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Abstract— In a companion paper [16], we defined a metric
distance between two probability distributions φ,ψ defined on
sets of different cardinality, called the variation of information
metric d. In this paper we study of problem of finding an optimal
reduced-order approximation in the variation of information
metric. Let φ denote the probability distribution of high
dimension that is to be approximated. It is shown first that any
optimal approximation of φ must be an aggregation of φ. Then
it is shown that any optimal aggregation of φ is one that has
maximum entropy. Using these two results, we then formulate
the problem of optimal order reduction as a nonstandard bin-
packing problem with overstuffing. Unfortunately this problem
is NP-hard. So a greedy algorithm is presented to solve this
problem, and an upper bound on its performance is presented.
The application of the greedy algorithm is illustrated via a large
example.

I. INTRODUCTION

In a companion paper [16], we defined a metric between
two probability distributions, say φ,ψ, defined on sets of
different cardinalities, called the variation of information
metric d. If there is a way of measuring the ‘distance’
between a high-dimensional probability distribution and a
lower-dimensional probability distribution, it is natural to
study the problem of optimal order reduction. Specifically,
suppose φ is an n-dimensional probability distribution, and
m < n is a specified integer. Then one can ask: What is
the (or an) ‘optimal’ m-dimensional approximation ψ to
φ in the sense of minimizing the variation of information
metric d(φ,ψ)? That is the question studied in this paper.
The question is answered via several steps. First, it is shown
that any optimal approximation of φ must in fact be an
aggregation of φ. Then it is shown that an aggregation of φ
is optimal if and only if it has maximum entropy amongst
all aggregations. Thus the optimal order reduction problem
is equivalent to maximizing entropy via aggregation. This
problem is then reformulated as a nonstandard bin-packing
problem with overstuffing. Unfortunately this problem is
NP-hard. So we propose a greedy algorithm to construct
a suboptimal solution, and also prove an upper bound on
its performance. The approach is illustrated through a large
example.

Cecil & Ida Green Endowed Chair, Erik Jonsson School of Engineering &
Computer Science, University of Texas at Dallas, 800 W. Campbell Road,
EC38, Richardson, TX 75080, USA; email: M.Vidyasagar@utdallas.edu.
This research was supported by National Science Foundation Award
#1001643.

II. PRELIMINARIES

In this section we reprise some relevant results from [16].

A. Notation

Let e denote the column vector of all one’s, and the
subscript denote its dimension. Thus en is a column vector
of n one’s. A matrix P ∈ [0, 1]n×m is said to be stochastic
if Pem = en, that is, all row sums of P are equal to one.
Note that P need not be a square matrix; but this definition is
consistent with the more familiar usage for square matrices.
The set of n ×m stochastic matrices is denoted by Sn×m.
If we take the degenerate case of m = 1, then the symbol
Sn denotes the set of nonnegative (row) vectors that add up
to one. Clearly Sn can be identified with the set M(A) of
all probability distributions on A on a set of cardinality n.

Throughout, the function h : [0, 1] → R+ is defined by
h(r) = −r log r, with the standard convention that h(0) =
0. Note that h is continuously differentiable except at r =
0, and that h′(r) = −(1 + log r). Throughout, we use the
symbol H to denote the Shannon entropy of a probability
distribution. Thus if φ ∈ Sn, then

H(φ) = −
n∑

i=1

φi log φi =

n∑
i=1

h(φi).

B. Reprise of Relevant Results from [16]

Suppose φ ∈ Sn,ψ ∈ Sm. Then we can think of φ,ψ
as probability distributions on some sets A,B respectively
where |A| = n, |B| = m. We can also think of φ,ψ
as probability distributions of some random variables X,Y
assuming values in A,B respectively. Let θ denote the joint
distribution of (X,Y ), so that θ ∈ M(A × B), and let
θA,θB denote its marginals on A,B respectively. With this
convention, we define the following quantities:

W (φ,ψ) := min
θ∈M(A×B)

{H(θ) : θA = φ,θB = ψ}, (1)

V (φ,ψ) :=W (φ,ψ)−H(φ). (2)

Compare with [16], Equations (5) and (6). Then it is possible
to define a metric between φ,ψ.

