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Abstract— With increasing use of digital control it is natural
to view control inputs and outputs as stochastic processes
assuming values over finite alphabets rather than in a Euclidean
space. As control over networks becomes increasingly common,
data compression by reducing the size of the input and output
alphabets without losing the fidelity of representation becomes
relevant. This requires us to define a notion of distance
between two stochastic processes assuming values in distinct
sets, possibly of different cardinalities. If the two processes
are i.i.d., then the problem becomes one of defining a metric
between two probability distributions over distinct finite sets of
possibly different cardinalities. This is the problem addressed
in the present paper. A metric is defined in terms of a joint
distribution on the product of the two sets, which has the
two given distributions as its marginals, and has minimum
entropy. Computing the metric exactly turns out to be NP-
hard. Therefore an efficient greedy algorithm is presented for
finding an upper bound on the distance.

I. INTRODUCTION

Suppose we view a control system as an input-output
map where the input signal is a sequence {ut} assuming
values in some finite set U , while the output signal is a
sequence {yt} assuming values in another finite set Y . In
this setting, the problem of order reduction is quite different
in nature from the traditional order reduction problem, where
the emphasis is on reducing the dimension of the (Euclidean)
state space. If the system has some element of randomness
in it, we should view {(ut, yt)} as a stochastic process
assuming values in the set U × Y .1 For the purposes of
controller design, it would be worthwhile to know whether
the finely quantized inputs and outputs can be replaced by
a coarser quantization without losing too much accuracy in
the representation. Such considerations become particularly
germane in the problem of control over networks, whereby
the plant and controller may be connected only through a
noisy channel. This type of order reduction would require
approximating the original stochastic process by another one
assuming values in a set of smaller cardinality U ′×Y ′. The
approximation can be quantified by defining a metric distance
between two stochastic processes assuming values in distinct
sets (of different cardinalities). So far as the author is aware,
no such metric is available in the literature. The closest the
author has been able to find is a paper by Ornstein [15] in
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the inaugural issue of the Annals of Probability, in which he
defines a metric distance between two stochastic processes
assuming values in a common finite set.

Our analysis is based on information theory. The use of
information-theoretic methods in the controls community has
a long history, going back at least to [16] if not much
earlier. In this paper, we define a metric distance between
two distributions on distinct finite sets by maximizing their
mutual information. It turns out that actually computing the
metric distance between two probability distributions is an
NP-hard problem as it can be reduced to a nonstandard
bin-packing problem. Therefore we develop efficient greedy
algorithm. Specifically, we can compute an upper bound on
the distance in O((n + m2) logm) operations where n and
m are the cardinalities of the two sets with n ≥ m.

II. THE VARIATION OF INFORMATION METRIC

A. Concepts from Information Theory

Throughout the paper, we shall use the symbols A,B,C
for finite sets of cardinality n,m, l respectively. The sym-
bols X,Y, Z denote random variables assuming values in
A,B,C respectively. The symbols φ,ψ, ξ denote probability
distributions on the sets A,B,C respectively. Though the
elements of these sets could be any abstract entities, to avoid
notational clutter we shall write A = {1, . . . , n} instead
of the more precise A = {a1, . . . , an} etc. Let e denote
the column vector of all one’s, and the subscript denote its
dimension. Thus en is a column vector of n one’s. A matrix
P ∈ [0, 1]m×n is said to be stochastic if Pen = em, that is,
for each row, the sum of all columns equals one. The set of
m × n stochastic matrices is denoted by Sm×n. If we take
the degenerate case of m = 1, then the symbol Sn = S1×n
denotes the set of nonnegative (row) vectors that add up to
one. Clearly Sn can be identified with the set M(A) of all
probability distributions on A.

Suppose X,Y are random variables assuming values in
A,B respectively, and let θ ∈ M(A× B) denote their joint
distribution. For each index i between 1 and n, let pi denote
the conditional distribution of Y given that X = i. That is

pij =
θij∑m

j′=1 θij′
.

