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Abstract— This paper focuses on the problem of static anti-
windup design for a class of multivariable nonlinear sys-
tems subject to actuator saturation. More precisely, a convex
approach is proposed to compute a static anti-windup gain
which ensures regional stability for the closed-loop system
assuming that a nonlinear dynamic output feedback controller
is previously designed to stabilize the nonlinear system. The
results are based on the differential-algebraic representation
of rational systems and a modified sector bound condition is
applied to model the saturation effects. From these elements,
LMI based conditions are devised to compute an anti-windup
gain for enlarging the closed-loop region of attraction. A
numerical example is given to illustrate the proposed method.

I. INTRODUCTION

The general principle of the anti-windup technique is the

introduction of an extra feedback loop in a pre-designed

control system to mitigate the effects caused by saturation. In

spite of existing many different techniques and approaches,

the majority of the results regards linear models (see [1]–

[3] and references therein) and focuses on the performance

improvement. Moreover, it is shown that through the design

of anti-windup compensators, we can also enlarge the region

of attraction of the closed-loop system, as illustrated in

[4], [5] for linear systems. However, if the anti-windup

mechanism is designed based on the linear approximation

of the nonlinear dynamics, it can lead to a poor behavior

when implemented on the original nonlinear control system.

Further, the computed region of attraction of the closed-loop

system considering the linear approximation may be highly

modified by the nonlinear dynamics. In general, one cannot

ensure that a region of stability computed considering the

linear approximation will be valid for the actual nonlinear

system.

In addition, only few works have addressed the anti-

windup synthesis problem for nonlinear systems subject to

saturating actuators. We can cite, for instance, the references

[6], [7] which consider anti-windup synthesis for linear-

parameter varying systems, [8] which proposes anti-windup
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methods for Euler-Lagrange systems, and [9] which con-

siders an adaptive control design. We can also cite some

related works dealing with an anti-windup architecture for

systems with nonlinear dynamic inversion (NDI) such as the

references [10]–[14].

On the other hand, a key problem to characterize the

stability of nonlinear systems is to determine a non conser-

vative estimate of the system region of attraction. In general,

the estimates are obtained from Lyapunov domains (see, for

instance, the references [15]–[19]. In this context, in [20] a

dynamic anti-windup compensator is proposed for the class

of quadratic systems aiming at enlarge the estimate of the

region of attraction. More recently, an approach to compute

an anti-windup gain has been proposed in [21] for the class

of rational nonlinear systems subject to actuator saturation. It

turns out that in [21], the method is based on a non-convex

condition, although the problem solution is obtained from

LMI relaxations, and the multivariable case is not addressed.

In light of the above scenario, this paper aims at devising

a numerical and tractable technique to design static anti-

windup compensators for a class of nonlinear systems subject

to actuator saturation. The class of systems considered in

this paper covers all systems modeled by rational differential

equations. We emphasize that a large class of systems can

be embedded in this setup such as quadratic systems, poly-

nomial systems and rational systems. Further, the proposed

technique can deal with more complex nonlinearities by

means of additional algebraic constraints and/or change of

variables (see, e.g., [22], [23]). In particular, the method to

be presented in the sequel applies a differential algebraic

representation (DAR) of nonlinear systems letting to cast

Lyapunov based stability conditions in terms of a finite set

of state-dependent linear matrix inequalities which can be

numerically solved at the vertices of a given polytope of

admissible states. To deal with the saturation nonlinearity, a

modified version of the generalized sector bound condition

proposed in [5] is also considered. From these elements, we

derive regional stabilizing conditions directly in LMI form.In

addition, an LMI based optimization problem is devised to

compute an anti-windup gain in order to obtain a maximized

region of asymptotic stability, which implicitly leads to the

maximization of the basin of attraction of the closed-loop

system. This work can be seen as a further development

of our previous result proposed in [21], where the main

differences and advantages are: (a) the conditions are directly

cast in terms of LMIs avoiding iterative relaxation schemes,

and (b) it allows to consider multivariable nonlinear control

systems in a straightforward way.
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The paper is organized as follows. Section II introduces

the problem to be addressed in the paper. Section III provides

preliminary results concerning the system representation, the

Lyapunov theory, and the modified sector bound condition.

