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Abstract— In this paper, we discuss the stabilizing composite
control design for a class of multiparameter singularly per-
turbed systems governed by Itô differential equations. The
asymptotic stability in mean square (ASMS) of the closed-loop
system is addressed. First, the asymptotic structure of solutions
of suitable Lyapunov type equation via multimodeling analysis
is established. It is shown that the dominant part of this solution
can be obtained by solving a parameter-independent system
of coupled algebraic linear equations which define a resolvent
positive operator. Moreover, it is noteworthy that this is the first
time conditions for the existence of the stabilizing feedback
gain. These conditions are expressed in terms of solvability
of a system of linear matrix inequalities. Finally, in order to
demonstrate the effectiveness of the proposed design method,
a numerical example is provided.

I. INTRODUCTION

The deterministic and stochastic stability, control, filtering

and dynamic games for a class of singularly perturbed

systems (SPS) have been investigated extensively by several

researchers (see e.g., [7], [8]). Afterward, various aspects

of the problem of designing of a stabilizing feedback gain

for systems modeled by singularly perturbed Itô differential

equations with one small time constant have been well doc-

umented in many literatures (see e.g., [10]). However, such

an approach is not adequate to the multiparameter singularly

perturbed systems (MSPS) since in case that the parameters

εj are not known exactly, they cannot be transformed to the

SPS [13].

The problem of designing a feedback strategy for a multi-

modeling system has been subject of many papers during the

past three decades (see e.g., [13]). Recent advance in theory

of the stochastic approach has allowed a revisiting of the

control problems for the MSPS [16], [17]. These literatures,

however, the special structure for the fast subsystems are

imposed. As a result, these results do not give more general

framework because there is no interconnection for each fast

subsystem.

In this paper, the stabilizing composite control design

for a class of MSPS governed by Itô differential equation

is considered. It is worth pointing out that although the

optimal and H∞ control problems for the stochastic MSPS

has been investigated [17], the conservative restriction over

the fast subsystems has been imposed. As compared with the

deterministic case [13], the sufficient condition is established

for the first time such that the asymptotic stability in mean
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square (ASMS) of the closed-loop system is attained. More-

over, necessary and sufficient conditions for the existence

of feedback gains such that the system of reduced algebraic

Lyapunov equations have positive definite solutions are ex-

pressed in terms of solvability of some suitable linear matrix

inequalities. Finally, in order to demonstrate the efficiency of

the proposed algorithm, a numerical example is given.

Notation: The superscript T denotes matrix or vector trans-

pose. E[·] denotes the expectation operator. In denotes the

n×n identity matrix. block diag denotes the block diagonal

matrix.

II. PROBLEM FORMULATION

Consider the controlled system modeled by the following

system of singularly perturbed Itô differential equations with

both state and control multiplicative white noise:

dx0(t)

= [A00x0(t) +A0fxf (t) +B0u(t)]dt

+
r

∑

p=1

[Ap00x0(t) +Ap0fxf (t) +Bp0u(t)]dwp(t), (1a)

Πεdxf (t)

= [Af0x0(t) +Afxf (t) +Bfu(t)]dt

+Πµ

r
∑

p=1

[Apf0x0(t) +Apfxf (t) +Bpfu(t)]dwp(t),(1b)

where x0(t) ∈ ℜn0 is the slow state variable. xf (t) =
[

xT
1 (t) xT

2 (t)
]T ∈ ℜn1 ⊕ℜn2 are the fast state variables.

u(t) ∈ ℜm is the vector of control parameter. Let us define

the following matrices.

A0f :=
[

A01 A02

]

, Ap0f :=
[

Ap01 Ap02

]

,

Af0 :=

[

A10

A20

]

, Apf0 :=

[

Ap10

Ap20

]

,

Af :=

[

A11 A12

A21 A22

]

, Apf :=

[

Ap11 Ap12

Ap21 Ap22

]

,

Bf :=

[

B1

B2

]

, Bpf :=

[

Bp1

Bp2

]

,

Aij , Apij ∈ ℜni×nj , Bi, Bpi ∈ ℜni×m, i = 0, 1, 2.

