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Abstract— In this paper we study the stability and limiting
behavior of discrete-time deterministic and random weighted
averaging dynamics. We show that any such dynamics admits
infinitely many comparison functions including a quadratic
one. Using a quadratic comparison function, we establish the
stability and characterize the set of equilibrium points of a
broad class of random and deterministic averaging dynamics.
This class includes a set of balanced chains, which itself contains
many of the previously studied chains. Finally, we provide
some implications of the developed results for products of
independent random stochastic matrices.

I. INTRODUCTION

A mathematical framework for studying weighted averag-
ing dynamics models has been provided in [1]. Later, such
models have found applications in distributed networked
problems such as decentralized computation [2], [3], dis-
tributed optimization [2], [4], as well as in modeling of
opinion dynamics [5].

A question on existence of a quadratic Lyapunov function
for averaging dynamics has been raised in [6]. This question
has been addressed in [7], where it was shown that a
quadratic Lyapunov function does not exist for such dynam-
ics in general. It is well-known that a quadratic Lyapunov
function does exist for a special class of averaging dynamics
driven by doubly stochastic chains. Convergence time of such
averaging dynamics has been established in [8].

In this paper, we deal with discrete-time weighted averag-
ing dynamics driven by deterministic chains or independent
random chains. We are interested in studying the asymptotic
behavior of the dynamics including stability and ergodicity.
In our study, we make use of comparison functions for
the dynamic models under consideration. In particular, we
show that any averaging dynamics admits infinitely many
comparison functions, among which there exists a quadratic
comparison function (Section III). We then focus on the
quadratic function and characterize its decrease over time.
Using this characterization and some results from [9], [10],
we prove the stability of a class of “balanced” random
dynamics and characterize the equilibrium points for the
models in this class. We show that the class includes
many of the previously studied weighted averaging dynamics
(Section IV). Finally, we provide two implications of the
developed results (Section V). In particular, we apply our
results to study ergodicity of random averaging dynamics.
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II. PROBLEM FORMULATION AND BASIC TERMINOLOGY

We introduce our notation, formulate the problem of our
interest and provide some basic terminology that will be used
in the subsequent development.

A. Notation and Basic Terminology

We use subscripts for indexing elements of vectors and
matrices. We write x ≥ 0 or x > 0 if, respectively, xi ≥ 0
or xi > 0 for all i. We use e to denote the vector with all
entries equal to one. A vector a is stochastic if a ≥ 0 and∑
i ai = 1. We use I for the identity matrix. A matrix W

is stochastic if all of its rows are stochastic vectors, and it
is doubly stochastic if its rows and columns are stochastic
vectors. We use [m] to denote the set {1, . . . ,m}. We denote
a proper subset of [m] by S ⊂ [m], its cardinality by |S|,
and its complement by S̄. A set S ⊂ [m] such that S 6= ∅
is a nontrivial subset of [m]. For an m ×m matrix W , we
let WS =

∑
i∈S,j∈S̄(Wij + Wji). For a matrix sequence

{W (k)}, we define W (t : k) = W (t−1) · · ·W (k) for t > k
and W (k : k) = I for k ≥ 0. For a vector v, we use diag(v)
to denote the diagonal matrix with the ith diagonal entry
equal to vi. We write X̄ = E[X] for the expected value of
a random variable (matrix) X . We often use a.s. to denote
almost surely.

B. Dynamics, Stability and Ergodicity

Throughout the paper we deal with stochastic matrices
W (k). Let {W (k)} be an independent random chain of m×
m stochastic matrices, i.e., Wij(k) is a random variable on
some probability space for all i, j ∈ [m] and all k ≥ 0,
{W (k)} is an independent chain, and W (k) is a stochastic
matrix almost surely for all k ≥ 0. For a starting time t0 ≥ 0
and a starting point x(t0) ∈ Rm, consider the following
dynamics

x(k + 1) = W (k)x(k) for k ≥ t0. (1)

We refer to {x(k)} as a (random) dynamics driven by the
chain {W (k)}.

We are interested in the limiting behavior of dynamics (1)
and, especially, in the stability and ergodicity of the dynam-
ics. These concepts are defined as follows.
Stability: {W (k)} is a stable chain if limk→∞ x(k) exists
a.s. for every t0 ≥ 0 and x(t0) ∈ Rm.
Ergodicity: {W (k)} is ergodic if limk→∞ (xi(k)− xj(k)) =
0 a.s. for all t0 ≥ 0, all x(t0) ∈ Rm, and all i, j ∈ [m].