Definition 1: Suppose φ ∈ Sn,ψ ∈ Sm and let W (φ,ψ)
be as in (6). Then

d(φ,ψ) := V (φ,ψ) + V (ψ,φ) (3)

is called the variation of information metric between φ
and ψ.
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The salient properties of the function d are brought out
next.

Theorem 1: The functions d defined in (3) is a pseudo-
metric.

The computation of the quantity d relies on the compu-
tation of V (φ,ψ). This can be achieved by formulating an
associated optimization problem. Given φ ∈ Sn, define the
function Jφ : Sn×m → R+ by

Jφ(P ) =

n∑
i=1

φiH(pi), (4)

where pi is the i-th row of P . Then

V (φ,ψ) = min
P∈Sn×m

Jφ(P ) s.t. φP = ψ. (5)

The solution of minimizing Jφ(P ) with respect to P is
the main topic of [16].

III. ALL OPTIMAL REDUCED-ORDER APPROXIMATIONS
ARE AGGREGATIONS

Once we have a way of quantifying the distance between
probability distributions having different dimensions, it is
natural to examine the problem of approximating a distri-
bution φ ∈ Sn by another ψ ∈ Sm where m � n, such
that the distance between them is as small as possible. This
may be referred to as the ‘order reduction’ problem. This is
precisely the problem studied in the present paper, namely:
Given a distribution φ ∈ Sn, and an integer m < n (perhaps
m � n), find a ψ ∈ Sm such that d(φ,ψ) is as small as
possible.

Given φ ∈ Sn, let us refer to φ(a) as an aggregation
of φ if it can be obtained by aggregating the components
of φ. In other words, φ(a) is an aggregation of φ if there
exists a partition of {1, . . . , n} into m pairwise disjoint sets
I1, . . . , Im such that

φ
(a)
j =

∑
i∈Ij

φi, j = 1, . . . ,m.

An equivalent way of saying the same thing is the following:
Suppose m < n. Then ψ ∈ Sm is an aggregation of φ ∈
Sn if and only if there exists a matrix P ∈ Sn×m such
that ψ = φP , and in addition, pij = 0 or 1 for all i, j.
Note that the two conditions P ∈ Sn×m and pij equals 0
or 1 ensure that every row of P consists of a degenerate
probability distribution, with a solitary component equal to
1 and the rest equal to zero.

In this section, it is shown that, given a distribution φ ∈
Sn, an optimal approximation of φ in Sm,m < n, in terms of
the variation of information metric, must be an aggregation
of φ. Unfortunately the proof of this intuitive result is very
long.

Theorem 2: Suppose φ ∈ Sn,ψ ∈ Sm,m < n, and that
ψ is not an aggregation of φ. Then there exists a ψ′ ∈ Sm
such that d(φ,ψ′) < d(φ,ψ).

The proof of the theorem makes use of a couple of
preliminary lemmas.

Lemma 1: Suppose µ ∈ Rm
+ ,µ 6= 0. Then

m∑
j=1

h(µj) = cH((1/c)µ)) + h(c), (6)

where c = µem is a normalizing constant.
Proof: We have that

m∑
j=1

h(µj) =

m∑
j=1

µj log
1

µj

=

m∑
j=1

µj log
c

µj
−

 m∑
j=1

µj

 log c

= c

m∑
j=1

µj

c
log

c

µj
− c log c

= cH((1/c)µ)) + h(c).

This completes the proof.
Lemma 2: Suppose c1, c2, b > 0 with c1+c2+b = 1. For

each λ ∈ [0, 1], define ψ(λ) ∈ S2 by

ψ(λ) = [ c1 + λb c2 + (1− λ)b ],

and G : [0, 1]→ R by

G(λ) = bH([λ 1− λ])−H(ψ(λ)).

Then

G(λ) > min{G(0), G(1)} = min{−H(ψ(0)),−H(ψ(1))}.
(7)

Proof: This follows from elementary calculus. Recall that
for the function h(r) = r log(1/r), we have that h′(r) =
−(1 + log r) for all r > 0. Now expand G(λ) as

G(λ) = b(h(λ)+h(1−λ))−h(c1+λb)−h(c2+(1−λ)b).