Moreover, Πε := block diag
(

ε1In1
ε2In2

)

, Πµ :=
block diag

(

µ1In1
µ2In2

)

, where εi > 0, µi > 0,

i = 1, 2 are small parameters. It may be noted that they

are not exactly known.

In (1) {w(t)}t≥0, w(t) =
[

w1(t) · · · wr(t)
]T

is r-

dimensional standard Wiener process on a given probability

space (Ω, F , P) [11], [12]. It should be noted that such
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systems (1) typically arise in the multi-area power systems

[17].

Consider the control laws of the following form:

u(t) = F0x0(t) + Ffxf (t), (2)

where F0 ∈ ℜm×n0 , Ff =
[

F1 F2

]

, Fi ∈ ℜm×ni , i =
1, 2.

Our aim is to develop a methodology which allows us to

design the gain matrices
[

F0 Ff

]

not depending upon

the small parameters εi and µi such that the corresponding

control law of the form (2) stabilizes the stochastic systems

(1) for any εi > 0, µi > 0 small enough, that is the

trajectories of the closed-loop systems to satisfy

lim
t→∞

E[||x0(t)||2 + ||xf (t)||2] = 0

for all initial conditions x(0) =
[

xT
0 (0) xT

f (0)
]T ∈ ℜn,

n = n0 + nf , nf = n1 + n2.

It is worth mentioning that any performance specification,

other than stabilization of given system is not imposed to

the designed control. It should be noted that for the case

of systems modeled by singularly perturbed Itô differential

equations with state and control multiplicative white noise,

the problem to construct a stabilizing control in a state

feedback form is more complicated than the case of deter-

ministic singularly perturbed systems (see e.g., [7], [8]). At

the end of this section, let us remark that in the general case

ε1 = ε2 = ε, µ1 = µ2 = εδ with δ ≥ 1/2, the problem

stated before reduces to that showed in [10].

III. MAIN RESULTS

A. Lyapunov type equations associated with the closed-loop

systems

Consider the following closed-loop system.

dx(t) = [A(ε) +B(ε)F ]x(t)dt

+

r
∑

p=1

[Ap(ε, µ) +Bp(ε, µ)F ]x(t)dwp(t), (3)

where F =
[

F0 Ff

]

with

x(t) =

[

x0(t)
xf (t)

]

, A(ε) :=

[

A00 A0f

Π−1
ε Af0 Π−1

ε Af

]

,

Ap(ε, µ) :=

[

Ap00 Ap0f

Π−1
ε ΠµApf0 Π−1

ε ΠµApf

]

,

B(ε) :=

[

B0

Π−1
ε Bf

]

, Bp(ε, µ) :=

[

Bp0

Π−1
ε ΠµBpf

]

.

Definition 1: We say that the closed-loop system (3) is:

(i) asymptotic stable in mean square (ASMS) if

limt→∞ E[||x(t)||2] = 0 for any initial conditions x(0) =
x0 ∈ ℜn.

(ii) exponentially stable in mean square (ESMS) if there

exist β ≥ 1, α > 0 such that E[||x(t)||2] ≤ β exp−αt ||x0||2
for all t ≥ 0, x0 ∈ ℜn.

Throughout this paper, Sd ∈ ℜd×d stands for the linear

subspace of the real symmetric matrix. Based on the coeffi-

cients of the stochastic systems (3), we construct the linear

operator L : Sn → Sn, by

L(X) := [A(ε) +B(ε)F ]TX +X[A(ε) +B(ε)F ]

+
r

∑

p=1

[Ap(ε, µ) +Bp(ε, µ)F ]T

×X[Ap(ε, µ) +Bp(ε, µ)F ] (4)

for all X ∈ Sn. The following result shows the role of the

linear operators L in the characterization of the stability in

mean square of the stochastic systems of the type (3).

