
implicitly represented using the formula given in [13]:

ψ∩ (δi, δj)
�

= δi + δj +
√
δ2i + δ2j

Oi(qi) ∩Oj(qj) = {q|ψ∩ (δi(qi, q), δj(qj , q)) ≤ 0}

∂ (Oi(qi) ∩Oj(qj)) = {q|ψ∩ (δi(qi, q), δj(qj , q)) = 0}

Therefore, the obstacle set Oij will then comprise all (qi, qj)
pairs that result in an non empty Oi(qi) ∪ Oj(qj), i.e.
(qi, qj) ∈ Oij ⇐⇒ Oi ∩Oj �= ∅:

Oij =

{
(qi, qj)|min

q

ψ∩ (δi(qi, q), δj(qj , q)) ≤ 0

}

The boundary ∂Oij will comprise all (qi, qj) pairs that cause
Oi(qi) and Oj(qj) to touch, i.e. all their common points will
be on ∂Oi(qi) ∪ ∂Oj(qj):

∂Oij =

{
(qi, qj)|min

q

ψ∩ (δi(qi, q), δj(qj , q)) = 0

}

For all (qi, qj) pairs such that Oi(qi) and Oj(qj) overlap
there is at least one common point qc that belongs to both of
them, thus δi(qi, qc) ≤ 0 and δj(qj , qc) ≤ 0. Rewriting this
with qc as a reference point and using qc

j = qj − qc as the
relative position vector of qj with respect to qc we obtain:

δj (qj , qc) = δ̃j (−(qj − qc)) = δ̃(−qc
j) ≤ 0 (5)

which means that qj belongs to the set O′j(qc), produced by
mirroring Õj with respect to the hyperplane that is normal
to the N -dimensional vector of ones �1 =

[
1 1 . . . 1

]
,

and then translating it to qc, as shown in Figure 2. Thus, the
set of all qj such that Oi, Oi have at least one common point
qc can be composed of all O′j(qc) for every qc ∈ Oi:

Oij =
⋃

qc∈Oi

O′j(qc) (6)

Oj

qj

(a)

O′j

qc

(b)

Fig. 2: (a): The shape Oj of agent j around its position qj

(b): The shape O′

j(qc) derived by mirroring Oj around the y = −x line
and translating it to qc

Oi

Oij

O′j

qi

qc

Fig. 3: Construction of the collision set Oij between agents i, j, by sliding
the set O′

j(qc) along the boundary of Oi. (Oi has been assumed larger
than Oj for the sake of a cleaner figure.)

This allows us to construct Oij graphically, as shown in
Figure 3, by taking the mirrored shape O′j around qc and
deriving the Minkowski sum of Oi and Oj , by sliding qc
along the boundary of Oi.

Identifying an obstacle function δij such that δij(qi, qj) ≤
0 ⇔ (qi, qj) ∈ Oij and δij(qi, qj) = 0 ⇔ (qi, qj) ∈ ∂Oij

is not straightforward in general. Following the previous
analysis, one may suggest the use of minψ∩ (δi, δj). Al-
though this option is valid, it is not always practical, since
the minimum of ψ∩ (δi, δj) is not easy to derive in general,
especially through analytic calculations. However, this does
not prevent the use of the method in ATM, since conflict
avoidance constraints in this application are expressed with
respect to the relative position of neighboring aircraft. Thus,
δij can be directly derived and the methodology described
in the previous paragraph is immediately applicable.

B. Local Sensing

A limited sensing region Ãi around agent i is used to
restrict the sensing of other agents and obstacles by agent
i: only those agents and obstacles that are inside Ãi can
influence the potential Φi. Similarly to Õi above, Ãi is
defined in the local coordinate frame of agent i via the zero
level set of the relative sensing function s̃i(q

i):

Ãi
�

=
{
qi : s̃i(q

i) = 0
}

(7)

∂Ãi =
{
qi : s̃i(q

i) = 0
}

(8)
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In global coordinates the absolute sensing region Ai is
described by the implicit sensing function si(qi, q) =
s̃i (q − qi):

Ai(qi)
�

= {q : si(qi, q) = 0} (9)

∂Ai(qi) = {q : si(qi, q) = 0} (10)

Obviously, each agent i should be able to sense another
agent or obstacle j before an actual collision between them
occurs. Thus, the set Oi

j(qi) = {q| (qi, q) ∈ Oij}, which is
the set of all qj that cause a collision for a given position
qi of agent i, must always be completely contained inside
the sensing region Ai for all pairs of i, j. When inside the
set Ai(qi) \ Oi

j(qi), the agent (or obstacle) j can influence
the potential Φi. Thus the properties of the functions δi and
si, which will be used to derive βij , inside this region are
important for the overall behavior of the potential Φi.