The main result is presented in Section IV, where the

computation of the anti-windup gain is obtained by means

of an optimization problem. An illustrative example is given

in Section V demonstrating the potentialities of the proposed

approach. Section VI ends the paper with some concluding

remarks.

Notation: In is the n × n identity matrix and 0 may either

denote the scalar zero or a matrix of zeros with appropriate

dimensions. For a real matrix H , H ′ denotes its transpose

and H > 0 means that H is symmetric and positive definite.

For a block matrix, the symbol ⋆ represents symmetric

blocks outside the main diagonal block. For a given polytope

Φ, V(Φ) is the set of vertices of Φ. Matrix and vector

dimensions are omitted whenever they can be inferred from

the context.

II. PROBLEM STATEMENT

Consider the following class of nonlinear control systems:

ẋ(t) = fx(x(t)) + g(x(t))sat(vc(t))
y(t) = Hyx

x(t)
(1)

where x ∈ Bx ⊂ R
n denotes the state vector; y ∈ R

ny is

the measured output; vc ∈ R
nv is the control input; sat(·)

is the classical unit saturation function, i.e., sat(vc(t)) :=
sign(vc(t))min{|vc(t)|, 1}; and Hyx

∈ R
ny×n is a constant

matrix. It is assumed that fx, g : R
n 7→ R

n are rational

functions of x satisfying the conditions for the existence and

uniqueness of solution for all x ∈ Bx.

In addition, we assume that a dynamic output stabilizing

compensator:

η̇(t) = fη(η(t), y(t))
vc(t) = Hvη

η(t) +Hvy
y(t)

(2)

is designed to guarantee some performance requirements and

the stability of the closed-loop system (1)-(2) in the absence

of control saturation, where η ∈ Bη ⊂ R
nc denotes the

controller state; y(t) is the controller input; vc(t) is the

controller output; fη : R
nc × R

ny 7→ R
nc is a rational

function of η and y satisfying the conditions for existence and

solutions for all η ∈ Bη; and Hvη
∈ R

nv×nc ,Hvy
∈ R

nv×ny

are constant matrices.

In view of the undesirable effects of windup caused

by input saturation, an anti-windup gain is added to the

controller. Thus, considering the dynamic controller and the

anti-windup strategy, the closed-loop system reads:

ẋ(t) = f(x(t)) + g(x(t))sat(vc(t))
y(t) = Hyx

x(t)
η̇(t) = fη(η(t), y(t)) + Ec(sat(vc(t)) − vc(t))
vc(t) = Hvη

η(t) +Hvy
y(t)

(3)

where Ec ∈ R
nc×nv is a constant matrix representing the

anti-windup gain to be determined.

Considering the above setup, we aim at determining the

anti-windup gain Ec such that the region of asymptotic

stability of the closed-loop system is enlarged.

III. PRELIMINARIES

This section presents some basic results needed to derive

an LMI-based method to address the anti-windup compu-

tation as stated in Section II. In this sense, we present

in the following the Differential Algebraic Representation

(DAR) of nonlinear systems and some results regarding the

inclusion of ellipsoids in polytopic domains. Then, we recall

a generalized version of the modified sector bound condition,

proposed in [5], which will be useful for dealing with the

saturation nonlinearity.

A. Differential Algebraic Representation – DAR

Firstly, define the deadzone nonlinearity as follows

ψ(vc(t))
△
= vc(t) − sat(vc(t)) , (4)

and rewrite system (3) as:

ẋ(t) = f(x(t)) + g(x(t))vc(t) − g(x(t))ψ(vc(t))
y(t) = Hyx

x(t)
η̇(t) = fη(η(t), y(t)) − Ecψ(vc(t))
vc(t) = Hvη

η(t) +Hvy
y(t) .

