
  

  

Abstract—In nonlinear active noise control (ANC) applica-
tions the on-line tuning of the parameters of the nonlinear 
control filter is not sufficient to guarantee the required model 
accuracy, and a suitable model structure adaptation scheme 
must be included. However, the ANC setting configures an 
indirect model identification problem which does not give 
direct access to the target output signal for the filter model. As 
such, the filter adaptation problem cannot be solved with the 
linear regression tools usually employed for model selection. A 
modified ANC scheme is here proposed, where the controller 
adaptation loop is reconfigured as a direct identification pro-
blem, to allow for model selection, and an auxiliary adaptation 
loop is introduced to compensate for the error resulting from 
the scheme modification. Some simulation examples are repor-
ted to show the algorithm effectiveness. 

I. INTRODUCTION 
CTIVE Noise Control (ANC) methods address the pro-
blem of acoustic noise reduction through the generation 

of secondary acoustic signals designed to interfere negative-
ly with the noise, [1]–[2]. Typically, linear adaptive filters 
are employed to control the secondary sources, the parame-
ters of which are tuned on-line with a Least Mean Squares 
(LMS) type algorithm. A reference signal (acoustic or not, 
depending on the application), highly correlated with the 
noise, is used as input to the control filter, and the cancella-
tion performance is evaluated by measuring through a mi-
crophone the sound resulting from the combined application 
of the noise and the secondary signals. 

Several extensions to the nonlinear case have been propo-
sed in the literature to deal with nonlinearities related to the 
characteristics of both the noise [3] and the involved acou-
stic paths [4]. For example, devices such as microphones, 
amplifiers, loudspeakers and converters commonly suffer 
from distortion and saturation problems. The related ANC 
methods and schemes are collectively denoted NANC (Non-
linear ANC).  

Various classes of nonlinear models have been employed 
in NANC methods, such as truncated Volterra expansions 
[5]–[7], radial basis functions [5], multi–layer neural net-
works [8]–[9], functional link artificial neural networks with 
trigonometric functional expansions, [7], [10]–[11], or pie-
cewise linear functional expansions [12], adaptive bilinear 
filters [13], general function expansion nonlinear filters [14], 
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polynomial nonlinear autoregressive models with exogenous 
variables (NARX) [15].  

Independently of the adopted model class, the size of the 
model is of great concern for ANC applications, since the 
computational complexity of the filter adaptation algorithm 
scales with the number of model parameters. This discoura-
ges the use of non-recursive models of the NFIR type (Non-
linear Finite Impulse Response), such as Volterra expan-
sions, or functional link artificial neural networks, that typi-
cally require a large number of parameters to achieve the 
necessary model accuracy. 

Besides, it is well known from the model identification 
literature that all sorts of undesired problems may arise 
when a nonlinear system is identified using an incorrect 
model structure, such as overfitting, parameter fluctuation, 
poor model generalization capabilities and even model insta-
bility (see, e.g., [16]–[17]). The general class of recursive 
NARX models has been here employed, since it guarantees 
sufficient flexibility (it encompasses both Volterra and 
bilinear filters), and – which is more important – comes also 
equipped with model structure selection techniques [18], 
which can be employed to carefully tune the model structure 
on-line. 

These techniques are essentially based on efficient ortho-
gonalization techniques that require a linear regression for-
mulation of the identification problem. Unfortunately, the 
standard ANC setting configures an indirect identification 
problem that does not generally yield a linear regression in 
the filter parameters even if the control filter has a linear-in-
the-parameters structure. In view of this, an alternative 
NANC scheme is here introduced where the control filter 
adaptation is reconfigured in a direct identification fashion. 
This scheme rearrangement is essentially equivalent to 
commuting the control filter block with a suitably modified 
secondary acoustic path system. The latter system is adapted 
through an auxiliary adaptation loop, seeking to minimize 
the commutation error, hence the name Dual Filtering LMS 
(DFLMS). The novel NANC scheme allows for simulta-
neous on-line parameter estimation and model structure tu-
ning. Some simulations are reported to demonstrate the 
algorithm effectiveness in harshly time-varying conditions. 

