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Abstract— Performance analysis of model predictive control
(MPC) laws for constrained linear periodic systems with asyn-
chronous timing constraints on input channels is considered.
The problem boils down to performance analysis of autonomous
periodic piecewise affine (PWA) systems of time-dependent
state dimension. A periodic reverse reachability algorithm
that constructs the explicit periodic piecewise quadratic (PWQ)
running cost function over the region(s) of attraction of
the origin is described. Available explicitly, the running cost
function enables exact and rapid performance evaluation of the
system as a whole, and facilitates the strategic optimization of
an asynchronous controller’s initial condition, while circumna-
vigating the need to perform a large number of simulations.

Index Terms— Model predictive control; Asynchronous con-
trol; Periodic control; Periodic system; Performance analysis

I. INTRODUCTION

Control law synthesis for discrete-time systems with asyn-
chronous inputs has been investigated for a while. Control
of systems with multi-rate inputs, where each input chan-
nel1 may be updated at a unique frequency, was studied
in [1,2,3,4]. Multiplexed control, where input channels are
updated in ordered sequence, was considered in [5,6]. Syn-
thesis of general asynchronous control laws for constrained
linear periodic (includes linear time-invariant (LTI)) systems
was treated using a state-feedback MPC framework in [7],
were the employed models of linear periodic systems with
asynchronous inputs generally have time-dependent state and
input dimensions. The resulting control laws are periodic
and PWA, resulting in autonomous periodic PWA closed-
loop system models with time-dependent state dimension.

The rigorous performance analysis of asynchronous con-
trol laws is crucial and the focus of this paper. For example,
when selecting an actuator for use in a given system, there
may be a trade-off between cost and actuation speed. Alterna-
tively, in [5,6] a multi-input plant with synchronous inputs is
intentionally treated as a multiplexed system for the purpose
of reducing controller complexity. With m input channels
there are (m−1)! unique possibilities for updating each input
channel individually. In both of these examples a rigorous
means of evaluating the effects of the input asynchronicity
is indispensable for making informed design decisions.

A further design decision of potential interest in asyn-
chronous control concerns optimal controller initialization.
The modeling technique of [7] employs an augmented state
that contains the actual system state as well as information
of past control actions. When initializing an asynchronous
controller the past control actions are non-existent. Thus the
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1An input channel is one dimension u[k] of multi-dimensional input u.

initial state of the system model is subject to design, and a
strategy for optimal controller initialization may be useful.

A simple approach for performance evaluation and con-
troller initialization involves performing simulations from a
large number of initial states. However, this is at best approx-
imate, generally provides no error bounds, and is extremely
time-consuming to do accurately. For the nominal case the
need for simulations is avoided in this paper by determining
an explicit characterization of the running cost function over
the entire region(s) of attraction of the origin, where the
running cost is the cost of an infinite-horizon trajectory
starting from a particular initial state. Available explicitly as
a periodic PWQ function of the model state, the function can
be integrated exactly over the entire region of attraction of
the origin to evaluate the average performance of the system
as a whole, and can furthermore be employed for rigorous
and strategic optimization of a controller’s initial condition.

This paper makes two contributions. The first is the
periodic reverse reachability algorithm of Section V for
constructing the explicit periodic PWQ running cost function
of autonomous periodic PWA systems. This algorithm is an
extension to periodic systems of the time-invariant reverse
reachability algorithm presented in [8]. The second, less tan-
gible, contribution is the proposition that rigorous methods
of studying asynchronous control law performance are im-
portant. Control and measurement systems are increasingly
implemented using computers. They are also becoming more
complex, with different components operating at different
speeds. Thus the analysis (and design) of systems subject to
asynchronous timing-constraints is of increasing importance.

Notation: The set of reals is denoted by R (R0: non-nega-
tive), the set of non-negative integers by N (N+ := N\{0}),
the set of consecutive non-negative integers {j, . . . , k} by
Nkj , the spectral radius of matrix A by ρ(A), element k of
vector a by a[k]. Let mod : N × N+ → N, mod(i, j) :=
mink∈N{i− kj|i− kj ≥ 0}.