Then it follows that

G′(λ) = −b(1 + log λ) + b(1 + log(1− λ))
+ b(1 + log(c1 + λb)− b(1 + log(c2 + (1− λ)b)

= b log

[
(c1 + λb) · (1− λ)
(c2 + (1− λ)b) · λ

]
= b log

[
c1 − c1λ+ bλ− bλ2

c2λ+ bλ− bλ2

]
.

From the above, it is clear that G′(λ) = 0 when

c1 − c1λ+ bλ− bλ2 = c2λ+ bλ− bλ2,

or
c1 − c1λ = c2λ, λ =

c1
c1 + c2

=: λ∗.

Now if λ > λ∗, then

c1 < (c1 + c2)λ, or c1 − c1λ < c2λ.

So the numerator in the fraction above is smaller than the
denominator, and as a result G′(λ) < 0 if λ > λ∗. Similar
reasoning shows that G′(λ) > 0 if λ < λ∗. So G(λ) attains
its maximum when λ = λ∗, and decreases on either side of
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λ∗. So in particular, if λ < λ∗, then G(λ) > G(0), whereas
if λ > λ∗, then G(λ) > G(1). In either case, (7) is satisfied.

Proof (of Theorem 2): Now we give a proof of Theorem
2. Suppose φ ∈ Sn,ψ ∈ Sm,m < n, and ψ is not an
aggregation of φ. Choose P ∈ Sn×m such that φP = ψ
and Jφ(P ) = V (φ,ψ). Since ψ is not an aggregation of
φ, at least one row of P contains at least two nonzero (i.e.,
positive) elements. Let k be such a row, and without loss
of generality permute the components of ψ in such a way
that pk1 > 0, pk2 > 0. To show that ψ cannot be an optimal
approximation of φ in the d metric, we will construct another
distribution ψ′ ∈ Sm that matches ψ from component 3
onwards. We will do this by perturbing only the two elements
pk1, pk2 in such a way that p′k1 + p′k2 = pk1 + pk2, and
defining ψ′ = φP ′. This means that many of the quantities
are common to ψ and ψ′, so in the various equations below,
we will just write ‘constant’ or ‘const.’ to avoid notational
clutter.

From the manner in which P was chosen, it follows that

V (φ,ψ) =

n∑
i=1

φiH(pi)

= φkH(pk) + const
= φk[h(pk1) + h(pk2)] + const,

V (ψ,φ) = V (φ,ψ) +H(φ)−H(ψ)

= φk[h(pk1) + h(pk2)]− [h(ψ1) + h(ψ2)]

+ const.

Note that the ‘constant’ in the two equations need not be the
same. Our use of the phrase ‘constant’ means only that all
the ignored summations remain unchanged when we replace
ψ by ψ′. Proceeding further, let us write

ψ1 =

n∑
i=1

φipi1 =
∑
i 6=k

φipi1 + φkpk1 =: d1 + φkpk1.

Similarly,

ψ2 =

n∑
i=1

φipi2 =
∑
i 6=k

φipi2 + φkpk2 =: d2 + φkpk2.

With these definitions, we can write

V (ψ,φ) = φk[h(pk1) + h(pk2)]

− [h(d1 + φkpk1) + h(d2 + φkpk2)]

+ const. (8)

This looks similar to the function G(λ) in Lemma 2, except
that neither pk1+pk2 nor d1+d2+φk necessarily add up to
one. So we proceed as in the proof of Lemma 2 and apply
the correction terms from Lemma 1 wherever necessary. Let
us define

λ =
pk1

pk1 + pk2
, 1− λ =

pk2
pk1 + pk2

,

β = pk1 + pk2, α = d1 + d2 + βφk,

and note that

ψ1 + ψ2 = d1 + d2 + βφk = α.

With these definitions, and making repeated use of Lemma
1, we get

φk[h(pk1) + h(pk2)] = βφkH([λ 1− λ]) + φkh(β),

h(ψ1) + h(ψ2) = αH(γ) + h(α),

where

γ =

[
d1
α

+ λ
βφk
α

d2
α

+ (1− λ)βφk
α

]
∈ S2.