(5)

We consider the following Differential Algebraic Repre-

sentation (DAR) for the system defined in (5):

ẋ(t) = A1x(t) +A2η(t) +A3z(t) +A4ψ(vc(t))
η̇(t) = C1x(t) + C2η(t) + C3z(t) − Ecψ(vc(t))
0 = Ω1x(t) + Ω2η(t) + Ωbz(t) + Ωcψ(vc(t)).

(6)

where z ∈ R
nz is an auxiliary nonlinear vector function of

(x, η, ψ) containing rational and polynomial terms (having

terms of order equal or larger than two) of fx(x)+g(x)vc−
g(x)ψ(vc) and of fη(x); and A1 ∈ R

n×n, A2 ∈ R
n×nc ,

A3 ∈ R
n×nz , A4 ∈ R

n×nv , C1 ∈ R
nc×n, C2 ∈ R

nc×nc ,

C3 ∈ R
nc×nz , Ec ∈ R

nc×nv , Ω1 ∈ R
nz×n, Ω2 ∈ R

nz×nc ,

Ωb ∈ R
nz×nz , and Ωc ∈ R

nz×nv are affine matrix functions

of (x, η).
Considering ξ(t) = [x(t)′ η(t)′]′ ∈ Bξ ⊂ R

nξ , Bξ =
{ξ ∈ R

nξ ; x ∈ Bx and η ∈ Bη}, with nξ = n+nc, we can

rewrite (6) as follows:

ξ̇(t) = Aaξ(t) + Abz(t) + (Ac−WEc)ψ(vc(t))
0 = Ωaξ(t) + Ωbz(t) + Ωcψ(vc(t))

(7)

with

Aa =

[

A1 A2

C1 C2

]

, Ab =

[

A3

C3

]

, Ac =

[

A4

0

]

,

W =

[

0n×nc

Inc

]

, Ωa =
[

Ω1 Ω2

]

.

In this case, it should be stressed that Aa, Ab, Ac, Ωa, Ωb

are affine matrices on ξ.

Moreover, we can rewrite vc(t) as follows:

vc(t) =
[

Hvy
Hyx

Hvη

]

[

x

η

]

= Kξ(t) ,
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where K ∈ R
nv×nξ is a constant matrix.

Regarding system (7), we assume that:

(A1) the origin (ξ = 0) is a (locally) asymptotically stable

equilibrium point; and

(A2) the domain Bξ is a given polytope containing the

origin with known vertices.

To guarantee that the DAR in (7) is well posed (i.e.,

the uniqueness of the solution ξ(t) is ensured), we further

consider that:

(A3) the matrix function Ωb(ξ) has full rank for all ξ ∈ Bξ.

Notice from A3 that the auxiliary vector z(t) can be elim-

inated from (7) leading to the original system representation

in (5) by means of

z = −Ωb(ξ)
−1(Ωbξ(t) + Ωcψ(vc(t))) . (8)

For further details on the above nonlinear decompositions,

the reader may refer to [22] and [23].

To assess the local stability of system (7), we consider a

quadratic Lyapunov function:

V (ξ) = ξ′Pξ , P = P ′ > 0 (9)

where P ∈ R
nξ×nξ , and the following normalized level set

R = {ξ ∈ Bξ : ξ′Pξ ≤ 1} . (10)

From the Lyapunov theory, if V (ξ) satisfies the conditions

for asymptotic stability for all x ∈ Bξ and R ⊂ Bξ, then

R as above defined is an estimate of the system region of

attraction [15].

B. Polytope of Admissible States

We consider in this paper that Bξ is a given polytopic

region containing the origin in its interior. Hence, Bξ can be

described by a set of scalar inequalities as follows:

Bξ = {ξ ∈ R
nξ : q′rξ ≤ 1, r = 1, . . . , ne} , (11)

where qr ∈ R
nξ , r = 1, . . . , ne, are given vectors defining

the ne faces of Bξ. For convenience, Bξ can be alternatively

described by the convex hull of its vertices, where the

notation V(Bξ) denotes the set of vertices of Bξ.

Notice that the set R is included in the region Bξ if the

following condition is satisfied [24]:
[

P qr
q′r 1

]

≥ 0, (12)

for r = 1, . . . , ne.