Proposition 1: [5], [6] Suppose that the ratios of the small

parameters εi > 0 have strict bounds. For the fixed values

of the small parameters εi > 0, µi > 0, the following are

equivalent:

(i) the stochastic system (3) is ASMS,

(ii) the stochastic system (3) is ESMS,

(iii) the eigenvalues of the linear operator L are located in

the half plane C− = {z ∈ C | Re(z) < 0},

(iv) the linear equation on Sn;

L(X) + In = 0 (5)

has a solution X > 0,

(v) there exist Y ∈ Sn, Y > 0 satisfying

L(Y ) < 0. (6)

In the sequel, in order to obtain a control (2) stabilizing

the stochastic systems (1) for εi > 0, µi > 0 sufficiently

small, we show how we can construct gain matrices F0, Ff

with appropriate size such that the linear equation (5) has a

positive definite solution X(ε, µ). We look for solution of

(5) of the following form.

X =





X00 ε1X01 ε2X02

ε1X
T
01 ε1X11 ε2X12

ε2X
T
02 ε2X

T
12 ε2X22



=

[

X00 X0fΠε

ΠεX
T
0f λε(Xf )Πε

]

,(7)

where

Xij ∈ ℜni×nj , i, j = 0, 1, 2, i ≤ j,

Xii = XT
ii , X0f :=

[

X01 X02

]

,

Xf :=

[

X11 X12

XT
12 X22

]

, λε(Xf ) :=

[

X11 X12
ε2
ε1

XT
12 X22

]

. (8)

We remark that Xf → λε(Xf ) : Snf
→ ℜnf×nf is a linear

operator. We have the following relation.

λε(Xf )Πε = Πελ
T
ε (Xf ). (9)

By using (7), we have

ΠµΠ
−1
ε λε(Xf )Πµ =







µ2
1

ε1
X11

µ1µ2

ε1
X12

µ1µ2

ε1
XT

12

µ2
2

ε2
X22






(10)

for all Xf =

[

X11 X12

XT
12 X22

]

∈ Snf
. From (8) and (10) one

sees that we need to know something about the behavior
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of the quantities ε2/ε1, µ2
i /εi and µ1µ2/ε1 when ε → +0,

µ → +0, i = 1, 2.

It must be mentioned that from the mathematical point of

view we cannot know a priori what are the values of the

limits lim ε1 → +0

ε2 → +0

ε2
ε1

, lim εi → +0

µi → +0

µ2

i

εi
. So, to be able to

do the asymptotic analysis of the stochastic system (5) when

εi → +0, µi → +0, we have to assume that the quantities

ε2/ε1, µ2
i /εi, 1, 2 are around of some nominal values ρ > 0

and ρ1 ≥ 0, ρ2 ≥ 0, respectively.

Remark 1: (a) In many papers (see for example [17]),

one takes µi = εδi , δ > 1/2. In that case ρi = 0 if δ > 1/2 or

ρi = 1 if δ = 1/2. In the present paper, the small parameters

µi are not necessary function of εi. The single available

information is that |µ2
i /εi − ρi|, i = 1, 2 are sufficiently

small, when ρi ≥ 0 are nominal value determined in the

process of modeling.

(b) Without loss of generality, we may assume that ρ = 1.

Indeed, if ε2/ε1 → ρ > 0 then ε2/(ρε1) → 1. In this case,

we may replace ε1 by ρε1 if ρ < 1 or ε2 by ε2/ρ if ρ > 1.

In this way, we obtain a new singularly perturbed stochastic

system for which ρ = 1.

In the sequel, we perform the asymptotic analysis of the

solutions of the stochastic systems (5) with respect to the

vector of parameters

ν =

[

ε1 ε2 µ1 µ2

ε2
ε1

µ2
1

ε1

µ2
2

ε2

]

.

Letting ν → ν̃ =
[

0 0 0 0 1 ρ1 ρ2
]

, we obtain:

lim
ν→ν̃

ΠµΠ
−1
ε λε(Xf )Πµ = Γ(Xf ) (11)

when Γ : Snf
→ Snf

is the linear operator defined by

Γ(Xf ) =

[

ρ1X11 ρ12X12

ρ12X
T
12 ρ2X22

]

(12)

for all

Xf =

[

X11 X12

XT
12 X22

]

∈ Snf
, (13)

where ρ12 :=
√
ρ1ρ2.