Hence

V (ψ,φ) = α

[
βφk
α
H([λ 1− λ]) +H(γ)

]
+ φkh(β)− h(α) + const.

Now the quantity inside the brackets is like G(λ) in Lemma
2, with

c1 =
d1
α
, c2 =

d2
α
, b =

βφk
α
.

And these three numbers do add up to one. So we know
from Lemma 2 that the quantity inside the brackets can be
made smaller by choosing λ = 0 or 1. The choice λ = 0
causes pk1, pk2, ψ1, ψ2 to be replaced by

[p′k1 p′k2] = [0 pk1 + pk2],

[ψ′1 ψ′2] = [d1 d2 + φk(pk1 + pk2)],

while the choice λ = 1 causes pk1, pk2, ψ1, ψ2 to be replaced
by

[p′k1 p′k2] = [pk1 + pk2 0],

[ψ′1 ψ′2] = [d1 + φk(pk1 + pk2) d2].

In either case the numbers β, α remain the same, whence the
correction term φkh(β) − h(α) also remains the same. So
decreasing the quantity inside the brackets reduces V (ψ,φ).
So the conclusion is that there exists a P ′ ∈ Sn×m such that,
with ψ′ = φP ′, we have

Jφ(P
′) +H(φ)−H(ψ′) = φk[h(p

′
k1) + h(p′k2)]

− [h(ψ′1) + h(ψ′2)] + const
< φk[h(pk1) + h(pk2)]

− [h(ψ1) + h(ψ2)] + const
= V (ψ,φ).

Now, since V (φ,ψ′) is the minimum of the quantity Jφ(Q)
over all Q ∈ Sn×m such that φQ = ψ′, we conclude from
the above that

V (φ,ψ′) +H(φ)−H(ψ′) < V (ψ,φ),

or equivalently that

V (ψ′,φ) < V (ψ,φ).

718



Similarly, we can compare V (φ,ψ′) and V (φ,ψ). Since
p′k1 + p′k2 = pk1 + pk2, and one of p′k1, p

′
k2 is zero, it is

obvious that

φk[h(p
′
k1) + h(p′k2)] < φk[h(pk1) + h(pk2)].

Hence
Jφ(P

′) < Jφ(P ) = V (φ,ψ).

As a consequence, we have as before that

V (φ,ψ′) = min
Q∈Sn×m

Jφ(Q) s.t. φQ = ψ′

≤ Jφ(P
′) < V (φ,ψ).

Combining both inequalities leads to the desired conclusion,
namely that

d(φ,ψ′) < d(φ,ψ).

This completes the proof.

IV. FINDING AN OPTIMAL AGGREGATION: A
REFORMULATION

Now that we know that any reduced-order approximation
in the variation of information metric must be an aggregation,
the next logical step is to characterize the distance between a
distribution and its aggregations, and choose one aggregation
that is closest to the original distribution. That is the objective
of this section. We first show that minimizing the distance
between a given distribution φ and its aggregation φ(a) is
equivalent to maximizing the entropy of φ(a). Since there
are O(mn) aggregations, finding one with maximum entropy
turns out to be NP-hard (not surprisingly). So we reformulate
the problem as a bin-packing problem with over-stuffing,
and propose a greedy algorithm. A worst-case performance
bound for the greedy algorithm is derived.

Now we can ask: What is the best possible aggregation
φ(a) that is ‘closest’ to φ? If φ(a) is an aggregation of φ,
it is obvious that V (φ,φ(a)) = 0. By (4) it follows that
V (φ(a),φ) = H(φ)−H(φ(a)). Applying the definitions of
d shows that

d(φ,φ(a)) = H(φ)−H(φ(a)).

Since H(φ) is a part of the data, minimizing d(φ,φ(a))
requires us to maximize the entropy H(φ(a). This leads to
the

The Optimal Aggregation Problem to Maximize En-
tropy: Given φ ∈ Sn and an integer m < n, find an
aggregation of φ into Sm with maximum entropy.

