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Abstract— In this paper, we study the stabilization of mul-
tirate networked control systems with norm bounded uncer-
tainties in the input channels. The key idea is to use the
channel resource allocation, i.e., given the overall capacity of the
transmission network, we do have the freedom to allocate the
capacities among different input channels. With this idea, we
successfully show that a multirate networked control system
could be stabilized by state feedback under an appropriate
resource allocation if and only if the overall network capacity
is larger than the topological entropy of the plant. We also apply
the result to multirate quantized networked control systems. A
sufficient condition for stabilization is obtained which involves a
trade-off between the densities of time quantization and spatial
quantization.

I. INTRODUCTION

Arising from the cross-pollination of control, network
and information theories, the networked control systems
(NCSs) have attracted great attention nowadays. They are
feedback systems where communications between plants and
controllers occur through shared communication networks.
Applications of NCSs have been found in more and more
areas. Examples include mobile sensor networks [17], multi-
agent systems [16] and ariel space technologies [19], etc.. In
special issues [1], [2], much information of the current status
of NCSs research has been presented.

A lot of work has been done on the networked control
stabilization problem. In the NCSs, due to the unperfect
communication networks, different kinds of information con-
straints and uncertainties appear frequently, such as quanti-
zation [7], [8], packet drop [6] and data rate [14], etc.. There
are numerous results reported in the literature studying the
stabilization of NCSs under these uncertainties. For discrete-
time single-input NCSs, in [8], logarithmic quantization of
the control inputs was considered as a sector uncertainty. It
was shown that the largest uncertainty bound which renders
stabilization possible is given in terms of the Mahler measure
of the system, i.e., the absolute product of the unstable
poles. In [6], multiplicative stochastic input channel has been
taken into consideration. There it stated that the networked
feedback system could be mean-square stabilized by state
feedback if and only if the mean-square capacity of the
multiplicative channel exceeds the topological entropy of the
plant which is the logarithm of the Mahler measure.
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For discrete-time multi-input NCSs, [9] has assumed that
the information constraint in the input channels is determined
by the total network recourse available to the channels that
can be allocated by the controller designer. Thanks to the
additional design freedom gained by the resource allocation,
an analytical solution has been obtained which states that
the largest overall uncertainty bound ensuring closed-loop
stabilizability is given in terms of the Mahler measure.
Different from the setting of multiple input channels in [9],
[14] studied NCSs with multiple sensor channels each of
which may have a different average data rate. By using a
sequential design, they showed that the NCS is exponentially
stabilizable if and only if the sum of the average data rates is
larger than the topological entropy of the plant. Although not
stated explicitly by the authors, the resource allocation was in
fact embodied in their work. In light of these results, we see
the significance and role of the channel resource allocation
which entails the idea of channel-controller co-design, i.e.,
the control designer should also participate in the channel
design rather than passively take the given channels. This
idea would bring us much more convenience and flexibility
in designing and is envisioned to be commonly used in real
applications. Another example demonstrating the advantage
of channel-controller co-design can be found in [22], where
the stabilizing condition in [6] for NCSs with multiplicative
stochastic channels was generalized to the multi-input case.
Later one can see, in this paper, our main result can be
obtained by allocating the channel resource judiciously.

Researchers have also devoted much effort to the stabiliza-
tion of continuous-time NCSs. [4] studies stabilization of a
distributed control system where a central controller commu-
nicates sequentially with the subsystems through one shared
communication network under some periodic communication
pattern. Both the communication pattern and the control
law are to be designed, leading to a channel-controller
co-design for multiple periodic linear systems. With the
lifting technique [5], the author showed that the stabilization
problem is equivalent to finding stable elements in a certain
subspace spanned by a set of matrices derived from the
system to be controlled. This problem is further studied in
[10] which develops a simulated annealing algorithm to find
stable elements in the aforementioned subspace.