II. ACTIVE NOISE CONTROL 
The basic feedforward ANC setting is represented in Fig. 1. 
The offending noise signal d(k) is modeled as a filtered ver-
sion of the (measurable) reference signal x(k) through an un-
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known primary acoustic path P. The same reference signal 
feeds the control filter C to produce the driving signal y(k) 
for the secondary acoustic source, ideally designed so that 
the resulting signal y’(k) at the error measurement location 
cancels the primary noise. Signal y’(k) is obtained by filte-
ring y(k) through the secondary path S, which accounts for 
the measurement and control chain, as well as the acoustic 
path from the secondary source to the error microphone. 

 x(k) + 

− 

e(k) d(k) 

y’(k) y(k) C S 

P 

 
Fig. 1.  Block diagram of an adaptive feedforward ANC system. 

The controller is implemented as an adaptive parametric 
filter, whose coefficients (or weights) are tuned by means of 
an adaptive algorithm of the LMS family to minimize the 
error e(k) = d(k) − y’(k).  

The ANC scheme of Fig. 1 configures an indirect identifi-
cation problem, where one is interested in the estimation of 
C, but direct access to the target outputs of C is not availa-
ble, since S is generally non-invertible. In the linear frame-
work, this issue is inessential, since blocks C and S can be 
exchanged (at least in the slow adaptation hypothesis, where 
C can be assumed almost time invariant). This results in the 
direct adaptation scheme of Fig. 2, where direct access to 
the target output of C is possible, through the error measure-
ment. 

 x(k) + 

− 

e(k) d(k) 

y’(k) x’(k) S C 

P 

 
Fig. 2. ANC scheme with S and C commuted. 

As a result, C can be adapted, e.g. with a LMS weight 
update rule, as if it had the filtered reference signal x’(k) 
(obtained by filtering x(k) through an estimated version of 
the secondary path dynamics, Ŝ) as input and y’(k) as output. 
This is the rationale behind the well known Filtered-x LMS 
(FXLMS) and Filtered-u LMS (FULMS) algorithms, as de-
picted in Fig. 3. In the latter case, since an Infinite Impulse 
Response (IIR) structure is assumed for the control filter, the 
filtering applies not only to the reference signal but also to 
the control variable y(k). 

 x(k) + 

− 

e(k) d(k) 

y’(k) y(k) C S 

P 

LMS x’(k) e(k) 
Ŝ 

 
Fig. 3. The FXLMS paradigm. 

In the nonlinear case, block commutation is not possible, 
and the FXLMS/FULMS paradigm can be applied only in 
very specific structural assumptions on both C and S. For 
example, in the Volterra FXLMS (VFXLMS) [6], the Filte-
red-S LMS (FSLMS) [10]–[11] and the Bilinear FXLMS 
(BFXLMS) [13] schemes S is assumed linear and C has 
either an NFIR (non-recursive) or output affine structure. 
The more general case where S is nonlinear is examined in 
[14] and [15], where the indirect identification problem is 
solved by accounting for the gradient of S in the weight 
update mechanism, as in the Nonlinear Filtered Gradient 
LMS (NFGLMS) developed in [15] for NARX models. 

III. MODEL STRUCTURE SELECTION METHODS 

A. Polynomial NARX models  
The class of NARX models is frequently used in black-box 
non-linear model identification applications in view of its 
representation capabilities and the flexibility of the model 
structure [19]. Under mild assumptions, a discrete-time non-
linear system can be represented with a recursive input–
output model of the type: 

y(k) = f(y(k−1), ..., y(k−L), x(k), ..., x(k−L)), (1) 

where f(·) is a generic nonlinear function, y(k) and x(k) are 
the output and input signals, respectively, and L is the maxi-
mum lag (assumed equal for the input and output signals, for 
simplicity). Model (1) is the deterministic version of the 
NARX model. In Equation (1), a polynomial expansion is 
commonly adopted to represent the nonlinearity f(·), resul-
ting in a linear regression: 

y(k) = f(u(k))Tw, (2) 

where f(u(k)) = [f1(u(k))  f2(u(k)) ... fn(u(k))]T is the regressor 
vector, fj(u(k)) being a monomial in the arguments u(k) = 
[y(k−1) ... y(k−L) x(k) ... x(k−L)], and w = [w1 w2 ... wn]T is 
the parameter vector (vector quantities are indicated with 
boldface lower case letters). 