Note that the matrix P = [pij ] belongs to Sn×m, and the
i-th row of P , denoted by pi, belongs to Sm for each i. If
we represent the joint distribution of X and Y by an n×m
matrix Θ = [θij ] where θij = Pr{X = i&Y = j}, then we
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can write
P = [Diag(φ)]−1Θ, (1)

where Diag(φ) represents the n × n diagonal matrix with
φ1, . . . , φn as the diagonal elements. Suppose we now define
Q ∈ Sm×n by

qji = Pr{X = i|Y = j}.
Then it is easy to see that the following identities hold:

Θ = Diag(φ)P = QTDiag(ψ), (2)

Q = [Diag(ψ)]−1PTDiag(φ). (3)

Now we introduce various concepts from information
theory. All the concepts introduced below are discussed in
[6, Chapter 2]. The function h : [0, 1] → R+ is defined by
h(r) = −r log r, with the standard convention that h(0) = 0.
Note that h is continuously differentiable except at r = 0,
and that h′(r) = −(1 + log r). The symbol H denotes
the Shannon entropy of a probability distribution. Thus if
φ ∈ Sn, then

H(φ) = −
n∑
i=1

φi log φi =

n∑
i=1

h(φi).

We define the conditional entropy of Y given X as

H(Y |X) =

n∑
i=1

φiH(pi) =

n∑
i=1

φi

m∑
j=1

h(pij)

= −
n∑
i=1

φi

m∑
j=1

pij log pij ,

where pi denotes the i-th row of the matrix P . With this
definition the identities

H(X,Y ) = H(X) +H(Y |X) = H(Y ) +H(X|Y ) (4)

hold. The mutual information between X and Y is defined
as

I(X,Y ) = H(X) +H(Y )−H(X,Y )

= H(Y )−H(Y |X) = H(X)−H(X|Y ).

B. Setting Up the Problem
Suppose X,Y are random variables assuming values in the

sets A,B respectively, with distributions φ,ψ respectively.
We ask: What is the maximum possible mutual information
between X and Y ? Clearly this is equivalent to asking the
question: What is a (or the) distribution θ on A×B that has
minimum entropy, while satisfying the boundary conditions
θA = φ,θB = ψ?

Definition 1: Given sets A,B with |A| = n, |B| = m, and
given φ ∈ Sn,ψ ∈ Sm, define

W (φ,ψ) := min
θ∈M(A×B)

{H(θ) : θA = φ,θB = ψ}, (5)

V (φ,ψ) := W (φ,ψ)−H(φ). (6)
It is obvious that

W (ψ,φ) = W (φ,ψ), V (ψ,φ) = V (φ,ψ)+H(φ)−H(ψ),
(7)

where the second identity follows from (4).

C. The Variation of Information Metric
We begin by defining a metric between random variables,

and then move on to distributions.
Definition 2: Given two random variables X,Y , the vari-

ation of information between them is defined as

v(X,Y ) = H(X|Y ) +H(Y |X). (8)
This measure is introduced in [13], [14] where it is referred

to as the ‘variation of information’ metric between random
variables. So we retain the same nomenclature, though our
metric is between probability distributions.

Theorem 1: The function v(·, ·) satisfies the axioms of a
pseudometric. Thus v has the properties that for all random
variables X,Y, Z, we have v(X,Y ) ≥ 0, v(X,Y ) =
v(Y,X), and v(X,Y ) ≤ v(X,Z) + v(Y,Z).

Proof: It is obvious that v(X,Y ) ≥ 0, and it follows from
(8) that v(X,Y ) = v(Y,X). To show that v(·, ·) satisfies
the triangle inequality, we make use of the easily-proved
inequality

H(X|Y ) ≤ H(X,Z|Y ) = H(Z|Y ) +H(X|Z, Y )

≤ H(Z|Y ) +H(X|Z). (9)

To prove the triangle inequality, invoke the one-sided triangle
inequality (9) and observe that

v(X,Y ) = H(X|Y ) +H(Y |X)

≤ H(X|Z) +H(Z|Y ) +H(Y |Z) +H(Z|X)

= v(X,Z) + v(Y, Z).