II. BACKGROUND: (ASYNCHRONOUS) MPC OF
CONSTRAINED LINEAR PERIODIC SYSTEMS

Consider constrained discrete-time linear periodic system
(1) subject to constraints (2), with step i ∈ N, period length
p ∈ N+, inter-period step index j := mod(i, p) ∈ Np−1

0 ,
state xi ∈ Rnj , input ui ∈ Rmj , and state and input
dimensions nj ∈ N+, mj ∈ N ∀j ∈ Np−1

0 . System (1) is
autonomous at step i if mmod(i,p) = 0.

xi+1 = Ajxi +Bjui (1)
Ejxi +Gjui ≤ Wj (2)

Assumption 1: System (1) is stabilizable.
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Assumption 2: Wj> 0 ∀j∈Np−1
0 (origin in interior of (2))

The reason for considering linear periodic system (1) with
time-dependent dimensions is that LTI and linear periodic
systems (with time-invariant dimensions) subject to asyn-
chronous inputs may conveniently be modeled as such (see
Sec. 5 of [7]). “Asynchronous inputs” implies that the control
input u must satisfy timing constraints u[k]i = u[k]i−1 if k ∈
Ij , where Ij ⊂ {N

mj

1 ∪∅} denotes the set of indices of input
channels that cannot be updated at step j. For the purpose of
control law synthesis, where one desires a procedure to de-
termine new values only of control input channels that can be
updated, this is modeled here as in [7], by splitting input vec-
tor ui into two parts, where the part ūi is a vector containing
the values of all input channels that can updated at step i, and
the part ûi is a vector containing values of all input channels
that cannot be updated at step i, but must remain unchanged
from the previous step i− 1. In a physical system, applying
new values for ûi at step i either has no effect, or must
be avoided. In the model, input channels ûi that cannot be
updated simply do not exist as inputs. Instead, the values are
appended to the model’s state at a previous step, for later use.
The resulting model is a linear periodic system of the form
of (1) with input ūi and state x̄i := [x>i , û

>
i ]
>, where the di-

mensions of both ūi and x̄i are generally time-dependent. For
example, consider a discrete-time LTI system (i.e. system (1)
with p = 1) with two input channels (i.e. m0 = 2) updated
according to Fig. 1. This is equivalent to a linear periodic
system with p = 4, with equal dynamics and constraints
at each inter-period step, subject to asynchronous timing
constraints with I0 = ∅, I1 = {1}, I2 = {2}, I3 = {1, 2}.
The model of this system is a linear periodic system with p =
4, {m0, . . . ,m3} = {2, 1, 1, 0}, {n0, . . . , n3} = {2, 3, 3, 4}:

ū0 = u0 , ū1 = u[2]1 , ū2 = u[1]2 , ū3 = ∅ ...

x̄0 = x0 , x̄1 =

[
x1

u[1]0

]
, x̄2 =

[
x2

u[2]1

]
, x̄3 =

[ x3
u[1]2
u[2]1

]
...

A (given) periodic state-feedback control law is denoted
by κj : Rnj → Rmj . For initial state xi at time i the
measure of control performance is given by the quadratic
cost function Γ : Rnmod(i,p) → R0,

Γ(xi) :=
∑∞
k=i

[
x>kQmod(k,p)xk + κ>(xk)Rmod(k,p)κ(xk)

+ 2κ>(xk)Smod(k,p)xk
]

(3)

with
[
Qj S>j
Sj Rj

]
� 0 ∀j ∈ Np−1

0 , where lower cost is better.
Control law synthesis for system (1) subject to (2) and (3)

was tackled in [7], and the reader is referred there for proce-
dures to synthesize control laws with properties required to
apply the methods of this paper (Assumption 4). Control law
synthesis is not a contribution of this paper, thus not repeated

u[1]

u[2]

i
0 1 2 3 4 5 6 7 8

Fig. 1. Asynchronous input timing over two periods: p = 4.