Taking ν → ν̃ in (5), we obtain the following system:

(A00 +B0F0)
TX00 +X00(A00 +B0F0)

+(Af0 +BfF0)
TXT

0f +X0f (Af0 +BfF0)

+
r

∑

p=1

[(Ap00 +Bp0F0)
TX00(Ap00 +Bp0F0)

+(Apf0 +BpfF0)
TΓ(Xf )(Apf0 +BpfF0)]

+In0
= 0, (14a)

(Af0 +BfF0)
TXf +X00(A0f +B0Ff )

+X0f (Af +BfFf )

+

r
∑

p=1

[(Ap00 +Bp0F0)
TX00(Ap0f +Bp0Ff )

+(Apf0 +BpfF0)
TΓ(Xf )(Apf +BpfFf )] = 0, (14b)

(Af +BfFf )
TXf +Xf (Af +BfFf )

+
r

∑

p=1

[(Ap0f +Bp0Ff )
TX00(Ap0f +Bp0Ff )

+(Apf +BpfFf )
TΓ(Xf )(Apf +BpfFf )]

+Inf
= 0. (14c)

If Af and Af + BfFf are invertible matrices, we may

introduce the following matrices:

A0s := A00 −A0fA
−1

f Af0, B0s := B0 −A0fA
−1

f Bf ,

Ap0s :=Ap00−Ap0fA
−1

f Af0, Bp0s :=Bp0−Ap0fA
−1

f Bf ,

Apfs :=Apf0−ApfA
−1

f Af0, Bpfs :=Bpf−ApfA
−1

f Bf ,

Qs = In0
+ (Af0 +BfF0)

T (Af +BfFf )
−T

×(Af +BfFf )
−1(Af0 +BfF0). (15)

Proposition 2: If Af is an invertible matrix, then the

following statements are true:

(i) If F0 ∈ ℜm×n0 and Ff ∈ ℜm×nf are gain matrices

such that Af +BfFf is invertible and if (X00, X0f , Xf ) ∈
Sn0

⊕ ℜn0×nf ⊕ Snf
is a solution of the system (14), then

(X00, Xf ) is a solution of the following system of linear

equations:

(A0s +B0sFs)
TX00 +X00(A0s +B0sFs)

+
r

∑

p=1

[(Ap0s +Bp0sFs)
TX00(Ap0s +Bp0sFs)

+(Apfs +BpfsFs)
TΓ(Xf )(Apfs +BpfsFs)]

+In0
= 0, (16a)

(Af +BfFf )
TXf +Xf (Af +BfFf )

+
r

∑

p=1

[(Ap0f +Bp0Ff )
TX00(Ap0f +Bp0Ff )

+(Apf +BpfFf )
TΓ(Xf )(Apf +BpfFf )]

+Inf
= 0, (16b)

where Fs = (Im + FfA
−1

f Bf )
−1(F0 − FfA

−1

f Af0).
(ii) If Fs ∈ ℜm×n0 , Ff ∈ ℜm×nf are gain matrices such

that Af +BfFf is invertible and if (X00, Xf ) ∈ Sn0
⊕Snf

is a solution of the system (16), then (X00, X0f , Xf ) is a

solution of the system (14) corresponding to

F0 = (Im + FfA
−1

f Bf )Fs + FfA
−1

f Af0 (17)

and

X0f = −
[

(Af0 +BfF0)
TXf +X00(A0f +B0Ff )

+
r

∑

p=1

[(Ap00 +Bp0F0)
TX00(Ap0f +Bp0Ff )

+(Apf0 +BpfF0)
TΓ(Xf )(Apf +BpfFf )]

]

×(Af +BfFf )
−1. (18)

The proof is done by direct calculations. The details are

omitted.