This completes the proof. �
Now we turn the above pseudometric between random

variables into a pseudometric between probability distribu-
tions.

Definition 3: Given two probability distributions φ ∈
Sn,ψ ∈ Sm, the variation of information metric between
them is defined as

d(φ,ψ) = V (φ,ψ) + V (ψ,φ). (10)
Theorem 2: The function d defined in (10) is a pseudo-

metric in that it is nonnegative, symmetric and satisfies the
triangle inequality.

Proof: It is obvious that d is nonnegative and symmetric;
so it only remains to prove the triangle inequality. To prove
this, we first establish a small technical point. Suppose η ∈
M(A×C), ζ ∈M(B×C) and that ηC = ζC = ξ. Then it is
always possible to find a distribution ν ∈M(A×B×C) such
that νA×C = η and νB×C = ζ. In words, the claim is that,
given two joint distributions, one of X and Z, and another of
Y and Z, both of them having the same marginal distribution
for Z, it is possible to find a joint distribution for all three
variables X,Y, Z such that the marginal distributions of
(X,Y ) and of (Y,Z) match the two given joint distributions.
To establish the claim, we construct ν by making X and
Y conditionally independent given Z, or equivalently, by
making X → Z → Y into a very short Markov chain.
Accordingly, let

νijk =
ηikζjk
ξk

.
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It is routine to verify that ν has the required properties, using
the identities

ξk =
∑
i∈A

ηik =
∑
j∈B

ζjk.

Now we return to the proof that d satisfies the triangle
inequality. Given three different probability distributions φ ∈
M(A), ψ ∈ M(B), ξ ∈ M(C), let us choose distributions
θ ∈ M(A × B), η ∈ M(A × C) and ζ ∈ M(B × C) such
that

θA = φ,θB = ψ, H(θ) = W (φ,ψ), (11)

ηA = φ,ηC = ξ, H(η) = W (φ, ξ), (12)

ζB = ψ, ζC = ξ, H(ζ) = W (ψ, ξ). (13)

Now choose ν to be any distribution on A×B×C such that

νA×C = η, νB×C = ζ. (14)

Let X,Y, Z be three random variables with the joint distribu-
tion ν. Then the triangle inequality for the quantity v shows
that

v(X,Y ) ≤ v(X,Z) + v(Y,Z).

The manner in which η and ζ were chosen shows that

v(X,Z) = d(φ, ξ), v(Y,Z) = d(ψ, ξ).

However, an analogous statement about v(X,Y ) may not
be true. So we note instead that d(φ,ψ) is the minimum
of v(X,Y ) whenever X and Y have distributions φ, ξ
respectively. Hence

d(φ,ψ) ≤ v(X,Y ) ≤ v(X,Z)+v(Y,Z) = d(φ, ξ)+d(ψ, ξ),

which is the desired conclusion. �

III. COMPUTING THE METRIC

A. Problem Formulation and Elementary Properties

Now that we have defined the metric, the next step is to
compute it. Note that if we compute V (φ,ψ), then V (ψ,φ)
is automatically determined by (7). Also, minimizing the
conditional entropy maximizes the mutual information, so we
refer to this approach as MMI. For reasons that will become
later, we assume that n ≥ m. Clearly there is no loss of
generality in doing this. The next step is to reparametrize
the problem, by changing the variable of optimization from
the joint distribution θ ∈ Snm to the matrix of conditional
probabilities P ∈ Sn×m. Thus the boundary conditions
θA = φ,θB = ψ get replaced by φP = ψ. Also, it is clear
that, for a particular choice of P , the conditional entropy
H(Y |X) is given by

Jφ(P ) =

n∑
i=1

φiH(pi), (15)

where pi is the i-th row of P . Moreover, it follows from (4)
that if P and Q are related by (2), then

Jψ(Q) = Jφ(P ) +H(φ)−H(ψ). (16)

Finally, it is easy to see that, given φ ∈ Sn,ψ ∈ Sm, the
quantity V defined in (6) can also be defined equivalently as

V (φ,ψ) = min
P∈Sn×m

Jφ(P ). (17)

MMI Problem: Given φ ∈ Sn,ψ ∈ Sm, find a P ∈ Sn×m
that minimizes Jφ(P ) subject to the boundary condition
φP = ψ.