here. However, MPC problems that are least-restrictive and
strongly feasible, and periodic MPC control laws that are
stabilizing and/or optimal, were designed in Theorems 16, 19
and 20 of [7], respectively. Regardless of the MPC problem
design details, the resulting MPC problems are periodic QP
problems (i.e. one QP problem for each j ∈ Np−1

0 ), resulting
in a periodic PWA control law (see [9] for LTI case)

κj(x) := K
[k]
j x+ a

[k]
j if x ∈ X[k]

j (4)

with regions X[k]
j ⊆ Rnj ∀k ∈ Nσj

1 ∀j ∈ Np−1
0 , where

σj ∈ N+ ∀j ∈ Np−1
0 denotes the number of regions in the

PWA partition of κj . The regions’ interiors do not overlap,
and the control law is continuous across region boundaries.
Due to Assumption 2, at each step j the origin is contained
within the interior of exactly one region, for simplicity the
region with index one: 0 ∈ int(X[1]

j ) ∀j ∈ Np−1
0 . If the

origin is in a region with index other than one then a simple
re-numbering of the partition is required. As system (1) is
linear it holds that a[1]

j = 0 ∀j ∈ Np−1
0 , i.e. κj is linear in

a neighborhood of the origin. In the unconstrained case κj
is globally linear, i.e. X[1]

j = Rnj , σj = 1 ∀j ∈ Np−1
0 .

Assumption 3: maxz∈Zj |z| < ∞, Zj := {z ∈ Rnj+mj |
[Ej , Gj ]z ≤Wj} ∀j ∈ Np−1

0 (constraints (2) are bounded)
Under Assumption 3 each region of PWA control law

(4) is a polytope: X[k]
j = {x ∈ Rnj |G[k]

j x ≤ W
[k]
j },

max
x∈X[k]

j
|x| <∞ ∀k ∈ Nσj

1 ∀j ∈ Np−1
0 .

The methods of this paper employ the explicit character-
ization of periodic PWA control law (4), as determined by
multi-parametric quadratic programming (mpQP) [9]. The
mpQP solution may be computed using the multi-parametric
toolbox (MPT) [10]. It is assumed henceforth that periodic
PWA control law (4) has been obtained in explicit form.

We define the following ∀k ∈ Nσj

1 ∀j ∈ Np−1
0 :

A
[k]
j := Aj +BjK

[k]
j ∈ Rnmod(j+1,p)×nj

b
[k]
j := Bja

[k]
j ∈ Rnmod(j+1,p)

H
[k]
j := Qj +K

[k]
j

>
RjK

[k]
j + 2K

[k]
j

>
Sj ∈ Rnj×nj

L
[k]
j := 2a

[k]
j

>(
RjK

[k]
j + Sj

)
∈ R1×nj

C
[k]
j := a

[k]
j

>
Rja

[k]
j ∈ R .

The closed-loop system then evolves according to periodic
PWA dynamics (5) with j = mod(i, p), and incurs periodic
PWQ single-step cost (6) with Jj : Rnj → R0 ∀j ∈ Np−1

0 .

xi+1 = A
[k]
j xi + b

[k]
j if xi ∈ X[k]

j (5)

Jj(x) := x>H
[k]
j x+ L

[k]
j x+ C

[k]
j if x ∈ X[k]

j (6)

Assumption 4: ρ
(
Â
)
< 1, Â :=

∏p−1
j=0 A

[1]
j = A

[1]
p−1 · · ·A

[1]
0

Assumption 4 states that the closed-loop dynamics govern-
ing the origin are stable. Note that a sensible control law syn-
thesis procedure (e.g. those described in [7]) yields a stabi-
lizing control law, even if the control law is sub-optimal (i.e.
does not minimize (3)), and even if closed-loop stability is not
guaranteed a priori, but must be determined after the control
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law is characterized. If Assumption 4 does not hold the meth-
ods of this paper are rendered inapplicable and irrelevant.