For each pair F =
[

Fs Ff

]

of gain matrices Fs ∈
ℜm×n0 , Ff ∈ ℜm×nf , we define the linear operator:
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LF : Sn0
× Snf

→ Sn0
× Snf

by

LF (X) = (L1F (X), L2F (X)),

L1F (X)

= (A0s +B0sFs)
TX0 +X0(A0s +B0sFs)

+

r
∑

p=1

[(Ap0s +Bp0sFs)
TX0(Ap0s +Bp0sFs)

+(Apfs +BpfsFs)
TΓ(Xf )(Apfs +BpfsFs)], (19a)

L2F (X)

= (Af +BfFf )
TXf +Xf (Af +BfFf )

+
r

∑

p=1

[(Ap0f +Bp0Ff )
TX0(Ap0f +Bp0Ff )

+(Apf +BpfFf )
TΓ(Xf )(Apf +BpfFf )], (19b)

for all X = (X0, Xf ) ∈ Sn0
× Snf

.

With these notations, the system of type (16) correspond-

ing to the pair F =
[

Fs Ff

]

can be written in the

compact form:

LF (X) +Q = 0, (20)

where Q = (Q0, Inf
) ∈ Sn0

× Snf
.

B. Properties of the operators of type LF

Let X = Sn0
× Snf

. One sees that X has a structure of

Hilbert space induced by the inner product

〈X, Y 〉 = Tr[X0Y0] +Tr[XfYf ], (21)

for all X = (X0, Xf ), Y = (Y0, Yf ) ∈ X .

On X , we introduce the order relation induced by the

convex cone X+ = {X = (X0, Xf ) | X0 ≥ 0, Xf ≥
0}. Here, Z ≥ 0 means that Z is a symmetric positive

semidefinite matrix.

Lemma 1: The linear operator Γ(·) is a positive operator.

This mean that Γ(Xf ) ≥ 0 if Xf ≥ 0.

Proof: Let us assume for the beginning that ρ2 > 0.

Let Xf ∈ Snf
be a positive semidefinite matrix. Without

loss of generality, we may assume that Xf has the structure

Xf =





X11 X̂12 0

X̂T
12 X̂22 0
0 0 0





with X̂22 > 0. Using the Schur complement technique, we

have that

Xf ≥ 0 iff X11 − X̂12X̂
−1

22 X̂T
12 ≥ 0, (22)

Γ(Xf ) ≥ 0 iff ρ1X11 −
ρ212
ρ2

X̂12X̂
−1

22 X̂T
12 ≥ 0. (23)

Using (12) and (22), we obtain ρ1X11 −
ρ212/ρ2X̂12X̂

−1

22 X̂T
12 = ρ1(X11 − X̂12X̂

−1

22 X̂T
12) ≥ 0.

This shows that if (22) holds then (23) is also true.

To end the proof, let us remark that if ρ2 = 0 then

Γ(Xf ) =

[

ρ1X11 0
0 0

]

≥ 0

because X11 ≥ 0 if Xf ≥ 0.

Finally, if ρ1 = ρ2 = 0 then Γ(Xf ) = 0 for all Xf ∈ Snf
.

In this case, the assertion of the lemma is obvious, thus the

proof is complete.

Lemma 2: The operator Γ : Snf
→ Snf

is a self-adjoint

operator with respect to the usual inner product on Snf
:

〈Xf , Yf 〉 = Tr[XfYf ],

for all Xf , Yf ∈ Snf
.

Proof is done by direct calculations based on the definition

of the adjoint operator.

We recall that a linear and bounded operator L : Y → Y

(Y being a real ordered Banach space) is called resolvent

positive operator, if there exists λ0 ∈ ℜ such that for all

λ ≥ λ0, the operator (λIY −L)−1 is a positive operator on

Y .

Useful properties of the resolvent positive operators as

well as criteria which guarantee the fact that the spectrum of

such operator is in the half plane C− may be found in [1],

[2].

Proposition 3: The operators of type (19) associated to

a pair F =
[

Fs Ff

]

∈ ℜm×n0 ⊕ ℜm×nf have the

properties:

(i) the adjoint operator L∗
f of Lf with respect to the inner

product (21) is given by

L∗
f (y) = (L∗

1f (y), L∗
2f (y)),

where L∗
1f (y) = (A0s+B0sFs)Y11+Y11(A0s+B0sFs)

T +
∑r

p=1
[(Ap0s + Bp0sFs)Y11(Ap0s + Bp0sFs)

T + (Ap0f +

Bp0fFf )Yf (Ap0f+Bp0fFf )
T ], L∗

2f (y) = (Af+BfFf )Yf+

Yf (Af +BfFf )
T +

∑r
p=1

[Γ(Apfs +BpfsFs)
TY11(Apfs +

BpfsFs) + Γ(Apf + BpfFf )
TYf (Apf + BpfFf )] for all

y = (Y11, Yf ) ∈ X .