Another line of work which is pertinent to our work in this
paper studies the trade-off between the required densities of
time quantization and spatial quantization for stabilization
of NCSs. For single-input case, [7] considered the situation
of uniform sampling and infinite-level logarithmic spatial
quantization leading to a trade-off between the densities in
terms of the Mahler measure. In the case when a finite-level
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spatial quantizer was used, the trade-off was studied in [11],
[12]. There it was concluded that the minimum data rate
for stabilization could only be achieved by binary control.
Unfortunately, so far, no efficient result has been reported on
the trade-off for the multi-input case. Motivated from this,
we in this paper consider the trade-off under a more general
setup. We adopt a network model which not only can charac-
terize quantization but also has the capability to address other
network features. Moreover, in our model, different sampling
rates are allowed for different input channels leading to a
multirate NCS. Both our work and [4], [10] involve periodic
multirate sampled-data systems. However, it is worth noting
that we consider multiple parallel input channels, which is
different from the framework in [4], [10] that has only one
communication channel. This point would become clearer
in the development. We investigate the stabilizing condition
for the multirate NCS. By using the lifting technique and
channel resource allocation, we show that a multirate NCS
could be stabilized by state feedback under an appropriate
resource allocation if and only if the overall network capacity
is larger than the topological entropy of the plant. We further
apply this result to multirate quantized control systems and
obtain a sufficient condition for stabilization which shows
a trade-off between the densities of time quantization and
spatial quantization.

The remainder of this paper is organized as follows. The
problem is formulated in section II. The main result is stated
and proved in section III. Section IV applies the result to
the trade-off between the densities of time quantization and
spatial quantization. Section V gives an illustrative example.
Finally, some conclusion remarks follow in section VI.

II. PROBLEM FORMULATION

The setup of a multirate NCS studied in this paper
is shown in Fig. 1. We use solid lines for continuous-
time signals and dotted lines for discrete-time signals. The
plant G is a continuous-time LTI system. The states are
available for feedback with sampling interval T . Different
hold intervals K1T,K2T, . . . ,KmT are allowed for different
input channels, where K1,K2, . . . ,Km are relative prime
integers. Assume all the hold and sampling circuits are
synchronized at time 0. F is a static state feedback gain. The
control signals generated by F would be transmitted through
a multirate network before reaching the plant. In many
practical applications, the actuators are located separately
from each other and from the controller. Hence, we adopt
a parallel transmission strategy, i.e., each element vi(k) of
the control signal is separately sent through an independent
channel of the network to the actuator.

Fig. 2 shows one of the channels of the network, which can
be considered as the cascade of a downsampling system and
an ideal transmission system with a unity transfer function
together with an additive norm bounded uncertainty. The
uncertainty ∆i can be nonlinear, time-varying, or a dynamic
system. The only requirement is that its H∞ norm is bounded
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Fig. 1. Multirate networked control system

by δi, i.e.,

∥∆i∥∞ = sup
ṽi(ki)∈ℓ2

∥ei(ki)∥2
∥ṽi(ki)∥2

≤ δi.

By modeling the channels this way, we can address many
different kinds of uncertainties in the network. Moreover,
different sampling rates could be adopted in different chan-
nels. The advantage of multirate sampling stands out not
only in theoretical studies but also in practical applications.
For example, in complex, multivariable control systems,
sampling all physical signals uniformly at one single rate is
often unrealistic, then one is forced to use multirate sampling.
Also, multirate sampling can often reduce the required stor-
age space or computational complexity for signal processing.
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Fig. 2. A network channel

Intuitively, if the sampling rates of the network are too
slow or there exists too much uncertainty such that little
information of the control signals could be transmitted, then
the multirate NCS can hardly be stabilized. Only when
enough information is transmitted per time unit can stabiliza-
tion become possible. Our objective is to find the minimum
amount of information transmitted through the network per
time unit so as to make stabilization of the multirate NCS
possible.

Let G have a state space realization:

ẋ(t) = Acx(t) +Bcu(t), x(0) = x0,

where x(t) ∈ Rn, u(t) ∈ Rm. Define H and S as the hold
and sampling operators:

H =

HK1T

. . .
HKmT

 , S =

ST

. . .
ST

 .
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Then S GH is a multirate sampled-data system. For sim-
plicity, we denote it by Gd. Now let

N = LCM{K1,K2, . . . ,Km},

where LCM means the least common multiple. It is easy
to see that NT is the least common period for all input
channels, in other words, it is the shortest time interval for
which the hold schedule repeats itself.

