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Abstract— Human motor control mechanisms are distin-
guished by two remarkable properties: time delays and random
fluctuations. In this work, we focus on these two properties
and investigate the effects of fluctuations on the stability and
behavior of a stochastic linear time-delay system. The control
performance improvements due to fluctuation are presented
using numerical simulations as well as its theoretical analyses.
In conventional controller design, a random component such
as fluctuation is targeted for removal from the system as a
factor causing performance reduction. However, the results
presented in this paper suggest that an appropriate fluctuation
component in control systems can help to achieve better control
performances.

I. INTRODUCTION

Human motor control mechanisms are distinguished by
two remarkable properties – time delays and random fluc-
tuations – in closed-loop systems including sensory organs,
the musculoskeletal system, and the brain. Delay and fluc-
tuation components appear to impact control performances
negatively. Nevertheless, with their help, the quick, smooth
and precise voluntary movements can be achieved by human
beings.

Recently, the mechanism responsible for the high control
performance achieved in organisms including human beings
received considerable attention from many researchers. In
fact, various vital activities in organisms are supported by
extremely elaborate control mechanisms. These activities
include not only human motor control but also the control
of internal organs to achieve homeostasis and gene control
at the cell level. In this context, fluctuations are considered
to play an important role in such activities in organisms,
e.g., an improvement in the equilibrium ability via stochastic
resonance[1] and a constancy in the ventricular rate and
blood pressure of an able-bodied person[2], [3].

In this work, we focus on the two properties and investi-
gate the effects of fluctuation on the stability and the behavior
of a stochastic linear time-delay system. In particular, in
conjunction with robot vision systems, we come across the
use of an image-based inverted pendulum control system,
which corresponds to the stick balancing task for human
beings[4], [5], [6]. The control performance improvements
due to fluctuation are presented using numerical simulations
as well as theoretical analyses (Fig. 1). First, under the
assumption that the system has no fluctuation, we derive
a stability condition for the time-delayed control system
(Result 1). The stability condition for deterministic systems
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is compared with the stability condition for the stochastic
system with fluctuation at a later point in the document.
Moreover, by using our numerical simulator, fluctuation that
is generated in the proportional controller gain yields an
improvement in the system stability and maneuverability,
as can be seen from the time responses of the pendulum
(Result 2). Finally, theoretical analyses for the stochastic
system with no time delay that is based on the famous Ito-
type stochastic differential equation reveal the mechanism
causing improvements in the stability region with respect to
the controller gain and adjustable pendulum length (Result
3). Note that in this analyses, both the definition of the
stability of the stochastic system and the definition of the
derivative of stochastic state variables differ from those of
the deterministic system[7], [8].

In conventional controller design, a random component
such as fluctuation is targeted for removal from a system
as a factor causing performance reduction. However, the
results presented in this paper suggest that an appropriate
fluctuation in control systems can help to achieve better
control performances.

Fig. 1. Approaches to the time-delayed control system with fluctuations.

II. IMAGE-BASED INVERTED PENDULUM/ROBOT ARM

CONTROL SYSTEMS AND ITS STOCHASTIC MODEL

In this section, we analyze the pendulum behavior of
artificial visual servoing robotic systems.

Recently, in the field of control engineering and control
theory, biological motor controland bio-mimetic control,
which elucidate and mimic a control mechanism for various
organisms, respectively, are the topics of interest for many
researchers. In related investigations, a human-like motion, in
particular, a vision-based motor control for stick balancing,
has attracted attention owing to not only the similarity of
appearances between a camera/robot arm and an eye/arm of
a human beings but also its mechanism or intra-dynamics.
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Let us consider a two-link, nonlinear direct-drive arm
(SICE DD arm) and a pendulum at the end of the DD
arm (Fig. 2). Using a camera fixed to the ceiling of our
experimental room, we can calculate the pendulum angle
through simple real-time image processing.
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Fig. 2. Image-based inverted pendulum control system