It is clear that the feasible region for this problem

F := {P ∈ Sn×m : φP = ψ} (18)

is a polyhedral convex set. Recall that an element of a
convex set is said to be an extreme point if it cannot be
expressed as a nontrivial convex combination of two other
points belonging to the set.

Theorem 3: Suppose all elements of φ are strictly posi-
tive. Then the solution to the optimization problem in (16)
occurs at an extreme point of F . Thus if P achieves the
minimum of Jφ(·), then at least one element of P is zero.

The proof is omitted as it is obvious.

B. A Principle of Optimality

We now state a ‘principle of optimality’ for this problem.
Suppose φ ∈ Sn,ψ ∈ Sm are specified, and that φi > 0 for
all i. Suppose A = {1, . . . , n}, and let A′ be a nonempty
proper subset of A. For notational convenience, suppose
A′ = {1, . . . , k} where k < n. For φ ∈ Sn, P ∈ Sn×m,
define

φ′ := [φ1 . . . φk], P ′ :=

 p1

...
pk

 ,
and note that P ′ ∈ Sk×m, though in general φ′ need not
belong to Sk. After this elaborate build-up we can now state
the principle of optimality.

Theorem 4: With all notation as above, suppose φi >
0 ∀i, and suppose that P ∗ minimizes Jφ(P ) subject to
the constraint that φP = ψ. Define c = φ′ek > 0, and
ψ′ =

∑k
i=1 φip

∗
i = φ′(P ∗)′. Observe that (1/c)φ′ ∈

Sk, (1/c)ψ′ ∈ Sm. Then (P ∗)′ minimizes Jφ′(P
′) over

Sk×m subject to the constraint that (1/c)φ′P ′ = (1/c)ψ′.
Proof: Note that (P ∗)′ is also a stochastic matrix in that

(P ∗)′em = ek. Hence

ψ′em = φ′(P ∗)′em = φ′ek = c > 0,

because every component of φ is positive. Hence ψ′ is
certainly not the zero vector, even though some components
of ψ′ could be zero. Thus (1/c)φ′ ∈ Sk, (1/c)ψ′ ∈ Sm,
and the minimization problem under study is similar to the
larger problem. To prove the claim, suppose by way of
contradiction that there exists another matrix Q′ ∈ Sk×m
that satisfies φ′Q′ = ψ′ such that

Jφ′(Q
′) =

k∑
i=1

φiH(qi) < Jφ′((P
∗)′) =

k∑
i=1

φiH(p∗i ).
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Define in an analogous fashion

(P ∗)′′ =

 pk+1

...
pn

 , Q =

[
Q′

(P ∗)′′

]
,

and note that, since P ∗ is feasible for the original problem,
we have that

n∑
i=k+1

φip
∗
i = φP ∗ − φ′(P ∗)′ = ψ −ψ′.

Now

Jφ(Q) =

k∑
i=1

φiH(qi) +

n∑
i=k+1

φiH(p∗i )

<

k∑
i=1

φiH(p∗i ) +

n∑
i=k+1

φiH(p∗i ) = Jφ(P ∗),

while

φQ = φ′Q′ +

n∑
i=k+1

φip
∗
i = ψ′ +ψ −ψ′ = ψ.