Lifting [5] is a common and efficient method to deal
with multirate sampled-data systems. Let ℓ be the space of
sequences, perhaps vector valued, defined on the time set
{0, 1, 2, . . .}. The lifting operator over ℓ is given by

Lp :{u(0), u(1), u(2), . . .} 7→


u(0)
u(1)

...
u(p− 1)

 ,


u(p)

u(p+ 1)
...

u(2p− 1)

 , . . .

 .

It is well known that the lifting operator is invertible and
norm preserving [5].

Let Ni =
N
Ki

, i = 1, 2, . . . ,m. We lift the multirate system
Gd to an equivalent LTI system

Gd =

LN

. . .
LN

Gd

L
−1
N1

. . .
L−1
Nm

 .

Let A = eAcT , B =
∫ T

0
eAc(T−τ)Bcdτ , and denote Bj as

the jth column of B, then a state space realization of Gd

with state ξ(k) = x(kNT ) is given by [15]

ξ(k + 1) = Aeξ(k) +Beue(k), ξ(0) = x0,

where

Ae =AN , Be = [Be1 Be2 . . . Bem],

Bej =
[∑Kj

q=1 A
(N−q)Bj

∑Kj

q=1 A
(N−Kj−q)Bj

. . .
∑Kj

q=1 A
(Kj−q)Bj

]
,

ue(k) =



u1(kNT )
u1(kNT +K1T )

...
u1(kNT + (N −K1)T )

u2(kNT )
u2(kNT +K2T )

...
u2(kNT + (N −K2)T )

...
um(kNT + (N −Km)T )



.

Examining the detailed structure of ue(k) implies that it is
obtained by lifting the inputs of each channel first and then
grouping them all together. Clarifying this would make it
easier to understand the later design of the state feedback
gain F .

The control signal is generated with time period T by the
feedback law v(k) = Fx(kT ). Let Fi be the ith row of F .
To see the behavior of the controller in the time period NT ,
we apply the lifting technique to get

ve(k) = Feξ(k) =



F1

F1A
...

F1A
N−1

F2

F2A
...

F2A
N−1

...
FmAN−1



ξ(k).(1)

Clearly, ve(k) is the lifted controller output. We will come
back to the structure of Fe as shown in (1) when we design
the controller in section III.

As introduced before, different components of the control
signal are transmitted through independent communication
channels each of which may have a different sampling rate
and uncertainty bound. Applying the lifting technique to the
transmission process yields

ue = (I +∆)Zve,

where I is the identity system, ∆ = diag{∆1,∆2, . . . ,∆m}
denotes the lifted uncertainty, Z = diag{Z1, Z2, . . . , Zm}
describes the downsampling scheme of the ith channel with
Zi having dimension Ni×N . Let Zjk

i be the (j, k)th element
of Zi, then

Zjk
i =

{
1 when k = (j − 1)Ki + 1,

0 otherwise.

Since lifting is norm preserving, we have ∥∆i∥∞ ≤ δi.
Now we define the concept of channel capacity to measure

the amount of information transmitted through the channels
per time unit. The individual channel capacity is given by

Ci =
1

Ti
ln δ−1

i , i = 1, 2, . . . ,m,

where Ti = KiT . This capacity depends linearly on the
sampling frequency 1

Ti
and the logarithm of the inverse

uncertainty bound δ−1
i . We can consider δ−1

i as the worst
case signal-to-error ratio since

∥∆i∥−1
∞ = inf

ṽi(ki)∈ℓ2

∥ṽi(ki)∥2
∥ei(ki)∥2

≥ δ−1
i .