In our experiments, the direction of the pendulum move-
ment was restricted to the tangential plane for the trajectory
of the end point of the second link. The first link was fixed
to the ground and only the second link could be used for the
control of the pendulum. The experimental setup consisted
of a camera, DD arm, and pendulum, as shown in Fig. 2.
We used two angle sensors for the pendulum, a high-speed,
high-precision rotary encoder, and a low-frame-rate camera
with a large time delay that could be switched as needed
(Fig. 3). In Fig. 4, we compare the performance between the
rotary encoder and the camera. The camera frame rate was
30Hz and the time delay was 33ms that was almost always
constant.
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Fig. 3. Control for stabilizing the inverted pendulum
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Fig. 4. Performance comparison of rotary encoder and camera

In our experiments, we stabilized this system by adjusting
the gain (Pp, Dp, P2, D2), where Pp and Dp are the propor-
tional and differential gains for the pendulum, respectively;

and P2 and D2 are the proportional and differential gains of
the second of the DD arm, respectively. Moreover, we made
the following experimental observations:

(1) We stabilized the system using a rotary encoder and
adjusting the PD gains easily.

(2) The rotary encoder frame rate was 30Hz, and we
stabilized it using the PD gain in (1).

(3) We artificially delayed the rotary encoder information
by 50ms, and we could not asymptotically stabilize
the system, whose behavior was embedded in certain
regular nondivergent movements.

A. The stochastic robot arm control model

For such an inverted pendulum/robot arm control system,
we consider a further simplified inverted pendulum control
model as shown in Fig. 5. Here, θ(t) is pendulum angle in 2D
space and its actual observation by using a camera is θ(t−τ),
where τ denotes a time delay due to capturing image and
image processing time to calculate the actual 3D position
from the image. The control input u(t) is torque generated
by swinging the robot arm. The calculation of u(t) is based
on the feedback control signal θ(t − τ).

Fig. 5. Camera-robot arm-inverted pendulum control system

We can consider linearized deterministic model of the
inverted pendulum. Dynamical equation is given by the
following two-order differential equation:

θ̈(t) + Γθ̇(t) − qθ(t) = u(t), (1)

where θ(t) is the pendulum angle which is measured by a
vision system and Γ = 3γ

4m
, q = 3g

2l
. The parameters m, γ, l

mean the mass, the viscosity coefficient, the length of the
pendulum, respectively. Γ and q are defined by this. g denotes
the gravity constant. u(t) is the torque input from the actuator
to the pendulum mentioned above.

We introduce the fluctuation in the following simple
proportional feedback controller given by

u(t) = − (P + ξ(t)) θ(t − τ), (2)

where P denotes a constant feedback gain. The feedback
gain in the control law in (2) consists of a constant gain P
and Gaussian white noise process ξ(t). The structure of the
system (1) and (2) is not additive [9] but so-called parametric
or multiplicative for the variable θ. The state-depended noise
system is also investigated in [10].
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The block diagram of the deterministic system is shown
in Fig. 6.

Inverted 
Pendulum

Torque Angle

Fig. 6. Block diagram of the vision-based inverted pendulum stabilizing
control systems

III. A STABILITY CONDITION FOR THE TIME-DELAYED

CONTROL SYSTEMS (RESULT 1)

Under the assumption that the system has no fluctuation
(ξ(t) = 0), we derive a stability condition for the time-
delayed control systems. The condition for the deterministic
systems is compared with the stability condition for the
stochastic systems with a fluctuation.

Due to ξ(t) = 0, we have the following time-delayed
deterministic control system:

θ̈(t) + Γθ̇(t) − qθ(t) = −Pθ(t − τ). (3)

The corresponding characteristic equation f(λ) is given by

f(λ) = λ2 + Γλ − q + Pe−λτ , (4)

which is an infinite dimensional system including a delay
term e−λτ . Here, we derive a stability condition for the
system in (3) based on so-called direct method.

First, we introduce a notion of stability for infinite di-
mensional systems. An infinite dimensional system with a

characteristic equation f(λ) :=

n∑
k=0

ak(λ)λk is said to be

stable if{
λ ∈ C : Re[λ] ≥ 0,

n∑
k=0

ak(λ)λk = 0

}
= ∅. (5)

This implies that a stable time delayed system has all infinite
roots of the characteristic equation in the open left half plane.
In this case, a stability condition for the system in (3) is as
follows[11]:

Theorem 1: Consider a time-delayed inverted pendulum
stabilizing control system with no fluctuation given in (3).
In this case, the system is stable if and only if

Pmin := q < P <
Γω0

τ sin ω0
=: Pmax, (6)

where ω0 > 0 is minimal root of ω0 + q = P cos τω0. �
The proof is found in [11]. The key idea of the proof is a
proposition by Stépán et al. [12][13] and the condition in
(6) is equivalent to non-existence of unstable zeros of the
characteristic equation in (4).