III. PROBLEM DESCRIPTION

We now consider periodic PWA system (5) and define the
regions Aj ⊆ Rnj ∀j ∈ Np−1

0 of attraction of the origin:

Aj :=
{
xj ∈ Rnj |xi+1 = A

[k]
mod(i,p)xi + b

[k]
mod(i,p) if

xi ∈ X[k]
mod(i,p) ∀i ∈ N∞j , limi→∞ |xi| = 0

}
.

We further define the running cost Vj : Aj → R0 ∀j ∈
Np−1

0 of a trajectory subject to dynamics (5) and periodic
PWQ stage cost (6):

Vj(x) :=
∑∞
i=j Jmod(i,p)(xi) , xj = x . (7)

Note that a[1]
j = 0 implies C [1]

j = 0 (also L
[1]
j = 0) and

therefore Vj(x) <∞ ∀x ∈ Aj ∀j ∈ Np−1
0 .

The main aim and contribution of this paper is a method to
derive an explicit characterization of Vj . Available explicitly
Vj can subsequently be employed for analysis purposes. It
turns out (unsurprisingly) that Vj is a periodic PWQ function
of x, where the partition of Vj is generally different from the
partition of periodic PWA dynamics (5) and periodic PWQ
stage cost (6). The algorithm to construct the periodic PWQ
running cost function Vj is described later in Section V.

In the absence of constraints (2) system (5) is a periodic
(globally) linear system, and stage cost (6) is periodic and
(globally) purely quadratic: Jj(x) = x>H

[1]
j x ∀x ∈ Rnj . In

this case Vj is a periodic (globally) purely quadratic function

Vj(x) = x>H[1]
j x ∀x ∈ Rnj ∀j ∈ Np−1

0

where {H[1]
0 , . . . ,H[1]

p−1},H
[1]
j � 0 ∀j ∈ Np−1

0 is the solution
to periodic Lyapunov Eq. (10) (see [11]). In the uncon-
strained case the methods of this paper are not required.

Remark 5: In the case that a given constrained control law
is known to be optimal w.r.t (3) the methods of this paper
are not strictly required, but are applicable. If a given control
law κj is known to be optimal then one can formulate an
MPC problem according to Theorem 20 of [7], and obtain
an explicit PWQ characterization of Vj via mpQP [9].

The motivation for this paper is analysis of constrained
sub-optimal periodic (asynchronous) control laws, i.e. control
laws that do not minimize (3) and for which the explicit PWQ
characterization of Vj cannot be determined via a control
problem formulation and its corresponding mpQP solution.

IV. PRE-PROCESSING THE CLOSED-LOOP SYSTEM

In order to be able to apply the algorithm described in
Section V closed-loop PWA system (5) must satisfy one more
property, one that is not generally a natural consequence of
the MPC framework described in Section II and [7]. The
set {X[1]

0 , . . . ,X[1]
p−1} must constitute a periodic positively

invariant set (see [7]), i.e. must satisfy (recall b[1]
j = 0):

A
[1]
j x ∈ X[1]

mod(j+1,p) ∀x ∈ X[1]
j ∀j ∈ Np−1

0 . (8)

If a given control law κj does not satisfy (8) then the
partition of closed-loop PWA system (5) must be processed
before applying the algorithm of Section V. For brevity the
pre-processing procedure is only described in outline here.

One must first determine some periodic positively invariant
set containing the origin within its interior, for the periodic
linear dynamics governing the origin, i.e. determine {X̄0,

. . . , X̄p−1} such that X̄j ⊆ X[1]
j , 0 ∈ int(X̄j) ∀j ∈ Np−1

0

and A
[1]
j x ∈ X̄mod(j+1,p) ∀x ∈ X̄j ∀j ∈ Np−1

0 . As regions
X[k]
j are polytopes this is straightforward to do [7].
The origin regions X[1]

j are then re-partitioned such that
X̄j are the new origin regions, and the sets X[1]

j \X̄j are
split into new regions. Each new region is assigned the same
dynamics and stage cost of the original region X[1]

j , so this
re-partitioning procedure has no effect on the closed-loop
dynamics, the stage cost, and on running cost Vj . Note,
however, that the re-partitioning procedure does affect the
partition of the explicit periodic PWQ characterization of Vj .