Clearly, larger δi indicates that less accurate information
could be transmitted through the channel. Therefore, the
capacity Ci measures properly how much information per
time unit can be transmitted through the i-th channel. To
measure the amount of information transmitted through the
whole network pet time unit, we define the overall network
capacity by summing up all the capacities Ci, i.e., C =∑m

i=1 Ci.
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So far, we have obtained quite much knowledge on the
structure of the multirate NCS. The lifted closed-loop sys-
tem would follow directly from the equivalent LTI systems
associated with the plant, controller and network. In view of
[15], the closed-loop multirate NCS is stable if and only
if the lifted closed-loop system is stable. Therefore, our
problem becomes to find the stabilizing conditions for the
lifted system.

This would result in an H∞ robust control problem.
Due to the existence of more than one uncertainties in
the loop, the robust stability and stabilization problem is
called a structured problem. Let T (z) be the complementary
sensitivity function of the lifted feedback system:

T (z) = ZFe(zI −Ae −BeZFe)
−1Be.

If the uncertainty bounds δ1, δ2, . . . , δm and the state feed-
back gain Fe are given, the uncertain system is stabilized for
all possible uncertainty satisfying the bounds if and only if
[20]

inf
D∈D

∥∥D−1T (z)DΨ
∥∥
∞ < 1,(2)

where D is the set of all diagonal matrices with the structure

diag{d1IN1 , d2IN2 , . . . , dmINm}

and
Ψ = diag{δ1IN1 , δ2IN2 , . . . , δmINm}.

Note that if we specify the factor causing the uncertainty,
e.g., quantization, the inequality (2) is sufficient for stabiliza-
tion apparently. However, the necessity may not be true. We
will come across this situation when we study the multirate
quantized control systems in section IV.

The minimization problem in (2) is convex and can be
solved easily. However, the design problem, i.e., to find a
stabilizing Fe such that (2) holds, is very difficult. We can
formulate the design problem as the following minimization
problem:

inf
Fe:Ae+BeZFe is stable

[
inf
D∈D

∥∥D−1T (z)DΨ
∥∥
∞

]
.(3)

The objective function in (3) is convex over D and also
convex over Fe. However, unfortunately, it is not jointly
convex.

To handle this difficulty, channel resource allocation can
play a crucial role. In the NCSs, quite often the channel
capacity is determined by the available resource. If we
allocate more resource to one channel, e.g., use better and
more expensive hardware or allocate more communication
bandwidth, then we are able to increase its capacity. For the
current problem, we might have a constraint on the overall
network capacity but we do have the freedom to allocate the
individual channel capacities. Notice that allocating the chan-
nel capacity actually involves two aspects. One is allocating
the sampling rates and the other is allocating the uncertainty
bounds. By looking into the structure of Ψ, we find these two
aspects are simultaneously contained in Ψ. Therefore, the
constraint on the overall capacity could be given in terms

of δ = detΨ = Πm
i=1δ

Ni
i . Applying the channel resource

allocation yields a further nested minimization problem:

inf
detΨ=δ

{
inf

Fe:Ae+BeZFe is stable

[
inf
D∈D

∥∥D−1T (z)DΨ
∥∥
∞

]}
.

At first sight, this problem looks even harder than problem
(3), however, surprisingly, it can be analytically solved,
which will be elaborated in the next section.

Before proceeding, let us define the topological entropy
of a continuous-time LTI system. Recall that the Mahler
measure [13] of a linear map T : Rn → Rn is

M(T ) =
n∏

i=1

max{1, |λi|},

and the topological entropy [3] of T is given by

h(T ) = lnM(T ) =
∑

|λi|>1

ln |λi|,

where λi are the eigenvalues of T . Here, we take the natural
logarithm to be consistent with the channel capacity notion
defined before. In fact, the base of the logarithm does not
affect our main result except for multiplication by a constant.
Based on the topological entropy of a linear map, we define
the topological entropy of a continuous-time system

ẋ(t) = Acx(t)

as Hc(Ac) = h(eAc) =
∑

R(λi)>0 λi, where λi are the
eigenvalues of Ac.

III. MAIN RESULT

A mild assumption is needed to establish our main result:
for the NCS in Fig. 1, assume that NT is nonpathological
with respect to Ac, i.e., λi − λj ̸= 2kπ

√
−1

NT , k = 1, 2, . . . ,
for any two eigenvalues λi and λj of Ac [5]. With this
assumption satisfied, we have the following theorem.