In the next section, we verify a validity of the theoretical
stability condition by comparing with numerical simulation
results.

IV. IMPROVEMENT OF CONTROL PERFORMANCES VIA

DYNAMICS FLUCTUATION (RESULT 2)

A. Simulation settings and results

The model parameters were determined as shown in
Table I which is based on our actual robot arm systems
mentioned in previous section. For various lengths of the
pendulum and feedback gains (q, P ), we simulated the time
response of the of pendulum behavior. Changing q = 3g

2l

and P corresponds to changing the pendulum length and the
feedback gains, respectively. Simulation interval is 300ms
and its sampling time is 0.01ms.

TABLE I

LIST OF THE MODEL PARAMETERS.

m = 0.2kg mass of pendulum
τ = 0.033s time delay of vision system

γ = 0.5, N·s
2

m
viscosity constant of pendulum

E
˘
ξ2(t)

¯
= 100 power of fluctuation

The simulation results are shown in Fig. 7 which is just
a comparison of the stability charts between our numeri-
cal simulation and theoretical bound of Result 1 for both
deterministic and stochastic model. A determination of sta-
ble/unstable for the time response of the pendulum behavior
is based on |θ(t)| < ε and |θ̇(t)| < ε for a small threshold
parameter ε > 0 as sufficiently large simulation time. In
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Fig. 7. Simulation results for the stability chart

Fig. 7, we plot red or blue mark for each parameter setting
P and q. Red mark means stable system for sufficiently large
time interval and blue means unstability. For the determinis-
tic case, the simulation results are quite well reproduced by
the theories. It is extremely important to call your attention
to the fact that the stable region of stochastic case spreads
beyond the theoretical boundary.

B. Improvement of stability region

Comparing the stable region in Fig. 7(b) with theoretical
boundary, we have the following results:

1) The stable region for time delay system robustly main-
tains against dynamics fluctuation with appropriate
magnitude.
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2) For a practical feasible gain P and length of pendulum
q, the fluctuation yields spread of the stable region for
stochastic case beyond the theoretical boundary.

3) For large q, i.e., short pendulum, the fluctuation yields
negative effects for the stable region. Even if (q, P )
is set in theoretical stable region, the stability is not
necessarily guaranteed.

4) In the case with the dynamics fluctuation, the stability
near the boundary Pmax is lost.

We can intuitively interpret the above result 3) in which
the increase of parameter q (= 3g

2l
) shows a difficulty of

control of a short pendulum. Due to the result 4), setting
the feedback gain P at neighborhood of the boundary occurs
large oscillation of pendulum behavior. Hence, we investigate
in detail for relatively small (q, P ). For a feasible parameter
region which corresponds to long pendulum and small gain,
we repeated 8 trials at each parameter setting P and q as
shown in Fig. 8. The color gradation in Fig. 8 denotes

Fig. 8. Simulation results for the stability chart with fluctuation (8 trials
for each point)

the number of stable trials. Obviously, the stable region
spreads beyond the boundary. Actually, a time response at
a theoretically unstable parameter shows a convergence due
to the fluctuation. This results implies the positive effects of
the fluctuation for the improvement of the stability.

C. Improvement of the maneuverability

Furthermore, near the boundary in Fig. 8, we can also
found the rapidly convergence of the pendulum behaviour
as shown in Fig. 9. Therefore, the improvement of the
maneuverability of the pendulum behaviour can be achieved
due to the dynamics fluctuation.

D. Relationship between the fluctuation and time delay

In the previous subsection, a power of fluctuation ξ(t) and
the time delay added to the stochastic system in (1) and (2)
was always fixed 100 and τ = 0.033sec, respectively. In this

No fluctuation

With fluctuation

No fluctuation

With fluctuation

Fig. 9. Effect of fluctuation for the system maneuvarability (q = 80, P =
82)

subsection, we show the simulation results in Fig. 10 for
varying both the fluctuation power and time delay.