We henceforth make Assumption 6.
Assumption 6: Eq. (8) holds.

V. PERIODIC REVERSE REACHABILITY ALGORITHM

In this section we describe a periodic reverse reachability
algorithm that constructs the explicit periodic PWQ running
cost function Vj . The algorithm proceeds as follows. First,
given the properties of system (5) described above, the run-
ning cost Vj within the periodic positively invariant set {X[1]

0 ,

. . . ,X[1]
p−1} is given by periodic purely quadratic function

Vj(x) = x>H[1]
j x ∀x ∈ X[1]

j ∀j ∈ Np−1
0 (9)

where {H[1]
0 , . . . ,H[1]

p−1}, H
[1]
j � 0 ∀j ∈ Np−1

0 is the
solution to periodic Lyapunov Eq. (10) (see [11]):

A
[1]
j

>
H[1]

mod(j+1,p)A
[1]
j − H

[1]
j +H

[1]
j = 0 . (10)

Note that the regions X[1]
j contain the origin within their

interiors. Thus all trajectories that converge to the origin must
enter one of the sets X[1]

j , for some j ∈ Np−1
0 , after a finite

number of steps. We now define the N -step regions A[N ]
j of

attraction of the origin as the set of states that first enter any
one of the origin regions X[1]

j after exactly N ∈ N steps:

A[0]
j := X[1]

j (11)

A[N ]
j :=

{
x ∈ Rnj |xj+N ∈ X[1]

mod(j+N,p) ,

xi 6∈ X[1]
mod(i,p) ∀i ∈ Nj+N−1

j ,

xi+1 = A
[k]
mod(i,p)xi + b[k] if

xi ∈ X[k]
j ∀i ∈ N∞j , xj = x

}
∀N ∈ N+ .

Consider a region X[k]
j and any polytopic target region

Y := {x ∈ Rnmod(j+1,p) |Y x ≤ y}. Then

Ȳ :=
{
x ∈ X[k]

j |A
[k]
j x+ b

[k]
j ∈ Y

}
=

{
x ∈ Rnj |

[
G

[k]
j

Y A
[k]
j

]
x ≤

[
W

[k]
j

y − Y b[k]
j

]}
. (12)
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If Ȳ = ∅ then Y is not reachable from X[k]
j . Suppose

Vmod(j+1,p)(x) = x>Hyx+ Lyx+ Cy ∀x ∈ Y .

Then ∀x ∈ Ȳ:

Vj(x) = Jj(x) + Vmod(j+1,p)

(
A

[k]
j x+ b

[k]
j

)
= x>H̄yx+ L̄yx+ C̄y (13)

H̄y := H
[k]
j +A

[k]
j

>
HyA

[k]
j ∈ Rnj×nj

L̄y := L
[k]
j + 2b

[k]
j

>
HyA

[k]
j + LyA

[k]
j ∈ R1×nj

C̄y := C
[k]
j + b

[k]
j

>
Hyb

[k]
j + Lyb

[k]
j + Cy ∈ R .

The reverse reachability algorithm recursively determines
the N -step regions A[N ]

j of attraction of the origin, and asso-
ciated periodic PWQ running cost function(s), for increasing
values of N , starting at N = 1. For each N the reverse reach-
ability algorithm progresses by employing Eqs. (12) and (13),
first for each inter-period step j ∈ Np−1

0 , and then for each
combination of starting region X[k]

j ∀k ∈ Nσj

1 and target re-
gion within A[N−1]

mod(j+1,p). By Eq. (11), for N = 1 there exists

only one target region for each j ∈ Np−1
0 . Regions A[N ]

j for
N ≥ 1 generally consist of multiple regions, each a polytope.