C. Generalized Sector Bound Condition

Consider a matrix G ∈ R
nv×nξ . Define now the following

set

S
△
= {ξ ∈ R

nξ : |(K(i)−G(i))ξ| ≤ 1, i = 1, . . . , nv} , (13)

where K(i) and G(i) stand for the i-th row of K and G,

respectively.

From the deadzone nonlinearity ψ(vc) in (4) and the set

S as above defined, the following Lemma can be stated [5].

Lemma 1: If ξ ∈ S then the relation

ψ(vc)
′T [ψ(vc) −Gξ] ≤ 0 (14)

is verified for any matrix T ∈ R
nv×nv diagonal and positive

definite.

Considering deadzone nonlinearities, the relation (14)

can be viewed as a generalized sector condition which

encompasses the classical one used, for instance, in [25]

and [26]. The generalized sector condition is known to be

less conservative than the classical one when assessing the

stability of systems subject to actuator saturation [5].

Similarly to the result of Section III-B, in view of (13),

the constraint R ⊂ S is satisfied if the following holds:
[

P K ′

(i) −G′

(i)

⋆ 1

]

≥ 0 , ∀i = 1, . . . , nv . (15)

IV. MAIN RESULT

In this section, an LMI framework to address the anti-

windup synthesis problem stated in Section II is presented.

In this case, by considering the quadratic Lyapunov func-

tion defined in (9), it follows

V̇ (ξ) = ξ̇′Pξ + ξ′P ξ̇ . (16)

Considering the auxiliary vector

ζ0 = [ξ̇(t)′ ξ(t)′]′ , (17)

we can rewrite (16) as follows:

V̇ (ξ) = ζ ′0Λ1ζ0 , (18)

with

Λ1 =

[

0 P

P 0

]

.

In view of Lemma 1, if ξ ∈ S, then the relation

ψ(vc)
′T [ψ(vc) − Gξ] ≤ 0 is verified for any matrix T

diagonal and positive definite. Hence, if

ζ ′0Λ1ζ0 − 2ψ(vc)
′T [ψ(vc) −Gξ] < 0 (19)

is verified, then V̇ (ξ) < 0 for all ξ ∈ S ∩ Bξ.

Considering the auxiliary vector

ζ = [ξ̇(t)′ ξ(t)′ z(t)′ ψ(vc(t))
′]′ (20)

we can rewrite (19) as

ζ ′Λ2ζ < 0 (21)

with

Λ2 =









0 P 0 0
P 0 0 G′T

0 0 0 0
0 TG 0 −2T









.

Define now the following scalars:

β1 = ξ̇(t)′M1[−ξ̇(t) + Aaξ(t) + Abz(t)
+(Ac −WEc)ψ(vc(t))]

β2 = ξ(t)′M2[−ξ̇(t) + Aaξ(t) + Abz(t)
+(Ac −WEc)ψ(vc(t))]

β3 = z(t)′M3[Ωaξ(t) + Ωbz(t) + Ωc(ξ)ψ(vc(t))]

(22)
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In view of the representation of the system presented in (7),

it follows that the equations

0 = β1 + β′

1 , 0 = β2 + β′

2 , 0 = β3 + β′

3 (23)

are satisfied, for any matrices M1 ∈ R
nξ×nξ , M2 ∈ R

nξ×nξ

and M3 ∈ R
nz×nz .

From (23), if

ζ ′Λ2ζ + β1 + β′
1 + β2 + β′

2 + β3 + β′
3 < 0 (24)

holds, then (21) is satisfied.

Observe that we can rewrite (24) as follows

ζ ′Λ3(ξ)ζ < 0 (25)

where

Λ3(ξ)=









−M1 −M
′
1 P −M2 +M1Aa M1Ab

⋆ M2Aa + A′
aM

′
2 M2Ab + Ω′

aM
′
3

⋆ ⋆ M3Ωb + Ω′

bM
′
3

⋆ ⋆ ⋆

M1Ac −M1WEc

M2Ac −M2WEc +G′T

M3Ωc

−2T









.