Fig. 10. The fluctuation power vs the time delay

1) The appropriate power of fluctuation can take part in
improvement in a sense of spread of stability region.

2) Greater fluctuation power than some critical value
destabilises the pendulum behavior. In particular, the
critical value close to 0 as increasing time delay.

3) For large time delay system, positive effects for control
performance due to fluctuation does not happen.

In the case of a small time delay, the structure of power v.s.
delay seems to be similar to no time delay case. Therefore,
we will concentrate on a stochastic system with no time delay
and give a stability condition based on stochasitic control
theory.

V. THEORETICAL STABILITY ANALYSES FOR

STOCHASTIC SYSTEM (RESULT 3)

A. Representation via Ito-type Stochastic Differential Equa-
tion

In this section, to ascertain a validity of our numerical
simulation results above we discuss theoretical stability
condition for Ito-type stochastic differential equation. Our
inverted pendulum control system given in (1) and (2) can
be rewritten as

dx =

[
0 1

q − P −Γ

]
x dt +

[
0 0
−1 0

]
x dw, (7)
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where, x =
[

θ(t) θ̇(t)
]T

and w(t) is Wiener process
which is given by integrating ξ(t).

First, we give conditions ensuring the stability of a par-
ticular solution x(t) of (7). Even in the deterministic case
the concept of stability can be given various meanings,
e. g., one distinguishes between local and global stability,
also between asymptotic and nonasymptotic stability. The
diversity of stochastic equation is even greater in the presence
of randomness[7]. However, in this section, we give only a
concept of stability with probability 1, which guarantees a
convergence for all sample processes.
Definition
Consider a system in (1) and (2). Assume that θ(t0) = θ0.
A solution θ(t) is said to be stable with probability 1 if

Pr

{
lim

‖θ0‖→0
sup
t≥t0

‖θ(t; t0, θ0)‖ = 0

}
= 1. (8)

Furthermore, a solution θ(t) is said to be asymptotically
stable with probability 1 if the condition (8) holds, and for
all ε > 0, if‖θ0‖ < r then there exists a number r > 0 such
that

lim
t→∞

Pr

{
sup
t≥T

‖θ(t; t0, θ0)‖ > ε

}
= 0. (9)

�
For a linear stochastic system in (7), we can also give a

equivalent condition for the stability [8] as follows:
Theorem 2: A solution x(t) of a linear stochastic system

dx(t, w) = A(t)x(t)dt + G(t)x(t)dw(t)

x(t0) = x0

is asymptotically stable with probability 1, if and only if

lim
t→∞

ln |x(t)| − ln |x0|
t

< 0 (10)

holds. �
B. Derivation of stability condition

We derive a necessary and sufficient condition for a
stability w. p. 1 in (7). Applying a similarity transformation
T = [v1 v2] to (7) we have

dz =

[
−Γ+

√
D

2 0

0 −Γ−√
D

2

][
z1

z2

]
dt

− 1√
D

[
1 1
−1 −1

] [
z1

z2

]
dw, (11)

where z := T−1x, D := Γ2 + 4(q − P ),

λ1 = −Γ+
√

D
2 , λ2 = −Γ−√

D
2

v1 =

[
1

−Γ+
√

D
2

]
, v2 =

[
1

−Γ−√
D

2

]
.

Note that the condition D > 0 covers a first quadrant of
(q, P )-space in a natural way. The derivation of stability
condition for (11) is going the following order: Step 1: For
the system in (11), calculate a Ito’s differential operator L.
Step 2: Applying a polar coordinate transformation z 1 =

r cosφ, z2 = r sin φ and using the calculated L, derive
differential equations for ln |x(t)| = ln r(t) and φ(t). Step
3: Based on a probability density function pφ of φ, calculate
a stability condition in (10) in details.

Step 1 The Ito’s differential operator L in (11) is given as

L(·) =
−Γ +

√
D

2
z1

∂(·)
∂z2

+
−Γ −

√
D

2
z2

∂(·)
∂z2

+
σ2

2

{
1

D
(z1 + z2)

2

(
∂2(·)
∂z2

1

+
∂2(·)
∂z2

2

− 2
∂2(·)

∂z1∂z2

)}
.