To ensure stability, we often assume that the given chain
{W (k)} has a form of feedback property as defined below.
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Definition 1: A random chain {W (k)} has feedback prop-
erty if there is a scalar γ > 0 such that E[Wii(k)Wij(k)] ≥
γE[Wij(k)] for all i, j ∈ [m] with i 6= j and all k ≥ 0.
We refer to γ as a feedback coefficient. For a determin-
istic chain {A(k)}, the feedback property is equivalent to
Aii(k) ≥ γ for all i ∈ [m] and k ≥ 0.

III. COMPARISON FUNCTIONS FOR RANDOM CHAINS

In this section, we introduce absolute probability se-
quences associated with a random chain of stochastic ma-
trices. Then, using these sequences, we show that infinitely
many comparison functions can be constructed for dynamics
driven by stochastic chains. Subsequently, we focus on
quadratic comparison functions and study the decrease of
these functions along trajectories of the weighted-average
dynamics of our interest.

A. Absolute Probability Sequences

In his elegant work [11], Kolmogorov has introduced and
studied an absolute probability sequence, which is a special
sequence of stochastic vectors associated with an inhomoge-
neous Markov chain. We adopt Kolmogorov’s definition of
absolute probability sequence with a slight adjustment to fit
in the framework of random chains.

Definition 2: A sequence {π(k)} of stochastic vectors is
an absolute probability sequence for a random chain {W (k)}
if the following relation holds:

πT (k + 1)E[W (k)] = πT (k) for all k ≥ 0.
Generally, a chain may have infinitely many such se-

quences. As an example, consider A to be a non-singular
stochastic matrix. Starting from any stochastic vector π(0),
we can define πT (k) = πT (0)A−k. Then, {π(k)} is an ab-
solute probability sequence for the static chain {A}. Hence,
this chain has infinitely many absolute probability sequences.

In [11], Kolmogorov proved that every (deterministic)
chain {A(k)} of stochastic matrices has an absolute proba-
bility sequence. His elegant proof uses the fact that the set of
stochastic matrices is a compact subset of Rm×m. In view of
this, starting from any time k ≥ 0, the (backward) product

A(t : k) = A(t− 1) · · ·A(k + 1)A(k)

has a convergent subsequence as t goes to the infinity. Now,
by some diagonalization argument (see [12] for details), we
can find a subsequence {tk} such that

R(k) = lim
r→∞

A(tr : k) (2)

exists for any time k ≥ 0. Having the sequence {R(k)}
and choosing any stochastic vector π̂, we define π(k) =
RT (k)π̂ for all k. Then, the sequence {π(k)} is an absolute
probability sequence for {A(k)}. This holds since

πT (k + 1)A(k) = π̂TR(k + 1)A(k)

= π̂T lim
r→∞

A(tr : k + 1)A(k) = π̂T lim
r→∞

A(tr : k),

and π̂T limr→∞A(tr : k) = π̂TR(k) = πT (k). Note that
the definition of the absolute probability sequence involves
only the expected chain. Thus, by Kolmogorov’s argument,

it follows that any random chain {W (k)} has an absolute
probability sequence.

B. Constructing Comparison Functions

Using an absolute probability sequence {π(k)} of
{W (k)}, we can come up with a rich family of comparison
functions for the random dynamics in (1). For this, let
g : R→ R be an arbitrary convex function and let us define

Vg,π(x, k) =

m∑
i=1

πi(k)g(xi)− g(πT (k)x). (3)

We will show that Vg,π(x(k), k) is a supermartingale along
any trajectory {x(k)} of the dynamics in (1). Before proving
this, let us take a closer look at the comparison function in
Eq. (3). Suppose that g is a differentiable convex function.
Then, we have

∑m
i=1 πi(k)g′(πT (k)x)(xi − πT (k)x) =

g′(πT (k)x)
∑m
i=1 πi(k)(xi − πT (k)x) = 0. Therefore, by

the stochasticity of π(k), we obtain

Vg,π(x, k) =

m∑
i=1

πi(k)
(
g(xi)− g(πT (k)x)

)
=

m∑
i=1

πi(k)
(
g(xi)− g(πT (k)x)− g′(πT (k)x)(xi − πT (k)x)

)
=

m∑
i=1

πi(k)Bg(xi ‖ πT (k)x), (4)

where Bg(α||β) = g(α)−g(β)−g′(β)(α−β) is the Bregman
divergence (distance) of α and β with respect to the convex
function g(·) as defined in [13]. Equation (4) shows that
our comparison function is in fact a weighted average of
the Bregman divergence of the mass points x1, . . . , xm with
respect their weighted center of the mass.