Let us assume that M1 is nonsingular and that M2 =
M ′

2 > 0 and M3 = M ′
3 > 0. Define now the following

matrices Q1 = M−1
1 , Q2 = M−1

2 , Q3 = M−1
3 , F = T−1

and

Π0 =









Q1 0 0 0
0 Q2 0 0
0 0 Q3 0
0 0 0 F









. (26)

Pre- and post-multiplying the condition Λ3(ξ) < 0 by Π0 and

Π′
0, we have









−Q1 −Q′
1 Q1PQ2 −Q1 + AaQ2 AbQ3

⋆ AaQ2 +Q2A
′
a AbQ3 +Q2Ω

′
a

⋆ ⋆ ΩbQ3 +Q3Ω
′

b

⋆ ⋆ ⋆

AcF −WEcF

AcF −WEcF +Q2G
′

ΩcF

−2F









< 0 .

Observe that the above inequality is not an LMI due

the term Q1PQ2. However, in this case, we can consider

P = M2 and it follows that PQ2 = Inξ
. Besides, for the

terms Q2G
′ and EcF , we consider the following change of

variables: G′
q = Q2G

′ and EF = EcF . In this case, if

Λ4(ξ) < 0 , (27)

where

Λ4(ξ)=









−Q1 −Q′
1 AaQ2 AbQ3

⋆ AaQ2 +Q2A
′
a AbQ3 +Q2Ω

′
a

⋆ ⋆ ΩbQ3 +Q3Ω
′

b

⋆ ⋆ ⋆

AcF −WEF

AcF −WEF +G′
q

ΩcF

−2F









< 0 ,

holds, then (21) is satisfied.

On the other hand, defining Π1 =

[

Q2 0
0 1

]

, if

Π1

[

P qr
q′r 1

]

Π1 ≥ 0, (28)

holds, then (12) is satisfied. The above condition can be

rewritten as follows:
[

Q2 Q2qr
q′rQ2 1

]

≥ 0, (29)

Similarly, the condition (15) is equivalent to:
[

Q2 Q2K
′

(i) −Gq
′

(i)

⋆ 1

]

≥ 0 . (30)

In light of the above, we state the following result.

Theorem 1: Consider system (5) satisfying A1-A2 and its

DAR representation (7) satisfying A3. If there exist constant

matrices Q2 = Q′
2 > 0, Q3 = Q′

3 > 0, EF and Gq of

appropriate dimensions and a positive diagonal matrix F ,

satisfying the following matrix inequalities for all ξ ∈ V(Bξ).

Λ4(ξ) < 0 , (31)
[

Q2 Q2qr
q′rQ2 1

]

≥ 0, (32)

[

Q2 Q2K
′

(i) −Gq
′

(i)

⋆ 1

]

≥ 0 . (33)

then the anti-windup gain Ec = EFF
−1 is such that for all

ξ(0) ∈ R, with P = Q−1
2 , the trajectory ξ(t) belongs to R,

and approaches the origin as t → ∞, where R is as given

in (10).

Proof. First recall that matrices Aa, Ab, Ac, Ωa, Ωb and

Ωc are affine in ξ. Hence, if the inequalities (31)-(33) are

feasible for each ξ ∈ V(Bξ), then, by convexity, they are

also satisfied for all ξ ∈ Bξ.

Since (from (31)) Q1 +Q′
1 > 0 and (by hypothesis) Q3 >

0, it follows that matrix Π0 defined in (26) is invertible.

Hence if Λ4(ξ) < 0, it follows that Λ3(ξ) < 0. Hence, in

view of (23) we conclude that (19) holds with Q−1
2 = P > 0.

Hence, if R ⊂ S ∩ Bξ and considering V (x) = x′Px, it

follows that V̇ < 0, which ensures that for all ξ(0) ∈ R the

trajectory ξ(t) belongs to R and approaches the origin as

t→ ∞.

