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Abstract— Positioning and tracking devices with micrometer
range and sub-micrometer resolution are becoming of special
interest in recent years for an extending range of applications
including metrological devices, manipulators and mechaniza-
tion systems both in research and high precision industries
(for example, semiconductors). The control of these systems is
not an easy task because of its normally high stiffness and the
coupling existing between the different degrees of freedom. The
present work proposes a control strategy based on differential
flatness for static positioning and dynamic trajectory tracking
with a platform of three degrees of freedom. The system uses
piezoelectric actuators and is specially conceived for metrolog-
ical devices, which do not suffer important external loads. The
proposed method permits to decouple the design of a closed
loop control for each degree of freedom and calculates an open
loop command directly from the trajectory definition in the
three degrees of freedom. The performance of the controller has
been experimentally checked both in positioning and tracking
applications.

I. INTRODUCTION

The present work describes a control strategy for

positioning and trajectory tracking with micrometer range

and sub-micrometer resolution of a platform with three

degrees of freedom: vertical movement (z), tip (θx) and tilt

(θy). The system is specially developed for metrological

systems, like Atomic Force Microscopes (AFM), with no

external loads applied to the platform.

Platforms for high precision positioning and tracking

constitute an important field of research and development.

These devices can be used in metrological systems, like

the one described in this work, but its range of appli-

cation extends to many other fields, like micromechanics,

micromechanization and micro-biology [4], among others.

For applications requiring larger ranges of movement, the

so called manipulator systems are used [12]. These systems

combine a first stage using large range actuators with a

second stage using micrometer range actuators for increasing

the resolution of the former. There is a number of different

devices depending on the final purpose or the number of de-

grees of freedom. Using these last characteristic as reference,
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literature describes examples with: one degree of freedom,

like the single-axis displacement systems described in [5]

and [6]; two degrees of freedom, like the XY positioning

system in [10]; three degrees of freedom, like the RRR-

platform in [4] or the XY θ platform in [9]; and with six

degrees of freedom, like [11]. The device used in present

work uses a tripod structure with three actuation lines which

adapt the concept described in [7] by increasing stiffness

and robustness according to its final purpose. This structure

presents important benefits with respect to typical tripod

positioners because of its low thickness structure and high

stiffness in x, y directions (horizontal displacements).

Two elements are of major importance in the design

of high precision positioning and tracking systems: joints

and actuators. In the first case, joints between elements are

mostly flexures, also named compliant links [18] based on

deformable elements which have a much lower stiffness in

the direction of interest compared with the others. These el-

ements avoid friction between parts, reduce backlash effects

and have a linear behaviour in the displacement range. With

respect to the actuators, they must be accurate and permit a

high movement resolution. In this connection, piezoelectric

actuators fit perfectly to this purpose and can be found in

many of the systems previously mentioned like [7][4][5].

However, there are designs based on other actuator types,

like DC linear motors [15], electrostatic actuators [16], Shape

Memory Alloys [12], among others. The platform object

of the present work uses amplified piezoelectric actuators

because of its compactness, response time and robustness.

With respect to the control methods, it is possible to find

many different approaches depending on the particularities

of the system: kinematics, actuators or final purpose. Ex-

amples of these methods are: PID compensators, robust µ-

synthesis [14], backstepping [17], robust impedance control

[8], among others. For the platform design used in the present

work, a global control strategy based on differential flatness

is proposed [1][2][3]. Compared to other approaches, the

proposed controller permits directly obtaining the command

to the three actuators from the description of the platform

movement in the global coordinates (z, θx, θy) and control-

ling the error in the three degrees of freedom in a decoupled

way, which highly simplifies the design process.

The details of the present work are described in next sec-

tions. Section II describes the platform. Section III presents

the mathematical model of the device, which will be subse-

quently used for defining the control strategy in section IV.

The results of the implementation are described in section
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Fig. 1. Picture of the platform. In the image the three accelerometers at the
upper part of the actuation line can be observed. Additionally, three strain
gauges are embedded in the piezoelectric actuators.

V.

II. DESCRIPTION OF THE PLATFORM

The platform object of the present work appears in figure

1 and it is intended for arranging accurate displacements in

three degrees of freedom: z, θx and θy (axis can be observed

in figure 5).