Theorem 1: The multirate NCS in Fig. 1 is stabilizable
by state feedback under an appropriate resource allocation if
and only if the overall network capacity is larger than the
topological entropy of the plant, i.e., C > Hc(Ac).

Proof: To simplify the proof, assume that all the
eigenvalues λ1, λ2, . . . , λn of Ac lie on the open right half
complex plane. This assumption can be removed following
the same argument as in [9]. Under this assumption, all the
eigenvalues of Ae lie outside the unit circle. In view of [18],
(Ae, Be) is stabilizable if (Ac, Bc) is stabilizable when NT
is nonpathological with respect to Ac.

We first prove the necessity part. Assume that there exists
a stabilizing state feedback gain Fe and a D ∈ D such that
(2) holds, then it has been verified in [9] that

δ−1 > M(Ae).

Since

δ−1 = Πm
i=1(δ

−1
i )Ni , M(Ae) = M(AN ) = eNT

∑
λi ,

after some calculations, we have

δ−1 > M(Ae) ⇔ C > Hc(Ac).
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To show the sufficiency part, for any given C > Hc(Ac),
we find a D ∈ D, a stabilizing state feedback gain Fe and a
factorization

δ = Πm
i=1δ

Ni
i

such that (2) holds. Without loss of generality, we assume
that (Ac, Bc) has the following Wonham decomposition [21]:

Ac =


Ac1 ∗ · · · ∗

0 Ac2

. . .
...

...
. . . . . . ∗

0 · · · 0 Acm

 ,

Bc =


Bc1 ∗ · · · ∗

0 Bc2

. . .
...

...
. . . . . . ∗

0 · · · 0 Bcm

 ,

where each pair (Aci , Bci), i = 1, 2, . . . ,m is stabilizable
with state dimension ni. Clearly, we have

∑m
i=1 ni = n.

Then the associated equivalent LTI system (Ae, Be) has the
following structure:

Ae =


Ae1 ∗ · · · ∗

0 Ae2

. . .
...

...
. . . . . . ∗

0 · · · 0 Aem

 ,

Be =


B̃e1 ∗ · · · ∗

0 B̃e2

. . .
...

...
. . . . . . ∗

0 · · · 0 B̃em

 .

Since (Aci , Bci) is stabilizable, it follows that (Aei , B̃ei) is
stabilizable for all i = 1, 2, . . . ,m.

Choose

D =


IN1 0 · · · 0

0 ϵIN2

. . .
...

...
. . . . . . 0

0 · · · 0 ϵm−1INm


with a small real number ϵ. Define

S =


In1 0 · · · 0

0 ϵIn2

. . .
...

...
. . . . . . 0

0 · · · 0 ϵm−1Inm

 .

Let

FeD = D−1Fe, BeD = BeD,

then

D−1T (z)DΨ(4)
= ZFeD (zI −Ae −BeDZFeD )

−1BeDΨ

= ZFeDS(zI − S−1AeS − S−1BeDZFeDS)
−1

·S−1BeDΨ,

where

S−1AeS =


Ae1 o(ϵ) · · · o(ϵ)

0 Ae2

. . .
...

...
. . . . . . o(ϵ)

0 · · · 0 Aem

 ,

S−1BeD =


B̃e1 o(ϵ) · · · o(ϵ)

0 B̃e2

. . .
...

...
. . . . . . o(ϵ)

0 · · · 0 B̃em

 ,

and o(ϵ)
ϵ approaches to a finite constant as ϵ → 0.

Since C > Hc(Ac), i.e., δ < M(Ae)
−1, we can al-

ways possibly choose δi such that δNi
i < M(Aei)

−1, i =
1, 2, . . . ,m and δ = Πm

i=1δ
Ni
i . This in fact realizes the

allocation of the individual input channel capacity Ci such
that Ci > Hc(Aci) and C =

∑m
i=1 Ci.