Note that if m = 2, the aggregation φ(a) has maximum
entropy if and only if it is closest to the uniform vector u2

in the total variation metric. In turn, finding an aggregation
such that ρ(φ(a),u2) is minimized (where ρ denotes the total
variation metric) is equivalent to a bin-packing problem with
overstuffing where both bin sizes are equal, and this problem
is NP-hard. Hence it is plausible that the above problem is
also NP-hard. Moreover, a natural suboptimal algorithm is
also not readily available, unless we reformulate the problem,
which is the next step.

We observe that amongst all distributions in Sm, the uni-
form distribution has the maximum entropy. Thus we attempt
to aggregate φ in such a way that every component of φ(a)

is as close as possible to 1/m. That problem is a special case
of aggregating φ in such a way that every component of φ(a)

is as close as possible to the corresponding component of a
given distribution ψ ∈ Sm, which need not be the uniform
distribution. This more general problem is formulated in [14],
as a follow up to earlier work in [6], [7], [8], and can be
stated as follows.

Optimal Aggregation in Total Variation Metric to a
Desired Distribution: Given φ ∈ Sn, ψ ∈ Sm, find an
aggregation φ(a) of φ such that the total variation metric
ρ(φ(a),ψ) is as small as possible, where the total variation
metric ρ between α,β ∈ Sm is defined as:

ρ(α,β) =
1

2

∑
j∈B
|αj − βj | =

∑
j∈B

max{αj − βj , 0}

=
∑
j∈B

max{βj − αj , 0}.

V. A GREEDY ALGORITHM FOR OPTIMAL AGGREGATION

As shown below, the optimal aggregation problem can be
formulated as a non-standard bin-packing problem. Specifi-
cally, the problem of optimal aggregation in the total vari-
ation metric can be thought of as a bin-packing problem
with the longer probability distribution φ1, . . . , φn as the
‘list’ to be packed, and the shorter distribution ψ1, . . . , ψm as
the capacity of the ‘bins’, while minimizing the unutilized
capacity. This problem differs from the conventional bin-
packing problem in at least three respects:

• In the standard bin-packing problem, all bins have the
same capacity, whereas here they need not.

• In the standard bin-packing problem, if a list item does
not fit any bin, then a new bin is created; here the
number of bins is fixed.

• Since
∑

i φi =
∑

j ψj = 1, if all list items have to be
put into the available bins, then some bins need to be
‘overstuffed’, that is, have their capacity exceeded.

Fortunately, thanks to the propensity of the research com-
munity to study every possible variation of a problem, this
very situation has been studied in [18]. We don’t use their
results directly; rather, we adapt their method of proof to
the situation at hand. First we adapt the LS algorithm to the
situation where the number of bins is fixed but overstuffing
is allowed.

1) Sort the elements of φ,ψ into descending order of
magnitude.

2) Set i (the round counter) to 0, and set the initial bin
capacities as cj = ψj for j = 1, . . . ,m.

3) Increment the counter i by one until i = n. Include
the element φi into the bin with the greatest capacity
cj , and then replace cj by cj −φi. If cj −φi < 0 then
put no more elements in bin j. End when i = n.

719



Theorem 3: For the LS algorithm described above, we
have

ρ(φ(a),ψ) ≤ 0.25mφmax. (9)

where φ(a) is the aggregation produced by the algorithm,
and φmax = maxi{φi}.

Proof: The steps in the proof follow the corresponding
steps in [18]. Once the greedy algorithm is completed, let us
denote the resulting aggregation φ(a) by α to reduce clutter.
Let us refer to bin j as ‘heavy’ if αj > ψj , and ‘light’ if
αj ≤ ψj . Suppose there are k heavy bins. Without loss of
generality, renumber the bins such that the first k bins are
heavy and the rest are light. Let e1, . . . , ek denote the excess
and sk+1, . . . , sm denote the slack. In other words,

ej = αj − ψj , j = 1, . . . , k,

and
sj = ψj − αj , j = k + 1, . . . ,m.