We now shows that Vg,π is a comparison function for the
random dynamics in (1).

Lemma 1: For a dynamic {x(k)} driven by an indepen-
dent random chain {W (k)} with an absolute probability se-
quence {π(k)}, we have E[Vg,π(x(k + 1), k + 1) | x(k)] ≤
Vg,π(x(k), k).

Proof: By the definition of Vg,π in Eq. (3), we have

Vg,π(x(k + 1), k + 1)

=

m∑
i=1

πi(k + 1)g(xi(k + 1))− g(πT (k + 1)x(k + 1))

=

m∑
i=1

πi(k + 1)g([W (k)x(k)]i)− g(πT (k + 1)x(k + 1))

≤
m∑
i=1

πi(k + 1)

m∑
j=1

Wij(k)g(xj(k))− g(πT (k + 1)x(k + 1)),

where the inequality follows by convexity of g(·) and
stochasticity of matrices W (k) for any sample point. Now,
since {W (k)} is independent and πT (k + 1)E[W (k)] =
πT (k), by taking the conditional expectation on x(k) and
using Jensen’s inequality ([14] page 225) for the convex
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function g, we have

E[Vg,π(x(k + 1), k + 1) | x(k)]

≤
m∑
j=1

πj(k)g(xj(k))− E
[
g(πT (k + 1)x(k + 1)) | x(k)

]
≤

m∑
j=1

πj(k)g(xj(k))− g(πT (k + 1)E[x(k + 1) | x(k)]).

By using the dynamics equation for x(k+1) and the defining
property of the absolute probability sequence, we obtain

E[Vg,π(x(k + 1), k + 1) | x(k)]

≤
m∑
j=1

πj(k)g(xj(k))− g(πT (k)x(k)) = Vg,π(x(k), k).

Lemma 1 provides us with infinitely many choices for
constructing comparison functions for random and deter-
ministic averaging dynamics through the use of an absolute
probability sequence and a convex function g. Here, we
mention two functions which might be of particular interest:
Quadratic function: Let g(s) = s2 and let us consider the
formulation provided in Eq. (4). Then, it can be seen that

Vg,π(x, k) =

m∑
i=1

πi(k)(xi − πT (k)x)2. (5)

For dynamics {x(k)} in (1), the function Vg,π(x(k), k) =∑m
i=1 πi(k)(xi(k)−πT (k)x(k))2 is a bounded supermartin-

gale in R and, hence, convergent almost surely.
Kullback-Leibler divergence: Let x(0) ∈ [0, 1]m. One can
view x(0) as a vector of positions of m particles in [0, 1].
Intuitively, by the successive weighted averaging of the m
particles, the entropy of such system should not increase.
Mathematically, this corresponds to choosing g(s) = s ln(s)
in Eq. (3) (with g(0) = 0). Then, it can be seen that

Vg,π(x, k) =

m∑
i=1

πi(k)DKL(xi ‖ πT (k)x),

where DKL(α ‖ β) = α ln(αβ ) is the Kullback-Leibler diver-
gence of α and β.

C. Quadratic Comparison Functions

Lyapunov function d(x) = maxi xi − mini xi has often
been used to prove convergence and establish convergence
rate for weighted averaging dynamics (1). However, conver-
gence rate results obtained by using d(x) are often not the
best and tend to have an unfavorable growth with the dimen-
sion m of the underlying space. In [8], using a quadratic Lya-
punov function, tight convergence rate results were shown for
the averaging dynamics driven by doubly stochastic matrices.
Unfortunately, these results do not extend to stochastic chains
in general since not all stochastic chains (even those with rich
structures) have a quadratic Lyapunov function, as shown
in [7]. However, using Lemma 1 with the quadratic function
g(s) = s2, we see that any deterministic and random
stochastic chain has a quadratic comparison function. We

study the properties of this comparison function, which in a
sense extends the role of Lyapunov function in [8].