Hence Q is feasible for the original problem and has a lower
objective function, which is a contradiction. Hence (P ∗)′ is
a minimizer of the reduced-size problem. �

IV. SOLUTION TO THE MMI PROBLEM IN THE n× 2
CASE

A. The 2× 2 Case

In this subsection we give an explicit closed-form expres-
sion for V (φ,ψ) when n = m = 2 and φ,ψ ∈ S2. Without
loss of generality, assume that φ 6= ψ because V (φ,ψ) = 0
if φ = ψ. Also, again without loss of generality, rearrange
the elements of φ,ψ such that both vectors are in strictly
increasing order.2 Then we can distinguish between two
cases, namely (a) 0 < ψ1 < φ1 < φ2 < ψ2, and (b)
0 < φ1 < ψ1 < ψ2 < φ2.

Theorem 5: Suppose n = m = 2 and φ,ψ ∈ S2. Suppose
further that we have either case (a) or case (b) above. If
0 < ψ1 < φ1 < φ2 < ψ2, then

V (φ,ψ) = −ψ1 log(ψ1/φ1)

− (φ1 − ψ1) log(1− ψ1/φ1). (19)

If 0 < φ1 < ψ1 < ψ2 < φ2 then

V (φ,ψ) = −(φ2 − ψ2) log(1− ψ2/φ2)

− ψ2 log(ψ2/φ2). (20)
Proof: From Theorem 3, we know that any optimal choice

of P ∈ S2×2 must be an extreme point of the feasible
region. Thus at least one component of P must be zero.
The constraints that P is stochastic and that φP = ψ lead

2To avoid unnecessary pedantry, we assume that lots of strict inequalities
hold. The modifications needed to handle the case where some of the
inequalities are not strict are easy and are left to the reader.

to the following four possible extreme points of the feasible
region.

P11 =

[
0 1
ψ1

φ2
1− ψ1

φ2

]
, P12 =

[
1 0

1− ψ2

φ2

ψ2

φ2

]
,

P21 =

[ ψ1

φ1
1− ψ1

φ1

0 1

]
, P22 =

[
1− ψ2

φ1

ψ2

φ1

1 0

]
.

Moreover, since ψ2 > φ2 and ψ2 > φ1, it follows that P12

and P22 are infeasible, and the only possibilities are P11 and
P21. So all we need to do is to compute Jφ(P11), Jφ(P21),
and pick the one that is smaller. This is an exercise in
calculus and is omitted. The other case follows by symmetry.
�

B. The n× 2 Case

We begin with a notion that is encountered again several
times in the paper.

Definition 4: Given φ ∈ Sn,ψ ∈ Sm with n > m, ψ is
said to be an aggregation of φ if there exists a partition
of A into m sets I1, . . . , Im such that

∑
i∈Ij φi = ψj for

j = 1, . . . ,m.
Next we introduce the bin-packing problem with over-

stuffing and variable bin capacities as follows: Given φ ∈
Sn,ψ ∈ Sm, find a partition of A into m sets I1, . . . , Im
such that the total mismatch

MI =
∑
j∈B

∣∣∣∣∣∣ψj −
∑
i∈Ij

φi

∣∣∣∣∣∣
is as small as possible. Unfortunately, this problem is also
NP-hard [7]. Even determining whether a given ψ is an
aggregation of a given φ or not is also NP-hard. The bin
packing with overstuffing is discussed in [7], [3], [4] among
other papers.

With this background, we now present a partial solution
to the problem of computing V (φ,ψ) when m = 2 in terms
of the bin-packing problem with overstuffing with two bins.
If ψ is an aggregation of φ, then obviously V (φ,ψ) = 0.
Otherwise, let ψ1, ψ2 denote the capacity of the two bins,
and let φ1, . . . , φn denote the list to be packed. Without loss
of generality, assume that the φi are in decreasing order
of magnitude. Let N1,N2 denote an optimal partition of
N = {1, . . . , n} and let c denote the minimum unutilized
capacity. Again, without loss of generality, assume that bin
1 is underutilized and that bin 2 is overstuffed. This means
that

ψ2 −
∑
i∈N2

φi = −ψ1 +
∑
i∈N1

φi = c. (21)