(12)

Step 2 Wd apply a polar coordinate transformation z1 =

r cosφ, z2 = r sin φ. From r =
√

z2
1 + z2

2 , φ =
tan−1(z2/z1) we have

∂ ln r

∂z1
=

cosφ

r
,

∂ ln r

∂z2
=

sinφ

r
(13)

∂2 ln r

∂z1
2

= −cos 2φr2

r2
,

∂2 ln r

∂z2
2

=
cos 2φ

r2
,

∂2 ln r

∂z1∂z2
= − sin 2φ

r2
(14)

∂φ

∂z1
= − sinφ

r
,

∂φ

∂z2
=

cosφ

r
(15)

∂2φ

∂z1
2

=
sin 2φ

r2
,

∂2φ

∂z2
2

= − sin 2φ

r2
,

∂2φ

∂z1∂z2
= −cos 2φ

r2
.

(16)

For V = ln |z(t)| = ln r and φ we apply a famous Ito’s
lemma. Using L in (12) and substituting (13)-(16) to Ito’s
lemma, it follows that

d ln |z(t)| = L ln |z(t)| dt

+

(
∂ ln |z(t)|

∂z

)T (
− 1√

D

) [
z1 + z2

−(z1 + z2)

]
dw

=

[
−Γ

2
+

√
D

2
cos 2φ +

σ2

D
(1 + sin 2φ) sin 2φ

]
dt

− 1√
D

cos 2φ dw =: fln |z| dt + gln |z| dw (17)

dφ = Lφ dt +

(
∂φ

∂z

)T (
− 1√

D

) [
z1 + z2

−(z1 + z2)

]
dw

=

[
−
√

D

2
sin 2φ +

σ2

D
(1 + sin 2φ) cos 2φ

]
dt

+
1√
D

(1 + sin 2φ) dw =: fφ dt + gφ dw. (18)

We calculate the integral of both side of (17) and moreover
multiplying 1/t and t → ∞ we finally obtain

lim
t→∞

ln |z(t)| − ln |z0|
t

= lim
t→∞

(∫ t

0

fln |z| dt +

∫ w(t)

w(0)

gln |z| dw

)
. (19)

From theorem 2, a negativeness of (19) gives the asymptoti-
cal stability w. p. 1 of the system in (11). In the first term of
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a right hand side in (19) ensemble mean equals to time one
based on ergodicity condition. Furthermore, the second term
reduce to zero as t → ∞ from a characteristics of Wiener
process. Hence, from (19) it follows that

lim
t→∞

ln |z(t)| − ln |z0|
t

= lim
t→∞

∫ t

0

fln |z| dt

= E{fln |z|(φ)} =

∫ ∞

−∞
fln |z|(φ)pφ dφ

=

∫ 2π

0

[
−Γ

2
+

√
D

2
cos 2φ

+
σ2

D
(1 + sin 2φ) sin 2φ

]
pφ dφ < 0. (20)

Step 3 Since pφ in (20) is a probability density function, it
is from its nonstationary property that

0 = −∂(pφfφ)

∂φ
+

σ2

2

∂2

∂φ2
(pφgφgφ

T )

= −
[
−
√

D

2
sin 2φ +

σ

D
(1 + sin 2φ) cos 2φ

]
pφ

+
∂

∂φ

{
σ2

2D
(1 + sin 2φ)2pφ

}
. (21)

Integrating this we calculate pφ and we have

pφ =

c̄ exp

{
−D

√
D

σ2

∫
sin 2φ

(1 + sin 2φ)2
dφ − 2

∫
cos 2φ

1 + sin 2φ
dφ

}

= c̄(1 + sin 2φ)−1 exp

[
−D

√
D

4σ2

{
tan

(
φ − π

4

)

−1

3
tan3

(
φ − π

x

)}
, (22)

where c̄ is a constant for a normalization. Substituting it to
(20), we have∫ 2π

0

[
−Γ

2

1

1 + sin 2π
+

√
D

2

cos 2φ

1 + sin 2π
+

σ2

D
sin 2π

]
·

exp

{
−D

√
D

4σ2

{
tan

(
φ − π

4

)