In our further development, we consider a quadratic
comparison function as in (5). To simplify the notation, we
omit the subscript g in Vg,π and define

Vπ(x, k) =

m∑
i=1

πi(k)(xi − πT (k)x)2.

For a chain {W (k)} with an absolute probability sequence
{π(k)}, we refer to Vπ(x, k) as the quadratic comparison
function associated with {π(k)}.

By the existence of a probability sequence for a stochastic
chain and by Lemma 1, the following corollary is immediate.

Corollary 1: Every independent random chain {W (k)}
admits a quadratic comparison function.

Lemma 1 implies that {Vπ(x(k), k)} is a supermartingale
along any trajectory of dynamics {x(k)}. However, in order
to show stability and to develop rate of convergence results,
we need to quantify the amount of decrease at each time step.
The following result gives a lower bound for the amount of
decrease, which is exact for deterministic chains.

Theorem 1: Let {W (k)} be an independent random chain
and let {π(k)} be an absolute probability sequence for
{W (k)}. Then, for any trajectory {x(k)} under {W (k)},
we have

E[Vπ(x(k + 1), k + 1) | x(k)]

≤ Vπ(x(k), k)−
∑
i<j

Hij(k)(xi(k)− xj(k))2,

where H(k) = E
[
WT (k)diag(π(k + 1))W (k)

]
. Further-

more, if πT (k + 1)W (k) = πT (k) almost surely, then the
above inequality holds as equality.

Proof: Let D(k) = diag(π(k)) −
E
[
WT (k)diag(π(k + 1))W (k)

]
. Then, we have:

D(k)e =
[
diag(π(k))− E

[
WT (k)diag(π(k + 1))W (k)

]]
e

= π(k)− E
[
WT (k)diag(π(k + 1))e

]
,

where we used the fact that W (k) is stochastic, almost
surely. Therefore, since {π(k)} is an absolute probabil-
ity sequence for {W (k)}, we have D(k)e = π(k) −
E
[
WT (k)π(k + 1)

]
= 0. Also, note that D(k) is a sym-

metric matrix. Thus, by Proposition 3.1.3 in [15], and since
Dij(k) = −Hij(k) for i 6= j, we have:

xT (k)D(k)xT (k) =
∑
i<j

Hij(k)(xi(k)− xj(k))2. (6)

In the other hand, Vπ(x, k) = xT diag(π(k))x −
(πT (k)x)2. Thus,

xT (k)D(k)xT (k) = Vπ(x(k), k)− E[Vπ(x(k + 1), k + 1) | x(k)]

−
{

(πT (k)x(k))2 − E
[
(πT (k + 1)x(k + 1))2 | x(k)

]}
.

By the convexity of s→ s2 and Jensen’s inequality, we have

E
[
(πT (k + 1)x(k + 1))2 | x(k)

]
≥ E

[
πT (k + 1)x(k + 1) | x(k)

]2
,
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and since, {π(k)} is an absolute probability sequence,
we have E

[
πT (k + 1)W (k)x(k) | x(k)

]2
= (πT (k)x(k))2.

Note that the equality holds if πT (k+1)W (k) = π(k) almost
surely. Thus, overall, we have

xT (k)D(k)xT (k)

≥ Vπ(x(k), k)− E[Vπ(x(k + 1), k + 1) | x(k)] .

Combining this relation and (6) concludes the assertion.
Theorem 1 is a generalization of Lemma 4 in [8], which

has played a central role in the convergence rate result
for deterministic doubly stochastic chains. In case of these
chains, by letting π(k) = 1

me for all k in Theorem 1, we
obtain Lemma 4 in [8].