C. Collision function synthesis

As explained above, the collision function βij is active
only when qj ∈ Ai(qi) \ Oi

j(qi), i.e. inside Ai where si ≤
0, and outside Oi

j , where δij ≥ 0. Consequently, we can
use the “conditioning” diffeomorphism σλ from [12] to map
− δij

si
∈ [0,+ inf] to [0, 1]:

β̄ij
�

=

(
σλ ◦ −

δij

si

)
=

δij

δij − λsi
(11)

where σλ
�

=
x

λ+ x
, λ > 0

By the above definition, β̄ij is zero when agents i, j touch
(i.e. when δij = 0 because (qi, qj) ∈ ∂Oij), and increases
up to 1 at the boundary of the sensing area Ai where si = 0.

When qj is outside the sensing region Ai, the influence
βij should be inactive by assuming a constant value of 1.
Thus, in order to ensure that βij will be C2, we apply a
shaping function L(x) to β̄ij :

L(x) = x3 − 3x2 + 3x (12)

The following properties hold for L(x):

L(0) = 0 L′(x) > 0 ∀x ∈ [0, 1)

L(1) = 1 L′(1) = L′′(1) = 0

Thus, the final collision function used is:

βij =

{
L
(
β̄ij

)
, β̄ij ≤ 1

1, β̄ij > 1
(14)

D. The workspace bounding obstacle

The function β0i models a special obstacle which ensures
that all agents remain inside the available workspace W ⊂
Rn. For its construction we follow an similar approach to the
one presented for βij above. We assume that the workspace
is implicitly defined through a scalar function δ0(q):

W
�

= {q|δ0(q) ≤ 0} (15)

∂W
�

= {q|δ0(q) = 0} (16)

F

W

Fig. 4: The workspace W (blue color) and the region F (dotted pattern)
where its influence is zero. Thus, agents take into account the workspace
boundary only within the blue undotted annulus.

Moreover, we define a region F contained inside W , where
the influence of the workspace boundary is eliminated:

F
�

= {q|s0(q) ≤ 0} (17)

∂F = {q|s0(q) = 0} (18)

Thus, we allow the agents to be affected by the workspace
boundary only inside the annulus W \F , as shown in Figure
4. In this region δi0 = δ0(qi) ≤ 0 and si0 = s0(qi) ≥ 0,
thus, similarly to the synthesis of β̄ij , we use σλ to map
− δi0

si0
∈ [0,+ inf) to β̄i0 ∈ [0, 1]:

β̄i0
�

=

(
σλ ◦ −

δi0

si0

)
=

δi0

δi0 − λsi0
(19)

One can see that β̄i0 is zero on ∂W and becomes 1 on
the boundary of the influence area, ∂F0. Consequently, the
workspace obstacle function is derived by applying the L(x)
mapping to β̄i0 to ensure it is C2:

βi0 =

{
L
(
β̄i0

)
, β̄i0 ≤ 1

1, β̄i0 > 1
(20)

IV. DECENTRALISED AIRCRAFT CONFLICT RESOLUTION

IN 3D SPACE

The application considered in this paper is the decen-
tralised navigation of a group of N independent aircraft
in 3D airspace. Each aircraft is modeled as a kinematic
agent with its configuration comprising its position qi =[
xi yi zi

]�
with respect to an earth-fixed frame E , and

its heading φi. The global x and y axes lie on the horizontal
plane, while axis z is the vertical (altitude) axis. The heading
angle φi is the angle of the aircraft’s horizontal velocity with
respect to the global x axis. Using ni =

[
xi yi

]�
as the

projection of the agent’s position on the horizontal x − y
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2dh

(a)

2dv

(b)

Fig. 5: The collision set around each aircraft, defined as an oblate spheroid of
horizontal radius dh and vertical semi-axis dv . dh and dv are the horizontal
and vertical separation minima, respectively. (not drawn in scale)

plane, the kinematic model of each aircraft i is:

ṅi =

[
ẋi

ẏi

]
= Ji · ui,

żi = wi, (21)

φ̇i = ωi,

where Ji =
[
cos(φi) sin(φi)

]�
.

A. Collision and sensing regions

The potential construction described in section II can be
well adapted to the case of aircraft conflict resolution. De-
centralisation, as well as the ability to use 3D resolutions to
increase airspace capacity and separation are very useful for
ATM applications, like the future ATM concept developed
within the project iFLY [14].