For j = 1, . . . , k, let rj denote its excess capacity just before
the last item was placed into it (making it heavy). Then two
things are obvious. First, rj + ej equals the last component
of φ that was placed into this bin, and as a result rj + ej ≤
φmax. Second, the nature of the LS algorithm implies that
rj is at least equal to the capacity of all the other bins at
the time this item was placed into bin j. Since bin capacity
can only decrease as the algorithm is run, in particular this
implies that

rj ≥ sk+1, . . . , sm, j = 1, . . . , k.

Therefore

1

k

k∑
j=1

rj ≥ min
j=1,...,k

rj ≥ max
j=k+1,...,m

sj ≥
1

m− k

m∑
j=k+1

sj .

Rearranging gives

(m− k)
k∑

j=1

rj ≥ k
m∑

j=k+1

sj .

Since both φ,ψ are unit vectors, it follows that
k∑

j=1

ej =

m∑
j=k+1

sj .

Therefore

(m− k)
k∑

j=1

(rj + ej) ≥ m
m∑

j=k+1

sj .

Note that the right side is precisely mρ(α,ψ). Hence

ρ(α,ψ) ≤ m− k
m

k∑
j=1

(rj + ej)

≤ k(m− k)
m

φmax ≤
mφmax

4
, (10)

which follows from the obvious observation that k(m−k) ≤
m2/4 no matter what k is.

It is quite easy to show that the performance of the
algorithm is bounded by 0.5mφmax. This is because no bin
can be overstuffed by more than φmax, and no bin can have
unutilized capacity more than φmax. Since the totals of over-
and under-capacity have to balance out, the bound 0.5mφmax

follows. Thus the real essence of the theorem is to gain an
extra factor of 0.5.

The specific result of [18] bounds the total weight of
all the bins (call it A) and shows that ALS ≤ 1.25Aopt,
where LS is the on-line list-scheduling algorithm. Moreover,
they also require an extra assumption that φmax ≤ ψmin,
something that is not needed here. It is easy to verify that
the weight of an algorithm equals 1 + ρ(φ(a),ψ) achieved
by that algorithm. Hence a direct application of the results
of [18] would imply that

ρLS(φ
(a),ψ) ≤ 1.25ρopt(φ

(a),ψ) + 0.25.

Because of the additive constant of 0.25, this bound is less
useful than the bound (9) given by Theorem 3.

The above analysis works also when the bins are nonuni-
form in size. Moreover, as pointed out in [18], the LS (in
this case BFD) algorithm actually works better when the
bin sizes are widely disparate. However, the problem of
optimal aggregation to maximize entropy is a conventional
bin-packing problem with equal bin sizes of 1/m and over-
stuffing permitted. The bound given in Theorem 3 holds in
this case as well.

VI. EXAMPLE OF AGGREGATION USING THE GREEDY
ALGORITHM

Example 1: To illustrate the above algorithm, we solve a
40 × 10 problem.1 First two uniformly distributed random
vectors x ∈ [0, 1]40,y ∈ [0, 1]10 were generated using the
rand command of Matlab. Then these were stretched out
via the transformation

φi = exp(xi)/s1, ψj = exp(yj)/s2,

where s1, s2 are scaling constants to make the sums come
out equal to one. Then only the smaller vector is sorted in
descending order. The results are shown below. For display
purposes the resulting φ and ψ are shown as a matrices,
though in reality both are row vectors.

φ =



0.0304 0.0333 0.0153 0.0335 0.0253
0.0148 0.0178 0.0232 0.0350 0.0353
0.0157 0.0355 0.0350 0.0219 0.0299
0.0155 0.0205 0.0336 0.0297 0.0351
0.0259 0.0139 0.0314 0.0342 0.0265
0.0287 0.0283 0.0199 0.0259 0.0160
0.0273 0.0139 0.0177 0.0141 0.0148
0.0307 0.0270 0.0185 0.0348 0.0139


,

ψ =

[
0.1241 0.1205 0.1192 0.1139 0.1069
0.0914 0.0875 0.0869 0.0821 0.0675

]
.