The system is based on a tripod structure with three actua-

tion lines shifted 120 degrees. Figure 2 shows the structure of

one actuation line and its relative position. This morphology

is described in [7] and places the actuator between two

flexures of one degree of freedom. The actuator moves

parallel to the xy plane. The actuation direction is modified

from horizontal to vertical direction by using a lever. The

restrictions created by the flexures define a preferred direc-

tion of movement, presenting an increased stiffness in the

other directions. Finally, the vertical movement is transmitted

to the upper platform by means of a vertical link between

platform and lever. The design of the flexures varies from

[7] and flexures with one degree of freedom are preferred

over the original links with multiple degrees of freedom.

This condition is only relaxed for the connection between

the upper platform and the vertical link, which uses hinges

with two-degrees of freedom for the rotation in axes x and

y. This configuration increases the stiffness of the system in

all directions.

The piezoelectric actuator APA-120ML from Cedrat

Group is used. This actuator uses a cymbal for amplifying

the stroke and it is characterized by a high robustness to

tangent forces, which is of great importance when mounting

it in a structure with geometrical tolerances between parts.

III. MATHEMATICAL MODEL OF THE PLATFORM

The next description outlines the mathematical derivation

of a state space representation for the platform. The details

of the derivation can be found in the technical report [20].

This model is characterized by:

Fig. 2. Image of an actuation line. A kinematic model is overimposed in
yellow, with the joints represented as blue spheres.

Fig. 3. Main elements and dimensions of an actuation line.

• States: position (x), velocity (ẋ) of the upper platform

in the three degrees of freedom and charge (q) in the

three piezoelectric actuators (figure 5):

x =





z
θx

θy



 , ẋ =





ż

θ̇x

θ̇y



 ,q =





qa

qb

qc



 (1)

• System inputs: the input voltage to the three actuators

a, b and c:

v =





Va

Vb

Vc



 (2)

In the application of interest, the external forces can be

neglected.

This representation is sequentially obtained by defining the

behaviour of each single actuation line and finally coupling

them using the rotation of the upper platform and the

dynamic loads. Figures 3 and 4 show a simple representation

of an actuation line and its main dimensions:

• Assuming small displacements of the actuator j (δj),

the angles αi of each joint Pi are (figure 4):

α1 ≈ 0
α2 = α1 + α3 ≈ α3

α3 ≈
δj

t4sin(π/2−β)

α4 ≈ α3

α5 ≈ 0

(3)
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Fig. 4. Angles of one actuation line when the piezoelectric actuator changes
its length. For clarity reasons, subindexes j for the three lines have not been
included in F and x.

With t4 =
√

t22 + a2.

• The relation between δp,j , the deformation at a definite

voltage if no load is applied on the actuator j, and the

displacement (xj) in figure 4 is obtained as:

xj = A1δp,j − A2Fj (4)

Where,

A1 = ke1amb
ke1aam+(kb2+kb3+kb4)

A2 =
(

1
ke3

+ amb2

ke1a2am+(kb2+kb3+kb4)

)

am = t4sin (π/2 − β)

δp,j = apztqj

ke1 =
(

1
ka1

+ 1
ka2

+ 1
kp

)

−1

ke3 =
(

1
ka4

+ 1
ka5

)

−1

(5)

In expressions above, ke1 is the equivalent stiffness

in the horizontal bar, and ke3 is the stiffness of the

pillar. kai and kbi represent the axial and rotation

stiffness of joint i. kp and apzt are the stiffness and the

electromechanical transformation factor of the actuator.

• The force applied at the actuator j (F1,j) because of the

displacement xj and the load Fj is:

F1,j = B1Fj + B2xj (6)

Where,

B1 = b
a + 1

bke3am
(kb2 + kb3 + kb4)

B2 = 1
bam

(kb2 + kb3 + kb4)
(7)

The coupling between the three actuation lines is obtained

by:

• The relative transformation between the degrees of

freedom of the platform and the vertical movement of

the three actuation lines (a, b, c) linked to the former

at a distance r from its center (figure 5):

f = Tf fabc, x =
(

TT
f

)−1
xabc (8)

Fig. 5. Image of the platform with a representation of the reference axis
in yellow and the nomenclature adopted for the three actuation lines (a, b

and c). The actuation lines are shifted 120 degrees.

Where,

Tf =





1 1 1
0 −rcos(π/6) rcos(π/6)
−r rsin(π/6) rsin(π/6)





f =





Fz

Γx

Γy





fabc =





Fa

Fb

Fc





(9)

In previous expressions, subindexes a, b and c refer to

local values of the actuation lines. Fk and Γk stand for

forces and torques in direction k (k = x, y, z).