The algorithm continues to a value N̂ that achieves
termination condition A[N̂ ]

j = ∅ ∀j ∈ Np−1
0 . Subsequently

Aj =
⋃∞
N=0 A

[N ]
j =

⋃N̂
N=0 A

[N ]
j ∀j ∈ Np−1

0 .

Note that the algorithm may not terminate. However, due
to Assumption 3 the regions Aj of attraction can be approx-
imated to arbitrary accuracy in a finite number of steps.

An exact algorithm definition is not provided, for brevity.

VI. APPLICATION EXAMPLE: EXACT PERFORMANCE
ANALYSIS OF CONSTRAINED CONTROL LAWS

We consider the discrete-time LTI system

xi+1 =

[
1 0.2
0 1

]
xi +

[
0.02 0.02
0.2 0.2

]
ui , (14)

i.e. system (1) with p = 1 and n0 = m0 = 2. The constraints
are ‖ui‖∞ ≤ 1, |[1, 1]ui| ≤ 1, ‖xi‖∞ ≤ 2. The control
objective is the minimization of (3) with Q0 = I , R0 = I
and S0 = 0. All computations were performed on a 3.33

x[1] x[1]

x[2] X1

X2

X3

Fig. 2. Synchronous constrained case: PWA optimal LQR control law
partition (left), and resulting PWQ running cost function partition (right).
Number of regions in PWQ partition: σ1 = 27.

GHz x86-64 processor running Matlab and the MPT [10].
Stated run-times are 20 run averages.

In Sections VI-A through VI-D four different control laws
are contrasted. The performance differences are small due
to the simplistic nature of this numerical example. However,
the point is to motivate the use of exact performance analysis
over simulations, and to give the reader a feel for the type
of analyses and results that the presented methods permit.

A. Optimal synchronous constrained LQR

The optimal synchronous constrained LQR control law is
given in (15) with accompanying partition in Fig. 2 (left).
The explicit PWQ running cost function V0 was computed
in 93 milli-seconds and 14 iterations using the reverse
reachability algorithm of Section V. The resulting partition
is plotted in Fig. 2 (right) and consists of 27 regions. Note
that in this (optimal) case V0 could have been obtained by
solving an MPC problem according to Theorem 20 of [7]
with prediction horizon greater than 13 using mpQP (see Re-
mark 5). Available explicitly, the PWQ running cost function
can be integrated exactly, semi-analytically (see [8]), in order
to compute the average running cost V̄ , of (16), of the system
as a whole. Note that the integral and volume function of (16)
are unsigned. Given the explicit PWQ running cost function
V0, computing the average running cost V̄ of (16) required 76
milli-seconds. This includes the computation time required
for vertex enumeration and Delaunay triangulation, which
are the two biggest drivers of computational complexity.

ui =


[
−0.568 −0.944

−0.568 −0.944

]
xi if xi ∈ X1[

0.5 0.5
]>

if xi ∈ X2

−
[

0.5 0.5
]>

if xi ∈ X3

(15)

V̄ := 1
Vol(A0)

∫
A0
V0(x) dx = 18.204 (16)

Suppose we approximate the average V̄ by performing
simulations from a finite number of starting states, and taking
the average of the trajectories’ individual running cost. The
starting states are the nodes of an even grid with M ∈ N300

2

nodes per dimension. Each trajectory’s exact running cost
is obtained by terminating the simulation only when the
trajectory enters the maximum positively invariant set where
the exact running cost is given by (9). Trajectories that exit
the dynamics’ partition are ignored. The approximate average

M

V̂ (M)

V̄

1.01 V̄

1.1 V̄

Fig. 3. Approximate average running cost V̂ (M) computed via M2

simulations starting from an even grid with M nodes per dimension.
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running cost is denoted by V̂ (M) and plotted in Fig. 3. It
holds that V̂ (M) ≤ 1.01 · V̄ (i.e. 1% accuracy) for all M ≥
132. Computing V̂ (132) required 9.95 seconds. Note that
1322 = 17424 is a little more simulations than most authors
perform to demonstrate the efficacy of their control laws.
Thus even this trivial, low-dimensional, synchronous, time-
invariant example demonstrates that the reverse reachability
algorithm of Section V may be useful for quickly and accu-
rately determining the performance of a system as a whole.