In order to apply the methodology described in the
previous sections to aircraft conflict resolution, we define
accordingly the shapes used for the collision set Oij and the
sensing area Ai of each aircraft. For Oij we employ a “pill-
like” 3D oblate spheroid with horizontal radius equal to the
minimum horizontal separation dh and a vertical semi-axis
equal to the vertical minimum separation dv , as shown in
Figure 5. The principle in [11] is extended to the 3D case for
Ai: the sensing range in the forward direction is significantly
longer than the sides and rear, as shown in Figure 6. The
benefits of such a sensing scheme have been demonstrated
in [11], allowing smoother turns and smaller deviations in
the resulting trajectories. The sensing region comprises two
half-ellipsoids, one in front of the aircraft with semi-axes
Rf , Rr and Rv in the forward, side and vertical directions
respectively, and one in the rear with semi-axes Rr, Rr and
Rv. Thus, the two cross-sections on the plane normal to the
major axis x of the aircraft match exactly, while a longer
range Rw is applied forward compared to the shorter side
and rear range Rr. As shown in [11], such a sensing scheme
introduces prioritisation, since the interaction between two
neighboring agents is unsymmetrical.

In order to model the shape of Oij with the implicit

2dv 2Rv

2Rr2Rf

(a)

2Rr

(b)

Fig. 6: The sensing region Ai around each aircraft, extending to Rf forward,
Rr to the rear and sides and Rv on the vertical direction (not drawn in scale)

collision function δij we use the standard ellipsoid formula:

δij =

(
xi
j

)2
d2h

+

(
yij
)2

d2h
+

(
zij
)2

d2v
− 1 (22)

where qi
j =

[
xi
j yij zij

]
is the position of aircraft

j in the local coordinate frame of aircraft i; xi
j is along

the longitudinal direction of aircraft i, yij along the lateral
direction and zij on the vertical one:

qi
j =Ti (qj − qi) (23)

Ti =

⎡
⎣ cos(φi) sin(φi) 0
− sin(φi) cos(φi) 0

0 0 1

⎤
⎦ (24)

Similarly, for the sensing function sij we use the form:

sij =

(
xi
j

)2
R2

x

+

(
yij
)2

R2
r

+

(
zij
)2

R2
v

− 1 (25)

Rx =

{
Rf , xi

j ≥ 0 (agent j in front of i)

Rr, xi
j < 0 (agent j behind i)

(26)

B. 3D motion control scheme for aircraft-like vehicles

By applying the forms for sij and δij to the NF con-
struction described in II, we can create a potential that
corresponds to the specific requirements of aircraft conflict
resolution. In order to guide each aircraft i using the potential
Φi, the control scheme presented by the authors in [15] can
be employed. This control policy is specially designed to
allow each aircraft to move towards lower potential values
with a constant speed, while respecting climb and descent
angle limits and reducing unnecessary steering.

V. RESULTS

The control scheme presented here has been employed
in a simulation scenario, corresponding to aircraft Short-
term conflict resolution, according to ATM standards. The
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Fig. 7: Two aircraft with insufficient vertical separation perform vertical
manoeuvres to resolve the conflict.
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Fig. 8: Multiple aircraft 3D conflict resolution

horizontal separation minimum dh has been set to 5 nautical
miles (nm), while the vertical separation minimum used is
1000 feet (ft). The sensing ranges have been set as follows:

• Rf = 40nm for the forward sensing range, correspond-
ing to about 5 minutes of flight with a typical cruising
speed of 480 knots. This is in accordance with the iFLY
Concept of Operations [14] that specifies 5 minutes as
the limit for Short-term conflict resolution.

• Rr = 15nm, reducing influence from other aircraft in
the rear and sides to improve the trajectories.

• Rv = 1500ft, in order to avoid excessive separation by
more than two flight levels (2000ft).

First, a simple scenario with 2 aircraft presents the princi-
ples of operation of the algorithm. The aircraft are flying in
opposite direction with an initial vertical separation of only
500ft. As shown in Figure 7, the aircraft perform vertical
manoeuvres to increase their separation and then revert back
to their desired altitude as they approach their goals.

The second scenario includes 5 aircraft flying at the same
altitude in converging paths. As shown in Figure 8, vertical
maneuvering enables safe resolution of all conflicts.

VI. CONCLUSIONS

We have presented a way to extend the application of
Navigation Functions (NFs) to problems with agents of
general shapes and sensing schemes. The scalar functions
that implicitly describe the shapes of the sensing regions
and the agents themselves are used to synthesise the obstacle
functions for the potential. This NF construction enables the
adaptation of the methodology to various applications by
using appropriate shape functions. Application to the case of
distributed aircraft conflict resolution is presented, for which
NFs are a candidate solution. The specific requirements of
this problem are considered for the definition of the agent and
sensing region shapes. The algorithm is used in simulation
scenarios to demonstrate its efficacy.
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