From Theorem 1 we have the following important result.
Corollary 2: Let {π(k)} be an absolute probability se-

quence for an independent random chain {W (k)}. Then,
for any starting time t0 ≥ 0 and starting point x(t0) ∈
Rm, we have

∑∞
k=t0

∑
i<j Hij(k)E

[
(xi(k)− xj(k))

2
]
≤

E[Vπ(x(t0), t0)] <∞.
Now, let {W (k)} be an independent random chain with an

absolute probability sequence {π(k)}. We say that {π(k)} is
a uniformly bounded absolute probability sequence if there is
p∗ > 0 such that πi(k) ≥ p∗ > 0 for all i ∈ [m] and k ≥ 0.
We denote by P∗ the set of independent random chains
that have uniformly bounded absolute probability sequence.
These chains are central in our further development. In
Section IV, we will derive two conditions that certify when
a chain is in P∗.

D. Infinite-Flow Stability

In [9], [10], we have shown that for certain chains, the
dynamics in (1) is stable almost surely. Also, we have
characterized the equilibrium points of such a dynamics
using the infinite flow graph of the chain that drives the
dynamics. Here, under an additional condition, we extend
the characterization to an arbitrary chain in P∗. To do so,
we introduce infinite flow graph, as appeared in [10].

Definition 3: For an independent random chain {W (k)},
the infinite flow graph G∞ = ([m], E∞) is the graph
with the vertex set [m] and the edge set E∞ = {{i, j} |∑∞
k=0 (Wij(k) +Wji(k)) =∞ a.s., i 6= j ∈ [m]}.
Basically, the infinite flow graph of an independent random

chain is the graph consisting of the edges that carry infinite
accumulated weights almost surely. As discussed in [10], an
independent random chain {W (k)} and its expected chain
have the same infinite flow graph.

For a given random chain{W (k)}, we define infinite-flow
stability as follows.

Definition 4: An independent random chain {W (k)} is
infinite-flow stable if the dynamics {x(k)} is stable and
limk→∞ (xi(k)− xj(k)) = 0 a.s. for all t0 ≥ 0, all x(t0) ∈
Rm and every {i, j} ∈ E∞, where E∞ is the edge set of the
infinite flow graph of {W (k)}.

We are now ready to state one of our main results.
Theorem 2: Let {W (k)} ∈ P∗ and let {W (k)} have

feedback property. Then, {W (k)} is infinite-flow stable.

Proof: Let t0 ≥ 0 and x(t0) ∈ Rm be arbitrary
starting time and starting point for the dynamics {x(k)}
defined by Eq. (1). Also, let {π(k)} be a uniformly bounded
absolute probability sequence for {W̄ (k)}. By Corollary 2,
we have

∑∞
k=t0

∑
i<j Hij(k)E

[
(xi(k)− xj(k))2

]
<∞. We

let L(k) = E
[
W (k)TW (k)

]
and note that

H(k) = E
[
W (k)T diag(π(k + 1))W (k)

]
≥ p∗L(k).

Therefore,
∑∞
k=t0

∑
i<j Lij(k)E

[
(xi(k)− xj(k))2

]
< ∞

and, hence, {W (k)} belongs to the M2-class of chains, as
defined in [10]. Furthermore, {W (k)} has weak feedback
property (see [10]), which is implied by its feedback prop-
erty. Then, using a similar approach as in Theorem 5 of [10],
we can see that {W (k)} is an infinite-flow stable chain.

Theorem 2 not only shows that dynamics (1) is stable al-
most surely for chains in P∗ that have feedback property but
also characterizes the equilibrium points of this dynamics.

IV. BALANCED CHAINS

In this section, we characterize a sub-class of chains in
P∗, namely the set of balanced chains (in expectation) with
feedback property. This class includes many of the chains
that have been studied in the existing literature. Our goal
is to show that any balanced chain with feedback property
has a uniformly bounded absolute probability sequence, or
in other words, it belongs to the class P∗.

We start our development by considering deterministic
chains at first and we discuss random chains later. For this,
let {A(k)} be a deterministic chain of stochastic matrices
and ASS̄(k) =

∑
i∈S,j∈S̄ Aij(k) for S ⊂ [m].

Definition 5: A chain {A(k)} is balanced1 if there exists
a scalar α > 0 such that

ASS̄(k) ≥ αAS̄S(k) for any S ⊂ [m] and k ≥ 0.

We refer to α as a balancedness coefficient, and we denote
the set of balanced chains by B.

Note that in Definition 5, the scalar α is time-independent.
Furthermore, due to the inter-changeability of any subset S
with its complement S̄, for a balanced chain {A(k)} we have

ASS̄(k) ≥ αAS̄S(k) ≥ α2ASS̄(k),

implying α ≤ 1.