B. Sub-optimal synchronous constrained LQR

Next we consider the sub-optimal synchronous constrained
LQR control law obtained by employing MPC with a unit
length prediction horizon according to Theorem 16 of [7].
Using the reverse reachability algorithm, and integrating the
resulting PWQ running cost function, the average Ṽ of the
running cost was determined: Ṽ = V̄ . In this case, due to
the simple dynamics, the control performance is not reduced
as a result of reducing the prediction horizon length. The
PWQ running cost function partition is the same as for the
optimal case plotted in Fig. 2 (right).

As yet the periodic property of the periodic reverse
reachability algorithm of Section V has not been exploited.
The results of Sections VI-A and VI-B could have been
obtained using the original, time-invariant version of the
reverse reachability algorithm presented in [8].

C. Optimal asynchronous constrained LQR

We next consider system (14) with asynchronous inputs
updated according to Fig. 1. This is modeled by linear
periodic system (1) with p = 4, {m0, . . . ,m3} = {2, 1, 1, 0},
{n0, . . . , n3} = {2, 3, 3, 4} as described in Section II and
[7]. The optimal asynchronous constrained LQR control law
is obtained via a periodic MPC formulation according to
Theorem 20 of [7] using a prediction horizon greater than
15. The periodic PWQ running cost functions V0, . . . , V3

were computed in 3.37 seconds and 16 iterations using the
periodic reverse reachability algorithm of Section V. The
partition of V0 is plotted in Fig. 4 (left) and consists of 21
regions. Note that the partitions of V1, V2, V3 are in R3,
R3, R4, respectively. The average V̂ of V0 over A0 was
computed: V̂ = 1.0027 · V̄ , i.e. the asynchronous timing
constraint induces a 0.27% increase in average, optimal cost.

x[1] x[1]

x[2]

Fig. 4. Asynchronous constrained case: Optimal (left, number of regions:
σ1 = 21) and sub-optimal (right, number of regions: σ1 = 31) PWQ
running cost function partition.

D. Sub-optimal asynchronous constrained LQR

We consider again the asynchronous system (14) consid-
ered in Section VI-C. This time a sub-optimal asynchronous
constrained LQR control law is obtained via a periodic MPC
formulation according to Theorem 16 of [7] using a unit
length prediction horizon. The periodic PWQ running cost
functions V0, . . . , V3 were computed in 3.46 seconds and 16
iterations using the periodic reverse reachability algorithm
of Section V. The partition of V0 is plotted in Fig. 4 (right)
and consists of 31 regions. The average V̌ of V0 over A0

was computed: V̌ = 1.0309 · V̄ , i.e. the asynchronous timing
constraint, in combination with the unit prediction horizon,
induces a 3.09% increase in average cost.

This result could not have been obtained exactly without
employing the proposed periodic reverse reachability algo-
rithm of Section V. As the differences in average perfor-
mance of the differing control laws in this illustrative exam-
ple are subtle, the errors resulting from even a vast number
of simulations may have led to highly distorted conclusions.

VII. APPLICATION EXAMPLE: ASYNCHRONOUS
CONTROL LAW INITIALIZATION

We focus next on the problem of optimally initializing
an asynchronous controller. Recall from Section II that the
state x̄i of a periodic model of a system with asynchronous
inputs is an augmented state, and contains the actual system
state xi as well as the control input values ûi of input
channels that cannot be updated from the value they had
at the previous step i − 1. Thus the augmented part ûi
is historic data that in the physical system either cannot,
or must not, be changed at step i. However, at the initial
step this historic data is non-existent and should, when
possible, be chosen the best way; to minimize (3). If one
has determined the running cost function Vj for the model
of a system with asynchronous inputs (i.e. Vj(x̄) not Vj(x))
then one has explicitly characterized the running cost for
each combination of physical state x, initial condition of the
historic data û, and inter-period step j, for which the running
cost is finite, i.e. the controller stabilizing.