With this allocation of capacity, we consider each
single-input NCS corresponding to (Aci , Bci). Discretizing
(Aci , Bci) with time period KiT yields a discretized system
(Adi , Bdi):

Adi = AKi
si , Bdi =

Ki∑
q=1

AKi−q
si Bsi ,

where Asi = eAci
T , Bsi =

∫ T

0
eAci

(T−τ)Bcidτ . Since
δNi
i < M(Aei)

−1, it follows directly that δi < M(Adi)
−1.

According to [8], a state feedback gain Fsi could be designed
such that the single-input NCS associated with (Aci , Bci)
is stable for all uncertainties satisfying the norm bound δi.
Moreover, we have

∥Fsi(zI −Adi −BdiFsi)
−1Bdi∥∞δi < 1.

Applying the lifting technique in accordance with the time
period NT yields the lifted feedback gain

Fei =


Fsi

FsiAsi
...

FsiA
N−1
si


and the lifted complementary sensitivity function

Ti(z) = ZiFei(zI −Aei − B̃eiZiFei)
−1B̃ei .

Since the lifting operator preserves norms, we have

∥Ti(z)δi∥∞ < 1.

Let F = diag{Fs1 , Fs2 , . . . , Fsm}. In view of the
structure of Fe in (1), we get FeDS = D−1FeS =
diag{Fe1 , Fe2 , . . . , Fem} + o(ϵ). Now go back to (4), we
have

D−1T (z)DΨ =
T1(z)δ1 0 · · · 0

0 T2(z)δ2
. . .

...
...

. . . . . . 0
0 · · · 0 Tm(z)δm

+ o(ϵ; z).
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Since ∥Ti(z)δi∥∞ < 1 and o(ϵ; z) → 0 as ϵ → 0 for each
|z| ≥ 1, it follows that ∥D−1T (z)DΨ∥∞ < 1 for sufficiently
small ϵ. This completes the proof.

Finally, we solve the problem and obtain a sufficient and
necessary condition for the stabilization of the multirate NCS
with channel resource allocation. The minimum network
capacity required for stabilization is equal to the topological
entropy of the plant. Once again, we witness the power
and efficiency of the channel-controller co-design. One has
to simultaneously design the channels and the controller
to accomplish stabilization in the case when the network
capacity is minimal.

IV. STABILIZATION OF MULTIRATE QUANTIZED
CONTROL SYSTEMS

In this section, we apply the result in section III to the case
of multirate quantized control systems. A sufficient condition
for stabilization is obtained which shows a trade-off between
the densities of time quantization and spatial quantization.

The problem setup is the same as shown in Fig. 1 except
that now the network channels are specifically composed
of quantizers. The time quantization is just downsampling.
For the spatial quantization, we adopt logarithmic quantizers
advocated in [7]. As shown in Fig. 3, the logarithmic
quantizer is given by the following nonlinear mapping:

ui = Qδi(vi) :=


ρlivi0 , if ρl

ivi0
1+δi

< vi ≤
ρl
ivi0
1−δi

,

0, if vi = 0,

−Qδi(−vi), if vi < 0,

where vi0 > 0, 0 < ρi < 1, δi = 1−ρi

1+ρi
, and l =

0,±1,±2, · · · . The uncertainty resulted from such a quan-
tizer satisfies the norm bound

∥vi(k)− ui(k)∥2
∥vi(k)∥2

≤ δi, i = 1, 2, . . . ,m.

Clearly, larger δi means larger quantization errors and con-
sequently, corresponds to a coarser spatial quantization.

-

6

vi

ui

Fig. 3. A logarithmic quantizer

Apply the channel capacity notion to this case, we have

Ci =
1

Ti
ln δ−1

i =
1

Ti
ln

1 + ρi
1− ρi

, C =
m∑
i=1

Ci.

Here, 1
Ti

is apparently time quantization density and ln δ−1
i

can be considered as a measure of the spatial quantization
density. Therefore, the capacity Ci reflects both quantization
in time and space which makes it an appropriate measure of
the information constraint of the channel.