−1

3
tan3

(
φ − π

4

)}
dφ =: I < 0. (23)

We are ready to give our main theorem:
Theorem 3: For a second order stochastic system with an

appropriate magnitude σ2 of Gaussian fluctuation ξ(t) given
as

θ̈(t) + Γθ̇(t) − qθ(t) = −{P + ξ(t)}θ(t),
the stable region with respect to a feedback gain and ad-
justable design parameter (P, q) spreads beyond a boundary
P > q which is for the corresponding deterministic system
with no fluctuation(ξ(t) = 0).

⇐⇒ ∃Pfl := q − P > 0 s.t.

(Γ2 + 4Pfl)I := I1(Pfl) + I2(Pfl) < 0, (24)

where, I1(Pfl) and I2(Pfl) are given by the following forms:

I1(Pfl) := −Γ

2
(Γ2 + 4Pfl)

∫ π

2

0

1

1 + sin 2φ
·

exp

{
−(Γ2 + 4Pfl)

3

2

4σ2

{
tan

(
φ− π

4

)
− 1

3
tan3

(
φ− π

4

)}}
dφ,

I2(Pfl) =

∫ π

2

0

[
(Γ2 + 4Pfl)

3

2

2

cos 2φ

1 + sin 2φ
+ σ sin 2φ

]
·

exp

{
− (Γ2 + 4Pfl)

3

2

4σ2

{
tan

(
φ− π

4

)
− 1

3
tan3

(
φ− π

4

)}}
dφ.

�
The function I1 and I2 consist of definite integral. This

integral is NOT complicated although the expression is long
somewhat. Because a sign, in particular, negativity, depends
only on that of the function 1

1 + sin 2φ
in I1.

Our theorem allows us to depict this stability chart. The
simulation results for 0 < q < 30 is shown as Fig. 11. Our
theoretical boundary I = 0 in q−P stability chart was quite
well reproduced by our simulation results in previous section,
e.g., see Fig. 8.
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Fig. 11. The theoretical boundary for stochastic control system

In Fig. 11, the black-painted region means stable w. p. 1
which holds the inequality in (23) and the white region means
unstability. We summarize how to depict the boundary from
our theorem. For example in Fig. 12, when q is fixed to 20,
I can calculate the value of the function I increasing P . The
negativity of the function I means stable. The boundary is
that point, approximately P ∼ 12 in this case. This procedure
is repeated for all q. This figure shows our theorem is useful
for investigating the mechanism of improvement of control
performances due to the dynamics fluctuation in Section IV.
From our theorem it is theoretically proved for the system
in (7) that the dynamics fluctuation can improve the control
performances.

Furthermore, our theorem yields the following corollary.
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(a) For example, first fix
q = 20 and increase P
(green line).
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(b) for each P we calculate the
definite integral I (pink line).
I = 0 means the stability limit
which is the theoretical bound-
ary. Repeat this for all q.

Fig. 12. How to depict the theoretical boundary for a case of q = 20

Corollary 1: The inequalities

I1(Pfl) < 0 if γ = 0

I2(Pfl) > 0 for a large σ2

always holds. Since I1(Pfl) vanishes in a case of no viscosity
constant of pendulum γ = 0, the performance improvement
due to the fluctuation, in other word, the negativeness of I
in (23) essentially caused viscosity constant of pendulum �

VI. CONCLUSION

In this work, we focused on the two properties of time
delay and random fluctuations and investigated the effects of
fluctuation on the stability and behavior of a stochastic linear
time-delay system. The control performance improvements
due to fluctuation were presented using numerical simula-
tions, its theoretical analyses as well as experimental results.
In conventional controller design, a random component such
as fluctuation is targeted for removal from a system as a
factor causing performance reduction. However, the results
presented in this paper suggest that an appropriate fluctu-
ation in control systems can help to achieve better control
performances.

In the future, we plan to resolve the problem faced during
the implementation of the pendulum control system with a
random fluctuation component. Furthermore, finding other
stochastic applications is very interesting because it gives
us a deep insight into implications pertaining to fluctuations
observed in human motor control activities.
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