Theorem 6: Suppose ψ is not an aggregation of φ, and
solve the bin-packing problem as above. If n ∈ N2, then
an optimal choice of P that minimizes Jφ(P ) subject to
φP = ψ is given by

pi = [1 0] ∀i ∈ N1,pi = [0 1] ∀i ∈ N2 \ {n},

pn = [ c/φn (φn − c)/φn ]. (22)
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Moreover

V (φ,ψ) = φnH(pn) = fc(φn),

where the function f is defined as

fu(φ) := φ[h(u/φ) + h(1− (u/φ))]. (23)
Proof: From the principle of optimality, we know that if

a matrix P is optimal for the n × 2 problem, then every
2 × 2 submatrix is optimal for its respective problem, and
thus has at most one strictly positive row. Taken together
this shows that any optimal choice of P has at most one
strictly positive row, while the rest are either [1 0] or [0 1].
Accordingly, define P as above, and let R be another matrix
that has exactly one strictly positive row such that φR = ψ.
All we need to do is to show that Jφ(R) ≥ Jφ(P ). For this
purpose, suppose the k-th row of R is strictly positive, and
define

I1 = {i : ri = [1 0]}, I2 = {i : ri = [0 1]},

while rk is strictly positive. Then φR = ψ implies that

u1 := ψ1−
∑
i∈I1

φi > 0, u2 := ψ2−
∑
i∈I2

φi > 0, u1+u2 = φk,

rk = [ u1/φk u2/φk ], Jφ(R) = φkH(rk) = fu1
(φk),

where the function f is defined in (23), and we use the
fact that u2 = φk − u1. The fact that c is the optimal
unutilized capacity implies that c ≤ min{u1, u2}, so that
c ≤ min{u1, u2} ≤ max{u1, u2} ≤ φk − c. In turn this
implies that

H(rk) = H([ u1/φk u2/φk ])

≥ H([ c/φk (φk − c)/φk ]).

So we now conclude that

Jφ(R) = φkH(rk) ≥ φkH([ c/φk (φk − c)/φk ])

= fc(φk) ≥ fc(φn) = Jφ(P )

because φn ≤ φk and fc(·) is a strictly increasing function.
�

V. SOLUTION TO THE MMI PROBLEM IN THE n×m
CASE

A. Greedy Algorithm for the MMI Problem

In general, determining whether ψ is an aggregation of φ,
or finding the optimal bin allocations allowing overstuffing,
are both NP-hard problems [3], [4]. It follows that computing
V (φ,ψ), or equivalently, computing the maximum mutual
information, is also NP-hard when m = 2. It is therefore
plausible that the problem of computing V (φ,ψ) continues
to be NP-hard if 3 ≤ m ≤ n. But we do not explore this
issue further. Instead, we borrow a standard greedy algorithm
for bin-packing with overstuffing from the computer science
literature [21], known as ‘best fit,’ and adapt it to the current
situation. We begin by arranging the elements of ψ in
descending order. In general it is not necessary to sort the
elements of φ.

Given φ ∈ Sn,ψ ∈ Sm with m < n, proceed as follows:
1) Set s = 1, where s is the round counter. Define ns =

n,ms = m, φs = φ,ψs = ψ.
2) Place each element of φ in the bin with the largest

unused capacity. If a particular component (φs)i does
not fit into any bin, assign the index i to an overflow
index set Ks.

3) When all elements of φs have been processed, let
I
(s)
1 , . . . , I

(s)
ms be the indices from {1, . . . , ns} that have

been assigned to the various bins, and let Ks denote
the set of indices that cannot be assigned to any bin.
If |Ks| > 1 go to Step 4; otherwise go to Step 5.