Although the quantizer adopted is nonlinear, the uncertain-
ty resulted is static without any dynamics. As we mentioned
before, because of this specification on the uncertainty, the
inequality (2) may not be necessary for the stabilization
of closed-loop system in this case. Nevertheless, we can
apply the sufficiency part of Theorem 1 to obtain a sufficient
condition for the stabilization of the multirate quantized
control systems with resource allocation.

Theorem 2: The multirate quantized control system is
stabilizable by state feedback under an appropriate resource
allocation if the overall network capacity is larger than the
topological entropy of the plant, i.e., C > Hc(Ac).

Theorem 2 shows a tradeoff between the densities of time
quantization and spatial quantization. If the time quantization
is finer, i.e., sampling faster, then the spatial quantization
can be coarser, vice versa. In [7], this tradeoff has been
studied for single-input systems with the assumption that
the sampling and hold scheme use the same time period.
It has been concluded that for a given sampling interval T ,
the feedback system can be stabilized if and only if

ρ >
eT

∑
R(λi)>0 λi − 1

eT
∑

R(λi)>0 λi + 1
.

Comparatively, our study is more general, allowing for mul-
tirate sampling and hold scheme. Simple derivation yields

ρ >
eT

∑
R(λi)>0 λi − 1

eT
∑

R(λi)>0 λi + 1
⇔ 1 + ρ

1− ρ
> eT

∑
R(λi)>0 λi

⇔ C > Hc(Ac).

Therefore, Theorem 2 extends the result in [7].

V. AN ILLUSTRATIVE EXAMPLE

In this section, we give an example to illustrate stabi-
lization of a multirate quantized control system. Given an
unstable continuous-time system [Ac|Bc] with

Ac =

2 0 0
0 1 0
0 0 1

 , Bc =

1 0
1 1
0 1

 .

Clearly, it is stabilizable. However, [Ac|α1Bc1 + α2Bc2 ]
is not stabilizable for any α1, α2 ∈ R, since the matrix[
λI −Ac α1Bc1+α2Bc2

]
loses row rank when λ = 1.

This means that it is impossible to convert [Ac|Bc] to a
stabilizable single-input system by a linear combination of
the two inputs. The topological entropy of the plant is

Hc(Ac) = 2 + 1 + 1 = 4.
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Let the overall capacity be given by C = 4 + 2 × 10−2.
We allocate the capacity among the two input channels as
C1 = 3+10−2,C2 = 1+10−2. Let T = 0.1(sec) and K1 =
3,K2 = 2, then the two input channels are characterized by

T1 = 0.3, δ1 = e−C1T1 = 0.405,

T2 = 0.2, δ2 = e−C2T2 = 0.817.

We proceed to design the state feedback gain. Discretize the
following two continuous-time single-input systems[

2 0 1
0 1 1

]
and

[
1 1

]
with time period T1 and T2 respectively. Solving the H∞
control problem for the two discretized systems yields the
optimal feedback gains Fs1 =

[
−7.758 3.23

]
, Fs2 =

−3.155. Let

F =

[
−7.758 3.23 0

0 0 −3.155

]
.

With the above co-design of input channels and state feed-
back gain F , the continuous-time evolution of the plant states
starting from an initial condition stimulated by an impulse is
shown in Fig. 4. The state converges to zero asymptotically.
Fig. 5 shows the quantized control signal in this case.

0 5 10 15
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−5

−4

−3

−2

−1

0

1

2

sec

Fig. 4. Closed-loop plant state evolution.
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15
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0 5 10 15
−1.5

−1

−0.5

0

0.5

sec

u 2

Fig. 5. Quantized control signal.

VI. CONCLUSION

In this paper, we study the stabilization of multirate NCSs
with norm bounded uncertainties in the input channels. The
key idea is to use the channel resource allocation, i.e., given
the overall capacity of the transmission network, we do
have the freedom to allocate the capacities among different
input channels. With this idea, we successfully show that a
multirate NCS could be stabilized by state feedback under

an appropriate resource allocation if and only if the overall
network capacity is larger than the topological entropy of the
plant. We also apply the result to multirate quantized NCSs.
A sufficient condition for stabilization is obtained which
shows a trade-off between the densities of time quantization
and spatial quantization.
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