The full polynomial expansion is seldom employed, since 
it typically yields largely over-parameterized models and a 
model structure selection procedure is generally adopted to 
find the appropriate model regressors. 

B. On-line model structure selection 
The identification of a polynomial NARX model is a com-
plex problem combining parameter estimation with model 
structure selection. The model building process typically 
alternates forward and backward regression steps, usually in 
combination with Orthogonal Least Squares (OLS) techni-
ques to decouple the estimation of the parameters associated 
with different regressors [20]. Both batch and on-line algo-
rithms have been developed. Notable examples of the first 
category are the Forward-Regression Orthogonal Estimator 
(FROE) [21] and the Simulation Error Minimization with 
Pruning (SEMP) approach [17]. 
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The Givens rotation with Forward selection and Exponen-
tial windowing (GFEX) [22], and Givens rotation with For-
ward selection and SLiding windowing (GFSL) [23] algo-
rithms extend the OLS regression method to the adaptive 
case. Both algorithms employ an efficient data updating 
mechanism based on a recursive implementation of the QR 
decomposition of the regressor matrix (with different windo-
wing and forgetting factor options). Model selection is ope-
rated by swapping regressor positions in the orthogonalized 
regressor matrix. This requires the use of several matrix 
operations to preserve the orthogonality of the regressor 
matrix when the model structure is changed. An enhanced 
version of the GFSL has been recently introduced in [18], 
with a more articulate selection policy, including both for-
ward and backward regression operations. The resulting 
algorithm, denoted Recursive Forward Regression with 
Pruning (RFRP) is here employed.  

Briefly, when a new datum arrives the current model is re-
estimated and evaluated. If the accuracy has fallen below a 
given threshold, a model structure modification is triggered. 
This consists in one or more model addition/pruning itera-
tions until the desired accuracy level is recovered. At each 
of these iterations the RFRP evaluates for possible inclusion 
all the regressors left out of the current model, based on the 
Error Reduction Ratio (ERR) criterion [21], which basically 
measures the marginal model improvement obtained by 
adding individually each regressor. The regressor with the 
highest ERR is then added to the model. Subsequently, it 
prunes redundant terms, as long as the combined addition/ 
elimination of terms improves the model accuracy. The main 
tuning knobs of the RFRP are the dimension W of the data 
window and the accuracy thresholds for the overall model 
(Jthres) and the model increment (ERRthres), respectively.  

From an algorithmic point of view, the key points of the 
GFEX, the GFSL and RFRP are the recursive updating of 
the QR decomposition of the regressor matrix operated when 
new data are available, and the retriangularization of the R 
matrix every time the model structure is changed. The inte-
rested reader is addressed to [18] for details on the imple-
mentation of the FPRP algorithm. 

IV. DUAL ADAPTATION ANC SCHEME 
The mentioned model selection techniques are all desi-

gned for a direct identification problem, formulated as a 
linear regression. As already discussed, the standard ANC 
scheme with nonlinear secondary path is instead an indirect 
identification problem, and does not result in a linear regres-
sion in the control filter parameters. In the following, an 
alternative ANC scheme is illustrated that addresses the con-
trol filter adaptation in a direct identification mode, at the 
cost of introducing a second adaptation loop. 

For ease of notation denote as 

y(k) = [C](x(k)), (3) 

y’(k) = [S](y(k)), (4) 

the nonlinear control filter and secondary path. Now, in the 
standard ANC scheme, one obtains: 

y’(k) = [S](y(k)) = [S]([C](x(k))) = [S°C](x(k)), (5) 

where ‘°’ denotes the nonlinear series block composition 
operator. Clearly, in general 

y’(k) = [S°C](x(k)) ≠ [C°S](x(k)), 

even if both nonlinear systems are assumed time-invariant.  
However, there may exist a nonlinear system S~, generally 

different from S, such that: 

y’(k) = [C°S~](x(k)).  (6) 

In that case, the resulting ANC scheme would be similar 
to that of Fig. 2, with S~ in place of the true secondary path S, 
and a direct identification scheme could be applied for the 
identification of C, using the filtered reference signal  

x~(k) = [S~](x(k))  (7) 

as input to C and the measured signal e(k) as modeling error.  
More precisely, using the stochastic gradient approach 