(ii) the operator Lf is resolvent positive.

Proof:

(i) May be proved by direct calculations starting from the

definition of on adjoint operator.

(ii) Proceeding as in the proof of Lemma 8.1 in [4] one

shows firstly that

exp[Lf t](X) ≥ 0, ∀t ≥ 0 if X ≥ 0.

A simple computation results in the fact that Lf is a resolvent

positive operator (see e.g., Proposition 3.2 in [10]).

C. A sufficient condition for the existence of a stabilizing

composite control for stochastic systems

Using the notation and the concepts introduced in the

previous subsections, we are in a position to state and prove

the main results of this paper.

Theorem 1: Assume : a) Af is an invertible matrix. b)

the gain matrices Fs ∈ ℜm×ns , Ff ∈ ℜm×nf are designed

such that the eigenvalues of the corresponding operator Lf

associated via (19) to the pair F =
[

Fs Ff

]

are located

in the half plane C−. We construct the gain matrix F0 ∈
ℜm×n0 as in (17). Under these conditions there exists σ∗ > 0
with the property that the control

u(t) = F0x0(t) + Ffxf (t) (24)
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stabilizes the stochastic systems (1) for any values of the

small parameters εi, µi which satisfy

ε21 + ε22 + µ2
1 + µ2

2 +

(

ε2
ε1

− 1

)2

+

(

µ2
1

ε1
− ρ1

)2

+

(

µ2
2

ε2
− ρ2

)2

≤ (σ∗)2. (25)

Proof: We show that under the considered assumptions

the Lyapunov type equation (5) associated to the closed-loop

stochastic systems has a positive definite solution for any

εi > 0, µi > 0, i = 1, 2, which satisfy a condition of

type (25). First, let us remark that if the eigenvalues of the

linear operator LF are in the half plane C−, we deduce

via Theorem 2.11 in [2] that there exists Y = (Ys, Yf ) ∈
Sn0

× Snf
, Ys > 0, Yf > 0 which satisfy LF < 0. From

here one obtains

(Af +BfFf )
TYf + Yf (Af +BfFf ) < 0, Yf > 0.

So, we may conclude that Af +BfFf is a Hurwitz matrix,

which means that it is an invertible matrix. Hence, under the

considered assumptions the matrix Qf is well defined via

(15). Further, applying for example Theorem 4.5 in [4], we

obtain that the equation (22), or equivalently the system (16)

has a unique solution X̃ = (X̃0, X̃f ) > 0. Construct F0 and

X̃0f via (17)-(18) by using X̃0, X̃f instead of Xs, Xf .

Applying Proposition 2 (ii), we deduce that

(X̃0, X̃0f , X̃f ) is a solution of the system (19). Moreover,

applying Proposition 2 (i), we deduce that (X̃0, X̃0f , X̃f )
is the unique solution of the system (19). Taking into

account that (19) is obtained from (16) for ν = ν̃, we

deduce via implicit function theorem [9] that there exist ν1

and the analytic function ν → (X0(ν), X0f (ν), Xf (ν))
defined for ν in the ball ||ν − ν̃|| < ν1 which verify the

system (10) and

lim
ν→ν̃

X0(ν) = X̃0, lim
ν→ν̃

X0f (ν) = X̃0f ,

lim
ν→ν̃

Xf (ν) = X̃f . (26)

Set (X̃0(ε, µ), X̃0f (ε, µ), X̃f (ε, µ)), the

restriction of (X0(ν), X0f (ν), Xf (ν)) for ν =
[

ε1 ε2 µ1 µ2 ε2/ε1 µ2
1/ε1 µ2

2/ε2
]

which

satisfy ||ν − ν̃|| < ν1 and εi > 0, µi > 0, i = 1, 2,

X̃(ε, µ) =

[

X̃0(ε, µ) X̃0f (ε, µ)Πε

ΠεX̃
T
0f (ε, µ) λεX̃f (ε, µ)Πε

]