Now, consider the relations (32) and (33). Pre- and post

multiplying (32) and (33) by Π−1
1 , lead to (12) and (15),

respectively. It follows that the inclusion R ⊂ Bξ ∩ S is

satisfied, which concludes the proof. �

Theorem 1 can be applied for computing the anti-windup

gain while providing an estimate of the region of attraction of

the system in (1). Often, we are also interested in computing
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an estimate R of the system region attraction as large as

possible. To this end, the following optimization problem

can be considered:

max trace(Q2) : (31), (32), (33), ∀ξ∈V(Bξ) . (34)

since R is an ellipsoidal domain.

Remark 1. The region Bξ corresponds to a region where

the feasibility of the state dependent LMIs of the Theorem 1

should be verified. It is a priori fixed by the designer.

In practice, it can be chosen as an hyper-rectangle, which

allows a straightforward description as (11) and the vertices

characterization. Of course, the assumption regarding the

existence and uniqueness of the solutions in Bξ must be

respected.

Remark 2. Note that the maximization of trace(Q2) is a

criteria that leads to an implicit maximization of the size of

R. We stress that other classical size criteria of ellipsoidal

sets such as volume maximization, minor axis maximization,

minimization of trace of P and the maximization in certain

directions (see, e.g., [16], [17], [25], [27]) can be also easily

applied.

V. NUMERICAL EXAMPLE

Consider the nonlinear closed-loop system borrowed

from [21]:

ẋ(t) = (x2(t) − 1)x(t) + sat(vc(t))
y(t) = x(t),

(35)

and the controller

η̇(t) = −x(t)
vc(t) = η(t) − 2y(t).

(36)

Consider Bξ :=
{

ξ ∈ R
2 : |ξ1| ≤ α1, |ξ2| ≤ α2

}

, where

α1 = 1.3 and α2 = 2.4
Considering the DAR representation given in (7) with

z(t) = x2, we get for (35)-(36) the following:

Aa(ξ) =

[

−3 1
−1 0

]

, Ab(ξ) =

[

x

0

]

, Ac(ξ) =

[

−1
0

]

,

Ωa(ξ) =
[

x 0
]

, Ωb(ξ) = −1 ,

Ωc(ξ) = 0 , K =
[

−2 1
]

.

Based on optimization problem stated in (34), we have

determined the estimate R1 of the region of attraction

for Ec = 0. Figure 1 shows the estimate R1 obtained

considering (34). In this case the matrix P is given by:

P =

[

0.9826 −0.2750
−0.2750 0.3211

]

.

Applying the optimization problem (34) and considering

Ec 6= 0, we obtain:

P =

[

0.8514 −0.2547
−0.2547 0.2498

]

and Ec = 5.2464 .

Figure 2 shows the new estimate of the region of attraction

for the above value of Ec which is denoted by R2. (solid

line).

Fig. 1. Estimate of the region of attraction R1 without anti-windup.

Fig. 2. Estimate of the region of attraction R2 with anti-windup.

Comparing Figures 1 and 2, we can note that the real re-

gion of attraction is greatly enlarged thanks to the additional

anti-windup loop.

For comparison purposes, we present both estimates in

Figure 3, where R1 is in dashed line and R2 is in solid line.

The region where the control does not saturate is denoted by

Rns.

Considering the initial condition ξ(0) = [−0.6 1.16]′,
Figure 4 shows the trajectory of the output (y) and the control

signal (vc) in both cases (with and without the anti-windup

strategy). In this case, note that, with anti-windup strategy

(dashed-line), the control signal remains less time saturated

and the transient performance is improved.

VI. CONCLUDING REMARKS

This paper has proposed an approach to compute anti-

windup gains for a class of multivariable nonlinear systems

subject to actuator saturation. The proposed design con-

ditions relies on a differential algebraic representation of

rational systems, which can model a broad class of nonlinear
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Fig. 3. Comparison of R1 and R2.

Fig. 4. Trajectory of the state x and the control signal.

systems. To deal with the saturation, we have considered a

modified version of the generalized sector bound condition.

From these elements, an LMI-based method has been devised

to compute anti-windup gains aiming at the maximization

of the estimates of the region of attraction of the closed-

loop system. A numerical example has demonstrated the

potentialities of the proposed approach.
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