[1], the parameter update equation is derived as follows: 

w(k+1) = w(k) − 
µ
2 

∂e(k)2

∂w(k) 
T

 = w(k) − µ 
∂e(k)
∂w(k)

T

e(k) =  

            = w(k) + µ 
∂y’(k)
∂w(k)

T

e(k), (8) 

where w(k) is the parameter vector of linear regression (2) 
estimated at the kth iteration. Now, y’(k) can be approxima-
tely expressed as follows: 

y’(k) ≅ y~(k) = [C°S~](x(k)) = [C](x~(k)) = w(k)T f(u~(k)) 

with f(u~(k)) = [f1(u~(k))  f2(u~(k)) ... fn(u~(k))]T, fj(u~(k)) being a 
monomial in the arguments u~(k) = [y’(k−1) ... y’(k−L) x~(k) ... 
x~(k−L)]. The resulting weight update law is then simply: 

w(k+1) = w(k) + µ f(u~(k))e(k),  (9) 

where µ is the step size. Notice that Equation (9) is compu-
tationally equivalent to the FXLMS/FULMS rule. 

The existence of a system S~ such that the swapping rela-
tion (6) holds exactly is conditioned to the exact invertibility 
of C and is therefore not guaranteed in general. It is however 
arguable that an exact representation of S~ is actually 
necessary. In the linear framework the system Ŝ (see Fig. 3) 
used to pre-filter the reference signal in the FXLMS is only 
required to be within a ±90° phase range from S at every 
frequency, for algorithm stability. Although a similar 
condition has not been proven in the nonlinear domain, the 
simulation examples shown in the sequel prove that the 
cancellation performance can be excellent even with a non 
neglectable commutation error, defined as 

e~(k) = [S°C](x(k)) − [C°S~](x(k)).  (10) 

Accordingly, an estimation procedure has been set up for 
the estimation of S~, with the aim of minimizing the 
commutation error e~(k). Observe that the estimation of S~ 
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configures an indirect identification problem where the 
(nonlinear) control filter C has the role of the secondary 
path, but, given the much less stringent accuracy 
requirements on S~ compared to C, a fixed structure can be 
assumed for S~, and an indirect algorithm such as the 
NFGLMS [15] can be employed for its estimation, given the 
current controller C.  

More precisely, representing S~ also as a NARX model: 

x~(k) = g(x~(k−1), ..., x~(k−M), x(k), ..., x(k−M)) = 

        = g(z(k))T v(k) 

        = [g1(z(k))  g2(z(k)) ... gm(z(k))]T v(k), (11) 

where z(k) = [x~(k−1) ... x~(k−M) x(k) ... x(k−M)], v(k) is a 
vector of coefficients, and gj(z(k)) is a monomial in the argu-
ments z(k), the NFGLMS weight update rule is given by: 

v(k+1) = v(k) + η 
∂y~(k)
∂v(k)

T

e~(k), (12) 

where η is the step size. The derivative in Eq. (12) is 
computed using the chain rule as: 

∂y~(k)
∂v(k) = w(k)T ∂f(u~(k))

∂u~(k)  
∂u~(k)
∂v(k), (13) 

using the gradient of C, where u~(k) = [y~(k−1) ... y~(k−L) x~(k) 
... x~(k−L)]. Efficient rules for computing the recursive 
expression (13) are explained in [15]. 

Note that both weight update equations (9) and (12) are 
computed on the basis of pre-filtered signals. In (9) the 
filtering function is S~, whereas the filtered gradient of C is 
used in (12). Accordingly, the overall algorithm is named 
Dual Filtering LMS (DFLMS). 

The proposed strategy is schematically depicted in Fig. 4, 
where the dual adaptation loops are highlighted in color.  

 

)('ˆ ky
copy 

)(~ ke

)(~ ky  )(~ kx  

x(k) +

− 

e(k) d(k) 

y’(k)y(k) C S 

P 

C − 

LMS 

NFGLMS 

S~  

Ŝ      

 

Fig. 4. DFLMS scheme for NANC using NARX filters: dual adaptation of S~ 
(red) and C (blue). 