. (27)

One verifies by direct calculations that X̃(ε, µ) is a solution

of the equation (5). It remains to show that X̃(ε, µ) > 0 for

any εi > 0, µi > 0, i = 1, 2 sufficiently small. To this and

let us remark that (26) allows us to deduce that there exist

σ1 < µ1 such that

X̄0(ν) ≥
1

4
λmin(X̃0), X̄f (ν) ≥

1

4
λmin(X̃f ), (28)

for all which satisfy ||ν − ν̃|| < σ1.

Finally, from (8), (27) and (28), we deduce that there exists

0 < σ∗ ≤ σ1 such that

X0(ν)−X0f (ν)[λεXf (ν)Πε]
−1XT

0f (ν) > 0 (29)

for all εi > 0, µi > 0, i = 1, 2 which (25). Combining (28)

and (29) together with the Schur complement technique, we

conclude that X̃(ε, µ) > 0 for any εi > 0, µi > 0, i = 1, 2,

which satisfy (25). This complete the proof.

The next result provides the procedure to construct a gain

matrix F =
[

Fs Ff

]

such that the assumption b) of the

previous Theorem should be fulfilled.

Theorem 2: If Af is an invertible matrix, then the follow-

ing are equivalent:

(i) there exist the gain matrices F =
[

Fs Ff

]

∈
ℜm×n0 ⊕ ℜm×nf with the property that the corresponding

operator Lf associated via (18) has the eigenvalues in the

half plane C−.

(ii) there exist Z0 ∈ Sn0
, Zf ∈ Snf

, Vs ∈ ℜm×ns , Vf ∈
ℜm×nf which solve the following system of linear matrix

inequalities (LMIs):















Ψ0s(Zs, Vs) Ψ1s(Z, V ) Ψ2s(Z, V ) · · · Ψrs(Z, V )
ΨT

1s(Z, V ) −Z 0 · · · 0
ΨT

2s(Z, V ) 0 −Z · · · 0
...

...
...

. . .
...

ΨT
rs(Z, V ) 0 0 · · · −Z















< 0, (30)














Ψ0f (Zs, Vs) Ψ1f (Z, V ) Ψ2f (Z, V ) · · · Ψrf (Z, V )
ΨT

1f (Z, V ) −Z 0 · · · 0

ΨT
2f (Z, V ) 0 −Z · · · 0

...
...

...
. . .

...

ΨT
rf (Z, V ) 0 0 · · · −Z















< 0, (31)

where Z = block diag(Zs, Zf ), V = (Vs, Vf ),
Ψ0s(Zs, Vs) = A0sZs + ZsA

T
0s + B0sVs + V T

s BT
0s,

Ψps(Z, V ) =
[

Ap0sZs +Bp0sVs Ap0fZf +Bp0Vf

]

,

Ψ0f (Zs, Vs) = AfZf + ZfA
T
f + BfVf + V T

f BT
f ,

Ψpf (Z, V ) = block diag(
√
ρ1In1

√
ρ2In2

)[ApfsZs +
BpfsVs ApfZf + BpfVf ], Ψps(Z, V ) ∈ ℜn0×n,

Ψpf (Z, V ) ∈ ℜnf×n, 1 ≤ p ≤ r.

Moreover, if (Z̃s, Z̃f , Ṽs, Ṽf ) is a solution of the systems

(30)-(31), then the operator LF̃ constructed via (19) for

F̃ =
[

F̃s F̃f

]

, when F̃s = ṼsZ̃
−1
s , F̃f = Ṽf Z̃

−1

f has

the eigenvalues in the half plane C−.

Proof: Since LF is a resolvent positive operator, we

deduce via Theorem 4.4 in [4] that its eigenvalues are in the

half plane C− iff there exists Y = (Y0, Yf ) > 0 such that

L∗
F (Y ) < 0. (32)

By using (19) together with the Schur complement technique,

we deduce that (32) is equivalent with the systems (30)-(31)

with Zs = Y0, Zf = Yf , Vs = FsY0 and Vf = FfYf . So

the proof is complete.