4) Define α(s)
1 , . . . , α

(s)
ms to be the unutilized capacities of

the ms bins, and define α(s) = [α
(s)
1 . . . α

(s)
ms ]. Then

the total unutilized capacity cs := α(s)ems
satisfies

cs =

ms∑
j=1

α
(s)
j =

∑
i∈Ks

(φs)i. (24)

Since each (φs)i, i ∈ Ks does not fit into any bin, it
is clear that (φs)i > α

(s)
j , ∀i, j. In turn this implies

that |Ks| < ms. Next, set ns+1 = ms,ms+1 = |Ks|,
and define

φs+1 =
1

cs
α(s) ∈ Sns+1

,ψs+1 =
1

cs
[(φs)i] ∈ Sms+1

.

Increment the counter and go to Step 2.
5) When this step is reached, |Ks| is either zero or one. If
|Ks| = 0, then it means that ψs is a perfect aggregation
of φs. So define Vs = 0 and proceed as below. If
|Ks| = 1, then only one element of φs, call it (φs)k,
cannot be packed into any bin, and this component
must equal cs. So let

vs =
1

cs
α(s) ∈ Sms , Vs = csH(vs),

Us = Vs +H(φs)−H(ψs).

Define Ps ∈ Sns×ms
by

pi = bj if i ∈ I(s)j ,pk = vs,

where bj is the j-th unit vector with ms components.
Then Vs is the minimum value of Jφs

(·), and Ps
achieves that minimum. Next, define Qs ∈ Sms×ns

by
Qs = [diag(ψs)]

−1PTs Diag(φs).

Then it follows from (16) that Qs minimizes Jψs
(·),

and that Us is the value of that minimum.
6) In this step, we invert all of the above steps by

transposing Qs+1, applying the transformation in (2),
and embedding the resulting matrix into Ps. We also
correct the cost function using (16). Decrement the
counter s and recall that ms = ns+1. Recall the
unutilized capacity cs defined in (24) which has been
found during the forward iteration, and define

Vs = csUs+1, Us = Vs +H(φs)−H(ψs).
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Define Ps ∈ Sns×ms
by

pi = bj if i ∈ I(s)j ,pi = i-th row of Qs+1.

If s = 1, halt; otherwise repeat the step.

B. Computational Complexity

The computational complexity of algorithm is easy to
bound. The first step is to sort the elements of ψ, which
has complexity O(m2) if we insist on an exact answer or
O(m logm) if we use a randomized algorithm like quick
sort. We use the latter bound here. In each step of the best
fit algorithm, the bin in which the current element of φ
has been placed has maximum capacity before placing, but
necessarily after placing. So it needs to moved into the right
place. Since the rest of the bins are still in descending order
of capacity, this can be achieved in O(logm) steps using a
bisection search. And this has to be done n times. So once
ψ is sorted, one run of the best fit algorithm has complexity
O(n logm), which dominates the complexity O(m logm)
of sorting ψ, since m ≤ n. Since the size of the problem
decreases at each round, at worst we may have to run the best
fit algorithm m−1 times. Moreover, after the first round, the
size of the problem is not any larger than m× (m− 1). So
the overall complexity of the greedy algorithm is no worse
than O(n logm)+mO(m logm) = O((n+m2) logm). The
fact that the complexity is only linear in n is heartening.

In [18], the application of the greedy algorithm is illus-
trated on a large 40× 10 example that needs to go through
three rounds.

VI. CONCLUSIONS

In this paper we have studied the problem of defining a
metric distance between two probability distributions over
distinct finite sets of possibly different cardinalities. Along
the way, we have formulated the problem of constructing a
joint distribution on the product of the two sets, which has
the two given distributions as its marginals, in such a way
that the joint distribution has minimum entropy. While the
problem of maximizing mutual information is occasionally
discussed in the literature, this specific problem does not
appear to have been studied earlier. This problem turns out
to be NP-hard, so we reformulated the problem as a bin-
packing problem with overstuffing, and adapt the best fit
algorithm for bin-packing, leading to an upper bound on the
distance between the two given distributions. The complexity
of this algorithm is O((n+m2) logm), where n is the larger
of the two cardinalities and m is the smaller.

Applications of the metric to the problem of order reduc-
tion are presented in a companion paper [19]. A full length
version that combines both papers and is under review for
journal publication can be found at [18].
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