Notice that a model of the secondary path is required for 
the computation of the auxiliary error e~(k), while a copy of 
the current control filter is used in the auxiliary adaptation 
loop. In summary, the algorithm consists of the following 
main steps performed at each sample time: 

1) Computation of the controller output y(k); 
2) Updating of the weights of the auxiliary model S~; 
3) Filtering of the reference signal x(k) through the new S~; 
4) Updating of the weights of the control filter C. 
In order to reduce the impact of the auxiliary adaptation 

loop on the overall scheme in terms of computational load, 
the related weight updating process can be suitably down-
sampled, thus distributing the related computations over se-
veral consecutive samples. Notice also that the two adapta-
tion laws can be parallelized for increased efficiency. 

The main achievement of the DFLMS scheme consists in 
having reformulated the adaptation problem of the control 
filter C as a direct identification problem, using the approxi-
mate block commutation scheme by means of the auxiliary 
system S~. In this scheme, the identification of C amounts to 
a linear regression problem (the NARX model is linear-in-
the-parameters), where the input to the model is x~(k) and the 
model error is directly represented by the measured signal 
e(k). This allows the direct implementation of an on-line 
model structure selection algorithm, as e.g. the mentioned 
RFRP, alongside the parameter updating rules. The resulting 
algorithm is denoted RFRP-DFLMS. Notice that the model 
selection rule can also be downsampled with respect to the 
control filter’s parameter adaptation loop, for containment of 
the computational load. 

V. SIMULATION EXPERIMENTS 

A. Example 1 
The first example aims at a performance evaluation of the 
DFLMS scheme against the NFGLMS and the FXLMS in 
terms of disturbance rejection and speed of convergence. A 
simple time-invariant setting has been studied, where the 
primary path is modeled as a 2nd order NARX model: 

d(k) = 0.5d(k−1) − 0.3x(k−2) + 0.25x(k−1)2x(k−2), (14) 

and the secondary path is modeled as a non-minimum phase 
4th order FIR system, as in [6]: 

y’(k) = y(k−2) + 1.5y(k−3) − y(k−4), (15) 

A 500 Hz sinusoidal wave (sampled at 8 kHz) has been 
used as reference signal: 

x(k) = 2 sin⎝
⎛

⎠
⎞2π·500·k

8000  + v(k), (16) 

where an additive white noise process v(k) with Gaussian 
distribution has also been assumed. The variance of v(k) is 
chosen such that the power signal-to-noise ratio (SNR) is 
equal to 40 dB. 

A fixed NARX structure has been assumed for the control 
filter, i.e. a full 3rd order polynomial expansion with a maxi-
mum lag of 3, for a total of 119 parameters. The DFLMS 
scheme has been analyzed first with no adaptation of S~ 
(algorithm denoted NFXLMS), and then with the auxiliary 
adaptation on, using two different structures for S~, i.e. an 8-
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tap FIR filter and a 2nd order nonlinear FIR (NFIR) model 
with maximum lag 8, respectively. In all cases, the auxiliary 
model S~ is initialized to S. 

The NANC schemes are also compared to the standard li-
near FXLMS, where the order of the FIR controller has been 
chosen equal to the number of parameters of the NARX con-
troller, for fairness of comparison. For all the schemes the 
adaptation gains have been maximized, so as to guarantee 
the best convergence speed without compromising the stabi-
lity of the algorithms (see Table I). Moreover, all the control 
filter weights are initially set to zero.  

TABLE I  
PARAMETERS OF THE NANC ALGORITHMS FOR SETTING 1 
Method Controller 

adaption gain 
Auxiliary model 

adaption gain 
FXLMS 1·10−3 - 
NFGLMS 5·10−4 - 
NFXLMS 5·10−5 0 
DFLMS FIR 1·10−4 1·10−2 
DFLMS NFIR 1·10−4 1·10−2 

Fig. 5 displays the algorithms’ performance in terms of 
the Normalized Mean Square Error (NMSE), expressed as 
NMSE = 10 log10(E[e(k)2]/σd

2), where σd
2 represents the 

power of the disturbance noise [6]. The NMSE has been 
computed on a window of 1000 data. The FXLMS achieves 
a mere −3.8 dB noise attenuation, while the NFGLMS 
obtains the best results (−27.2 dB). The DFLMS variants 
provide an intermediate performance level, that approaches 
the steady-state attenuation of the NFGLMS when the on-
line adaptation of S~ is active.  
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NFGLMS
FxLMS
NFxLMS
DFLMS (FIR)
DFLMS (quadratic Volterra)

 
Fig. 5. Comparison of different NANC strategies for setting 1: NFGLMS 

(blue), FXLMS (green), NFXLMS (red), DFLMS with a FIR auxiliary 
model (black), DFLMS with a quadratic Volterra filter as auxiliary 
model (cyan dashed line). 