A. Absolute Probability Sequence of Balanced Chains

The main result of this section is that every balanced chain
with feedback property has a uniformly bounded absolute
probability sequence, i.e., belongs to the class of P∗ chains.

We start by establishing an auxiliary result in forthcoming
Lemma 2, which proof builds on the approach used in [17].
However, this approach needed some significant extensions
to fit in our more general assumption of balancedness. Also,
the lemma shows that the bound for the nonnegative entries
given in Proposition 4 of [17] can be reduced.

1Through a personal discussion of the first author of this paper with the
first author of [16] at CDC 2010, we noticed that work in [16] discusses
the same property for chains in continuous time dynamics.
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To this end, let Sj(k) = {` ∈ [m] | A`j(k : 0) > 0} be
the set of indices of the positive entries in the jth column
of A(k : 0) for j ∈ [m] and k ≥ 0. Also, let µj(k)
be the minimum of these positive entries, i.e., µj(k) =
min`∈S(k)A`j(k : 0) > 0 . We have the following result.

Lemma 2: Let {A(k)} be a balanced chain with feedback
property and with uniformly bounded positive coefficients,
i.e., there exists a scalar γ > 0 such that Aij(k) ≥ γ
when Aij(k) > 0. Then, Sj(k) ⊆ Sj(k + 1) and µj(k) ≥
γ|Sj(k)|−1 for all j ∈ [m] and k ≥ 0.

Proof: Let j ∈ [m] be arbitrary but fixed. By induction
on k, we prove that Sj(k) ⊆ Sj(k+ 1) for all k ≥ 0 as well
as the desired relation. For k = 0, we have A(0 : 0) = I
(see notation), so Sj(0) = {j}. Then, A(1 : 0) = A(1)
and by the feedback property of the chain {A(k)} we have
Ajj(1) ≥ γ, implying {j} = Sj(0) ⊆ Sj(1). Furthermore,
we have |Sj(0)| − 1 = 0 and µj(0) = 1 ≥ γ0. Hence, the
claim is true for k = 0.

Now suppose that the claim is true for some k ≥ 0. By
the feedback property and the boundedness of the positive
entries of A(k), we have for i ∈ Sj(k): Aij(k + 1 : 0) =∑m
`=1Ai`(k)A`j(k : 0) ≥ Aii(k)Aij(k : 0) ≥ γµj(k) > 0.

Thus, i ∈ Sj(k + 1), implying Sj(k) ⊂ Sj(k + 1). To show
the relation for µj(k + 1), we consider two cases:
Case 1: ASj(k)S̄j(k)(k) = 0. In this case for any i ∈ Sj(k),
we have:

Aij(k + 1 : 0) =
∑

`∈Sj(k)

Ai`(k)A`j(k : 0)

≥ µj(k)

m∑
`∈Sj(k)

Ai`(k) = µj(k), (7)

where the inequality follows by the fact that i ∈ Sj(k) and
ASj(k)S̄j(k)(k) = 0, and the definition of µj(k). Further-
more, by the balancedness of A(k) and ASj(k)S̄j(k)(k) = 0,
it follows that 0 = ASj(k)S̄j(k)(k) ≥ αAS̄j(k)Sj(k) ≥ 0.
Hence, AS̄j(k)Sj(k)(k) = 0. Thus, for any i ∈ S̄j(k),
we have Aij(k + 1 : 0) =

∑m
`=1Ai`(k)A`j(k : 0) =∑

`∈S̄j(k)Ai`(k)A`j(k : 0) = 0, where the second equality
follows from A`j(k : 0) = 0 for all j ∈ S̄j(k). Therefore, in
this case we have Sj(k + 1) = Sj(k), which by (7) implies
µj(k + 1) ≥ µj(k). In view of Sj(k + 1) = Sj(k) and the
inductive hypothesis, we further have µj(k) ≥ γ|Sj(k)|−1 =
γ|Sj(k+1)|−1, implying µj(k + 1) ≥ γ|Sj(k+1)|−1.
Case 2: ASj(k)S̄j(k)(k) > 0. Since the chain is balanced, we
have AS̄j(k)Sj(k)(k) ≥ αASj(k)S̄j(k)(k) > 0 implying that
AS̄j(k)Sj(k)(k) > 0. Therefore, by the uniform boundedness
of the positive entries of A(k), there exists ξ̂ ∈ S̄j(k) and
ˆ̀∈ Sj(k) such that Aξ̂ ˆ̀(k) ≥ γ. Hence, we have