1The diary of the example is available upon request from the author.
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Applying the best fit algorithm for aggregation without
sorting φ results in the following grouping and aggregation
(shown as a matrix for convenience):

I1 = {1, 16, 23, 33}, I2 = {2, 18, 31}, I3 = {3, 12, 24, 40},

I4 = {4, 19, 30, 36}, I5 = {5, 15, 27, 38}, I6{6, 11, 17, 25, 34},

I7 = {7, 13, 26, 37}, I8 = {8, 14, 22, 28, 35},

I9 = {9, 20, 32, 39}, I10 = {10, 21, 29},

φ(a) =

[
0.0951 0.0942 0.0989 0.1099 0.1020
0.0917 0.1085 0.0938 0.1188 0.0871

]
.

We have that H(φ(a) = 2.2934, quite close to the theoretical
maximum of 2.3026.

In contrast, if we first sort φ before applying the best fit
algorithm, the following grouping results:

I1 = {1, 20, 21, 39}, I2 = {2, 19, 22, 40}, I3 = {3, 18, 23, 38},

I4 = {4, 17, 24, 37}, I5 = {5, 16, 25, 36}, I6 = {6, 15, 29, 31},

I7 = {7, 14, 27, 34}, I8 = {8, 13, 26, 35},

I9 = {9, 12, 28, 33}, I10 = {10, 11, 30, 32}.

The resulting aggregation is

φ(a) =

[
0.1019 0.1021 0.1016 0.1007 0.1004
0.0982 0.0994 0.0993 0.0982 0.0982

]
,

which is much closer to being uniform than the earlier
aggregation.

VII. CONCLUSIONS

In this paper we have studied the problem of finding an op-
timal lower-order approximation to a higher-order probability
distribution, where the metric distance between the original
and reduced-order distributions is the variation of informa-
tion metric introduced in a companion paper [16]. It is first
shown that every optimal reduced-order approximation must
in fact be an aggregation of the original distribution. Thus the
optimal order reduction problem is shown to be equivalent to
finding an aggregation that has maximum entropy. Since this
problem is NP-hard, we have reformulated it as a problem
of bin-packing with over-stuffing, which is also NP-hard.
However, for the latter problem we are able to give a
greedy algorithm and also to prove an upper bound on its
performance. The approach has been illustrated by a fairly
large example of finding a 10-th order approximation to a
40-th order distribution.

Note that a preprint that combines both [16] as well as the
present paper can be found at [15].
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similarity metric”, IEEE Trans. Info. Thy., 50(12), 3250-3264, Dec.
2004.

[11] Marina Meila, “Comparing clusterings by the variation of infor-
mation”, in Learning Theory and Kernel Machines: 16th Annual
Conference on Learning and 7th Kernel Workshop, Bernard Schölkopf,
Manfred Warmuth and Manfred K. Warmuth (Editors), pp. 173-187,
2003.

[12] Marina Meila, “Comparing clusterings – an information-based dis-
tance”, J. Multivariate Anal., 98(5), 873-895, 2007.

[13] Donald S. Ornstein, “An application of ergodic theory to probability
theory”, The Annals of Probability, 1(1), 43-65, 1973.

[14] M. Vidyasagar, “Kullback-Leibler Divergence Rate Between Probabil-
ity Distributions on Sets of Different Cardinalities”, Proc. IEEE Conf.
on Decision and Control, Atlanta, GA, 947-953, 2010.

[15] M. Vidyasagar, “Metrics between probability distributions on finite
sets of different cardinalities by maximizing mutual information
(MMI),” arxiv:1104.4521v2.pdf.

[16] M. Vidyasagar, ”A metric between probability distributions on finite
sets of different cardinalities,” to be presented at CDC 2011.

[17] Wikipedia page on mutual information, found at
http://en.wikipedia.org/wiki/Mutual information

[18] Deshi Yu and Guochuan Zhang, “On-line extensible bin packing with
unequal bin sizes”, Lecture Notes in Computer Science, Vol. 2909,
235-247, 2004.

[19] Minyi Yue, “A simple proof of the inequality FFD(L) ≤
(11/9)OPT (L) + 1, ∀L for the FFD bin-packing algorithm”, Acta
Mathematicae Applicatae Sinica, 7(4), 321-331, Oct. 1991.

721