Figure 6 illustrates the performance of the auxiliary adap-
tation scheme, designed to reduce the commutation error 
(compare the DFLMS variants with the NFXLMS), signifi-
cantly improving both the speed of convergence and the 
canceling performance (−25 dB).  

B. Example 2 
A time-varying ANC setting has been examined next, to 

test the ability of the RFRP-DFLMS to track system varia-
tions. In particular, the secondary path is initially described 
by Eq. (15) but at sample k̄ = 10000 changes to: 

y’(k) = 0.7756y(k) + 0.5171y(k−1) − 0.362y(k−2), (17) 

The primary noise is generated by the following 3rd order 
polynomial model [6]: 

d(k) = w(k−2) + 0.02w(k−2)2 − 0.04w(k−2)3, (18) 
w(k) = x(k−3) − 0.3 x(k−4) + 0.2 x(k−5), (19) 

where the reference noise x(k) is a band-limited white noise 
in the (normalized) frequency interval [0.01, 0.1], with uni-
tary variance. 
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Fig. 6. Time-history of the commutation error in setting 1: NFXLMS (red), 

DFLMS with a FIR auxiliary model as S~ (black), DFLMS with a 
quadratic Volterra filter as auxiliary model (cyan dashed line).  

The RFRP-DFLMS has been compared to the NFGLMS 
and the plain DFLMS. A 2nd order polynomial NARX model 
with a maximum lag of 10 has been assumed for the latter 
two algorithms. The RFRP-DFLMS operates the model 
selection over the corresponding set of candidate regressors, 
starting from a FIR filter, for simplicity. The initial control 
filter parameters are set to zero and the adaptation gains are 
selected to guarantee the best trade-off between performance 
and stability (see Table II). 

TABLE II  
PARAMETERS OF THE NANC ALGORITHMS FOR SETTING 2 

Method Controller 
adaption gain 

Filtering model 
adaption gain 

Model selection 
parameters 

NFGLMS 5·10−4 - - 
DFLMS 1·10−4 1·10−2 - 
RFRP-DFLMS 1·10−3 1·10−1 W = 600 

Jthres = 1·10−6 
ERRthres = 5·10−5

The performance results of the considered algorithms in 
terms of the NMSE are plotted in Fig. 7. After the structural 
modification of the secondary path, the RFRP-DFLMS 
reacts much more rapidly and efficiently than both the other 
algorithms, achieving in only 100 samples the level of rejec-
tion performance reached by the NFGLMS after 20000 ite-
rations (the plain DFLMS is even slower). 

Notice that the RFRP-DFLMS selects models of less than 
10 terms over a set of 252 candidate regressors (see Fig. 8), 
which corresponds to a reduction of the computational time 
related to the controller weights updating by a factor of 25. 
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Fig. 7. NMSE results for setting 2: NFGLMS (blue), DFLMS (black) and 

RFRP-DFLMS (grey) 
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Fig. 8. Regressors selected by the RFRP algorithm in experiment 2.  

Only regressors that have been selected at least once are shown. 

VI. CONCLUSIONS 
A novel NANC scheme for NARX models has been pro-

posed that reformulates the control filter adaptation as a di-
rect identification problem, thanks to an auxiliary adaptation 
loop that estimates the correct filtering system. Both the 
main and the auxiliary adaptation loops operate with weight 
update rules based on the use of suitable pre-filtered signals. 
An on-line model structure selection procedure, the RFRP, 
is then combined with the control filter parameter tuning 
mechanism for enhanced accuracy in time-varying 
conditions. 

The proposed method has been tested on both time inva-
riant and time-varying nonlinear settings. The slight perfor-
mance loss of the proposed DFLMS scheme in terms of 
steady state noise reduction compared to the NFGLMS algo-
rithm is more than compensated by the performance gains 
achievable using the RFRP in time-varying conditions. The 
RFRP-DFLMS scheme is also very efficient in reducing the 
model size, thereby cutting to a minimum the computational 
load of the primary – time critical – adaptation loop. 
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