Aξ̂j(k + 1 : 0) ≥ Aξ̂ ˆ̀(k)Aˆ̀j(k : 0) ≥ γµj(k) = γ|Sj(k)|,

where the equality follows by the induction hypothesis. Thus,
ξ̂ ∈ S(k + 1) while ξ̂ 6∈ Sj(k), implying |Sj(k + 1)| ≥
|Sj(k)| + 1. This, together with Aξ̂j(k + 1 : 0) ≥ γ|Sj(k)|,
yields µj(k + 1) ≥ γ|Sj(k)| ≥ γ|Sj(k+1)|−1.

It can be seen that Lemma 2 holds for products A(k : t0)
starting with any t0 ≥ 0 and k ≥ t0 (with appropriately de-
fined Sj(k) and µj(k)). An immediate corollary of Lemma 2
is the following result.

Corollary 3: Under the assumptions of Lemma 2, we have
1
me

TA(k : t0) ≥ min( 1
m , γ

m−1)eT for k ≥ t0 ≥ 0.
Proof: Without loss of generality, let t0 = 0. By

Lemma 2, for any j ∈ [m], we have 1
me

TAj(k : 0) ≥
1
m |Sj(k)|γ|Sj(k)|−1, where Aj denotes the jth column of A.
For γ ∈ [0, 1], the function t 7→ tγt−1 defined on [0,m]
attains its minimum at either t = 0 or t = m. Therefore,
1
me

TAj(k : 0)A(k : 0) ≥ min( 1
m , γ

m−1)eT .
Now, we relax the assumption on the bounded entries in

Corollary 3.
Theorem 3: Let {A(k)} be a balanced chain with feed-

back property. Let α, β > 0 be balancedness and feed-
back coefficients for {A(k)}, respectively. Then, there is
a scalar γ = γ(α, β) ∈ (0, 1] such that 1

me
TA(k : 0) ≥

min( 1
m , γ

m−1)eT for any k ≥ 0.
Proof: Let Bα,β be the set of balanced matrices with

the balancedness coefficient α and feedback property with
coefficient β > 0, i.e.,

Bα,β := {Q ∈ Rm×m | Q ≥ 0, Qe = e, (8)
QSS̄ ≥ αQS̄S for all S ⊂ [m], Qii ≥ β for all i ∈ [m]}.

The description in relation (8) shows that Bα,β is a bounded
polyhedral set in Rm×m. Let {Qξ ∈ Bα,β | ξ ∈ [nα,β ]}
be the set of vertices of this polyhedral set indexed by the
positive integers between 1 and nα,β , which is the number
of extreme points of Bα,β .

Since A(k) ∈ Bα,β for all k ≥ 0, we can write A(k) as a
convex combination of the extreme points in Bα,β , i.e., there
exist coefficients λξ(k) ∈ [0, 1] such that

A(k) =

nα,β∑
ξ=1

λξ(k)Qξ with
nα,β∑
ξ=1

λξ(k) = 1. (9)

Now, consider the following independent random matrix
process defined by:

W (k) = Qξ with probability λξ(k).

In view of this definition any sample path of {W (k)} consists
of extreme points of Bα,β . Thus, every sample path of
{W (k)} has bounded coefficient bounded by the minimum
positive entry of the matrices in {Qξ ∈ Bα,β | ξ ∈ [nα,β ]},
denoted by γ = γ(α, β) > 0, where γ > 0 since nα,β
is finite. Therefore, by Corollary 3, we have 1

me
TW (k :

t0) ≥ min( 1
m , γ

m−1)eT for all k ≥ t0 ≥ 0. Furthermore, by
Eq. (9) we have E[W (k)] = A(k) for all k ≥ 0, implying