• The coupling effect of the upper platform by the dy-

namic loads and the rotation angles θx and θy:

f = Mẍ + Cvẋ + Dx (10)

With,

M =





M 0 0
0 Jx 0
0 0 Jy





D =

(

0 01×2

02×1 −TT
α5Kα5Tα5

)

Tα5 =

















cos(π/3) cos(π/6)
−sin(π/3) sin(π/6)
cos(π/3) −cos(π/6)
sin(π/3) sin(π/6)

−1 0
0 −1

















Kα5 =





kb5 0 0

0 kb5 0

0 0 kb5





kb5 =

(

kb5,x kb5,xy

kb5,xy kb5,y

)

(11)

M stands for an inertia matrix in the three degrees of

freedom, Cv is a viscous friction term, and D is the stiffness

associated with the line 5.
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δp,j can be related with the electrical charge qj in the

actuator j (5) which depends on the input voltage by [19]:

q̇j =
1

Re

(

Vj −
qj

C
+ apztF1,j

)

(12)

where,

Vj : voltage applied to the actuator j [V ]
qj : charge in the piezoelectric capacitor j [C]
Re : electric resistance from amplifier to actuator [Ω]
C : capacitance value of the actuator [F ]

Combining (4), (6), (10) and (12) the state space repre-

sentation results:




ẋ

ẍ

q̇



 =





03×3 13×3 03×3

−H1 −H2 −H3

H4 H5 H6









x

ẋ

q



 +





03×3

03×3

H7



v

= Assxss + Bssv

(13)

With,

H0 = apztB1T
−1
f

H1 =
(

A2T
−1
f M

)

−1 (

TT
f + A2T

−1
f D

)

H2 =
(

A2T
−1
f M

)

−1

A2T
−1
f Cv

H3 =
(

A2T
−1
f M

)

−1

A1apzt

H4 = R−1
e

(

apztB2T
T
f + H0D − H0MH1

)

H5 = R−1
e (H0Cv − H0MH2)

H6 = R−1
e

(

−C−1
− H0MH3

)

H7 = R−1
e

(14)

A1, A2, B1, B2, Re, C and apzt are diagonal matrices with

the terms in the diagonal equal to the scalar value of the

same name.

System (13) is controllable, as it can be easily checked by

calculating the rank of the controllability matrix Css:

Css =
(

Bss AssBss A2
ssBss

)

(15)

IV. CONTROL STRATEGY

The proposed controller uses differential flatness for its

design. This property and its influence in the controller

design is described in this section.

A. Differential flatness

Differential flatness is a property of a system which

permits to express its states x and inputs u in terms of the

so called flat outputs y, which are equal in number to the

inputs of the system, and a finite number of their derivatives

[1]. This property has two important consequences:

• The input values v (2) are directly obtained from the

definition of the desired trajectory in terms of the flat

outputs and their derivatives.

• The system expressed in flat coordinates has a trivial

shape.

By definition, a controllable linear system is flat [3] and

therefore it can be expressed in terms of its flat outputs. In

(13), the states x are the flat outputs y and the equivalence

between the original and the flat representation can be

expressed by means of the following diffeomorphism:

• In one direction:

x = y

ẋ = ẏ

q = H−1
3 (−ÿ − H1y − H2ẏ)

(16)

• In the other direction:

y = x

ẏ = ẋ

ÿ = −H1x − H2ẋ − H3q

(17)

The transformed system (13) has the shape:

...
y = ξ (18)

With ξ the input of the system.

B. Design of the compensator

Once the transformation is defined, we focus on the design

of the control strategy. To do that, the dynamics of the error

e is expressed as:

...
e =

...
yref −

...
y (19)

Where yref is the reference trajectory.

Defining the input as:

ξ =
...
yref + w (20)

The error dynamics results in:

...
e = −w (21)

As (21) is decoupled in z, θx and θy, the control strategy

can be defined locally in each degree of freedom j as:

wj = Kfl,j ëj (22)

Including (22) in (20):
...
y = ξ =

...
yref + Kflë

ÿ = η̈ = ÿref + Kflė

ẏ = η̇ = ẏref + Kfle

y = η = yref + Kfl

∫

edt

(23)

With Kfl a diagonal matrix. As observed, the error behaves

like a first order system.

The error signals are estimated from the sensor data

available, avoiding integration steps that could result in

windup problems. The sensors installed in the system are:

• Strain gauges embedded in the piezoelectric actuators:

they measure the value δj in the actuators, which can

be used for estimating y using (8) and the lever ratio.