Remark 2: Consider the following special form of (1)

dx0(t)

= [A00x0(t)+A01x1(t)+A02x2(t)

+B01u1(t)+B02u2(t)]dt
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+
r

∑

p=1

[Ap00x0(t)+Ap01x1(t)+Ap02x2(t)

+Bp01u1(t)+Bp02u2(t)]dwp(t), (33a)

εidxi(t)

= [Ai0x0(t)+Aiixi(t)+Biiui(t)]dt

+µi

r
∑

p=1

[Api0x0(t)+Apiixi(t)+Bpiiui(t)]dwp(t),(33b)

where xi(t) ∈ ℜni , i = 0, 1, 2, ui(t) ∈ ℜmi , i = 1, 2.

The structure of the desired stabilizing control is of the

form:

ui(t) = Fi0x0(t) + Fiixi(t), i = 1, 2. (34)

If we apply Theorem 1 to obtain a stabilizing control for

(34) we shall see that if ρ1 > 0, ρ2 > 0, we cannot obtain

Zf with diagonal structure in order to have a feedback gain

Ff also with diagonal structure. However, this happens if

ρ1 = 0 or/and ρ2 = 0.

IV. NUMERICAL EXAMPLE

In order to demonstrate the efficiency of the proposed

composite controller, we present results for a simple numer-

ical example. The system matrices are given as follows.

µi =
√
εi, i = 1, 2, r = 1, A00=

[

0 1
−1 −2

]

,

A0f =

[

0 1
0 2

]

, Af0=

[

1 0
0 0

]

, Af =

[

−1 1
2 −0.5

]

,

Ap00=

[

0.01 0
0 0.02

]

, Ap0f =

[

0 −0.01
0 0

]

,

Apf0=

[

0 0
0 −0.01

]

, Apf =

[

0.01 0
0 0.001

]

,

B0=

[

0
1

]

, Bf =

[

1
1

]

, Bp0=

[

0
0.01

]

, Bpf =

[

0.01
0.02

]

.

By solving the LMIs (30) and (31), the gains of the compos-

ite parameter-independent controller are given as follows.

F0 =
[

−2.7014e+ 02 −5.1154e+ 01
]

,

Ff =
[

−1.2109e+ 02 −1.3594e+ 02
]

.

In order to verify the ASMA of the closed-loop stochastic

system, we solve the following stochastic algebraic Lya-

punov equation (SALE).

PAc(ε) +Ac(ε)P +AT
cp(ε, µ)PAcp(ε, µ) + I4 = 0,(35)

where Ac(ε, µ) := A(ε, µ) + B(ε, µ)F and

Acp(ε, µ) := Ap(ε, µ)+Bp(ε, µ)F . The small parameters

are chosen as ε1 = 0.001 and ε1 = 0.002. In this case,

it is easy to observe that the SALE (35) has the positive

definite solution. In fact, the eigenvalues of P is λ(P ) =
{

1.0259, 2.4071e− 01, 3.7248e− 04, 6.4445e− 06
}

Therefore, since the SALE (35) has the positive definite

solution, the composite controller u(t) = Fx(t) =
[

F0 Ff

]

attains the ASMA.

V. CONCLUSION

In this paper, the composite stabilizing control problem

for a class of stochastic controlled linear systems modeled

by systems of multiparameter singularly perturbed Itô dif-

ferential equations were considered. The asymptotic struc-

ture of the solution of the algebraic Lyapunov equations

of stochastic control associated to this problem has been

established for the first time under the assumption that the

small perturbation parameters had same order magnitude.

Necessary and sufficient conditions which guarantee the

existence of stabilizing feedback gains not depending upon

the small parameters εi and µi have been expressed in terms

of solvability of some linear matrix inequalities (Theorem

2). Finally, the numerical example has shown the validity of

the proposed method.

The interest in stability is essentially an interest in robust-

ness of the model with respect to small changes. There is no

physical process such as white noise, so one needs some sort

of approach that could deal with a wide-band noise model

that can be suitably approximated by an Itô equation. This

issue will be addressed in the future work.
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