1

m
eTA(k : t0) =

1

m
eTE[W (k : t0)] ≥ min

(
1

m
, γm−1

)
eT ,

where we also use independence of {W (k)}.
We are now ready to prove the main result of this section.
Theorem 4: For any balanced chain {A(k)} with feedback

property, we have {A(k)} ∈ P∗.
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Proof: Consider a balanced chain {A(k)} with a
balancedness coefficient α and a feedback coefficient β. Let
{tr} be an increasing sequence of positive integers such
that Eq. (2) holds, i.e., R(k) = limr→∞A(tr : k). Then,
as discussed in Section III, any sequence {π̂TR(k)} is an
absolute probability sequence for {A(k)}, where π̂ is a
stochastic vector. Let π̂ = 1

me. Then, by Theorem 3,

1

m
eTR(k) =

1

m
lim
r→∞

eTA(tr : k) ≥ p∗eT ,

with p∗ = min( 1
m , γ

m−1) > 0. Thus, { 1
me

TR(k)} is a uni-
formly bounded absolute probability sequence for {A(k)}.

We conclude this section by considering an implication of
Theorem 4 for random chains.

Theorem 5: Let {W (k)} be an independent random
model with feedback property. Also, let the expected chain
{W̄ (k)} be balanced. Then, {W (k)} ∈ P∗.

Proof: By Lemma 7 in [9], the expected chain has
feedback property. Therefore, by Theorem 4, the chain
{W̄ (k)} is balanced and, hence, the result follows.

Using Theorem 4, it can be shown that many of the models
studied in consensus literature, such as those in [2], [3], [6],
[4], [9], as well as Hegselmann-Krause model for opinion
dynamics in [5] and its generalization in [17], are instances
of chains in P∗. Therefore, the theory and results developed
in this section can be applied to them.

V. IMPLICATIONS

In this section, we provide two implications of Theorem 2
for the stability and convergence of deterministic and random
weighted averaging dynamics.

Let {W (k)} be an independent random chain. If {W (k)}
is an ergodic chain almost surely, then the ergodicity of its
expected chain {W̄ (k)} follows (Lemma 6 in [9]). However,
the converse statement is not necessarily true in general.
For example, let {W (k)} be an independent identically
distributed random chain with each W (k) uniformly dis-
tributed over the set of permutation matrices. In this case,
W (k : 0) does not converge as k →∞, while {W̄ (k)} is the
ergodic static chain { 1

mee
T }. Nevertheless, in the following

theorem, we show that the converse assertion is true for a
broad subclass of independent random chains with feedback
property.

Theorem 6: Let {W (k)} be an independent random chain
with feedback property. Let {W̄ (k)} be an ergodic chain
and let limt→∞ W̄ (t : k) = eπT (k) for a stochastic vector
π(k) and k ≥ 0. Then, if the sequence {π(k)} is uniformly
bounded by some p∗, then the chain {W (k)} is ergodic
almost surely.

Proof: As shown in [11], when limt→∞ W̄ (t : k) =
eπT (k), then {π(k)} is an absolute probability sequence for
{W̄ (k)}. Since the chain {W (k)} has feedback property,
Theorem 2 implies that the ergodicity of the chain {W (k)}
and its expected chain are equivalent.

Some consensus and ergodicity results for deterministic
weighted averaging dynamics rely on uniform boundedness

of the positive entries of the averaging matrices and the
existence of a periodical connectivity of the graphs associated
with the matrices (see [2], [3] and [6]). Using Theorem 6,
we can extend these results to independent random chains.

Theorem 7: Let {W (k)} be an independent random chain
with feedback property. Assume that for the expected chain
{W̄ (k)}, there exist a scalar α > 0 and an integer B > 0
such that the graph G(k) = ([m], EB(k)) is strongly con-
nected for all k ≥ 0, where EB(k) = {(i, j) | W̄ij(t) ≥
α, for some t ∈ [kB, (k − 1)B)}. Then, {W (k)} is ergodic
almost surely.

Proof: When a random chain {W (k)} has feedback
property with coefficient β > 0, its expected chain {W̄ (k)}
has the following (strong feedback) property W̄ii(k) ≥ β/m
for all i and k (cf. Lemma 7 in [9]). Then, by Lemma 4
of [4], it follows that the expected chain {W̄ (k)} is ergodic.
It can be shown that limt→∞ W̄ (t : k) = eπT (k) ≥ γm for
any k ≥ 0, where γ = min(α, β/m) ([3], Lemma 2.1). By
Theorem 6, it follows that {W (k)} is ergodic a.s.
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