• Accelerometers at the top of the three actuation lines:

they are used for estimating ÿ and, their integrated

value, for estimating ẏ. As before, the geometrical

relationship (8) is used.
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Fig. 6. Diagram of the control strategy showing: Kfl, the closed loop
compensator in the flat coordinates; Tfl, equivalence between the flat states
and the output voltage.

C. Voltage equivalence

The input voltage in the actuators is obtained using its

equivalence with the flat outputs and their derivatives as:

v = Tfl (ξ, η̈, η̇, η) = −H−1
7 H−1

3 ξ+
(

−H−1
7 H−1

3 H2 + H−1
7 H6H

−1
3

)

η̈+
(

−H−1
7 H−1

3 H1 − H−1
7 H5 + H−1

7 H6H
−1
3 H2

)

η̇
+

(

−H−1
7 H4 + H−1

7 H6H
−1
3 H1

)

η
(24)

V. EXPERIMENTAL RESULTS

The behaviour of the system has been experimentally

checked in two different conditions:

• Positioning the upper platform in static conditions.

• Trajectory tracking in the three degrees of freedom.

A. Positioning experiment

Figure 7 shows the behaviour of the system when three

stepped reference signals are commanded to the system at

the same time. For assuring the continuity of the reference

position, which is required for calculating the command (24),

the steps are described by means of sharp slope sinusoids.

As observed, reference and experimental lines coincide. The

error can be observed in figure 8.

In stationary conditions, the maximum error is ±18nm in

z, ±0.21µrad in θx and θy and is mainly caused by sensor

noise. The error slightly increases between the transitions

from one level to the next one during signal tracking. More

details on tracking are given in next subsection.

B. Tracking experiment

The performance of the system in tracking conditions is

evaluated using random signals. These signals are generated

at 20kHz, and filtered with a fourth order low-pass filter

for reducing the high frequency content to the desired limit.

These signals are differently generated for the three degrees

of freedom.

Figure 9 shows the behaviour of the system when the ref-

erence trajectory is a random signal with its main frequency

content below 5Hz. As observed, reference and tracked

signal perfectly match. The tracking error appears in figure

10. The RMS error with respect to the RMS value of the

reference signal is: 0.4% in z, 0.6% in θx and 0.4% in θy.

If the RMS error is referred to the maximum value of the

reference signal, the relative error is: 0.11% in z, 0.29% in

θx and 0.21% in θy .
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Fig. 7. Performance in positioning applications. In red, the reference
signal, and in blue, the experimental value estimated from the strain gauges
embedded in the actuators.
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Fig. 8. Error signal during positioning.
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Fig. 9. Performance in tracking applications using reference signals with
its main frequency content below 5Hz. In red, the reference signal, and in
blue, the experimental value estimated from the strain gauges embedded in
the actuators.
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Fig. 10. Tracking error using a reference signal with its main frequency
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VI. CONCLUSIONS AND FUTURE WORK

The present work describes a control strategy based on

differential flatness for a multi-axis positioning and trajectory

tracking platform of micrometer range. The platform has

three degrees of freedom: vertical displacement, tip and

tilt. Once the differential flatness has been demonstrated by

means of the system controllability, the position described in

terms of the three global coordinates (z, θx, θy) is proved

to be the flat output of the system and therefore, system be-

haviour can be completely described in terms of the reference

trajectory and its derivatives. As a consequence, the control

strategy permits: on the one hand, defining a feedforward

command in open loop conditions directly from the trajectory

definition; and on the other hand, designing a closed loop

compensator in a decoupled way for each degree of freedom

of the platform. Compared with other decoupled approaches

based on the local control of the three actuators, the flatness-

based controller proposed maintains the information about

the coupling effects between the actuators.

The platform has been experimentally evaluated in posi-

tioning and tracking applications. In the first case, the ob-

tained position estimate oscillates ±18nm in z, ±0.21µrad
in θx and θy with respect to the reference signal. This

oscillation is caused by the sensor noise. In the second

case, platform has been tested with three different random

reference signals applied at the same time in the three degrees

of freedom. The result obtained using random signals with

frequency components below 5Hz is: 0.4% in z, 0.6% in θx

and 0.4% in θy . These values are described in terms of RMS

errors with respect to the RMS value of the reference signal.

This work is part of a larger project for designing a

three-axis platform which could be used for positioning,

tracking or active vibration control, depending on the final

application. The description above is centered on positioning

and tracking applications, remaining vibration damping as a

future activity. Current tasks are focused on the calibration

of the system, increase of the tracking bandwidth, hysteresis

compensation and evaluation of other estimation techniques

for the flat states.
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