It seems natural to suppose a trajectory starts at time i = 0.
However, an asynchronous input update pattern of length
p, for example that of Fig. 1 with length p = 4, could be
drawn in p different ways, starting at i = 0, to yield the
same update sequence. In this paper we suppose that the
update pattern is fixed, and for a given actual system state
x consider determining the optimal initial inter-period time-

θ [rads]
0 π/4 π/2 3π/4 π

j∗

Fig. 5. Unconstrained asynchronous case: State-dependent optimal initial
inter-period step j∗(x), x = [ cos(θ) sin(θ) ]>.
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step j∗(x) ∈ Np−1
0 to start a trajectory at, and accompanying

initial condition ûj∗(x)(x) for the asynchronous controller.
The unconstrained case is simple. In the unconstrained

case the control law is linear periodic feedback of the aug-
mented state, i.e. ūi = Kj x̄i, and the resulting running cost
function is the periodic purely quadratic function (see (9))

Vj(xi, ûi) = x̄>i Hj x̄i =

[
xi
ûi

]> [Qj S>j
Sj Rj

] [
xi
ûi

]
for appropriate Qj , Rj and Sj . Optimization w.r.t ûi yields:

û∗(xi) := arg minûi Vj(xi, ûi) = −R−1
j Sjxi (17)

V ∗j (xi) := Vj(xi, û
∗
i ) = x>i

[
Qj − S>j R−1

j Sj
]
xi (18)

j∗(x) := arg minj∈Np−1
0

V ∗j (x) . (19)

We consider system (14) with asynchronous inputs updated
according to Fig. 1, but no constraints. A guess (the author’s,
in fact) may be that j∗(x) = 3 ∀x ∈ R2, because this means
that both inputs are optimized at both the first and second
step of the trajectory, whereas when j∗(x) ∈ {0, 1, 2} only
one, or no, input channel can be updated at the second step.
Plotted in Fig. 5 is j∗(x) for x = [ cos(θ) sin(θ) ]

>
and

θ ∈ [0, π]. Recall that the original system (14) is LTI. The
guess that j∗(x) = 3 is correct for most, but not all, initial
states x. Furthermore, for each possible inter-period step
there exists an initial state such that this step is the optimal
starting step: ∀ĵ ∈ Np−1

0 ∃x ∈ R2 s.t. j∗(x) = ĵ.
In the constrained case the analysis is more complicated

than Eqs. (17)-(19). However, the need for simulations can
again be avoided, and strategic optimization performed, by
employing the explicit characterization of running cost func-
tion Vj(x̄). Given a state x one must first determine all index
pairs (j, k) such that there exists a û s.t. x̂ = [ x> û> ]

> ∈
X[k]
j . This can be achieved by projecting all regions X[k]

j

onto the space of x and testing set membership of x. For
each located (j, k) pair the optimal controller initialization
x̄∗ := [ x> (û∗(x))

>
]
>

, and resulting minimized running
cost V ∗j (x) := Vj(x̄

∗), can be found by solving a constrained
QP problem (details omitted for brevity). The optimal initial
inter-period time-step j∗(x) is subsequently determined by
optimizing V ∗j (x) over all located (j, k) pairs.

We again consider system (14) with asynchronous in-
puts according to Fig. 1, now with constraints. The state-

x[1] x[1]

x[2]

Fig. 6. Constrained asynchronous case: State-dependent optimal initial
inter-period step: j∗(x) = {0, 1, 2, 3} = { black , red , blue , green }.
Optimal (left), sub-optimal (right).

dependent optimal initial inter-period step j∗(x) is plotted in
Fig. 6 for the optimal and sub-optimal constrained control
laws employed in Sections VI-C and VI-D, respectively.
In a neighborhood of the origin the results are equal and
correspond to the unconstrained case plotted in Fig. 5. In re-
gions where constraints are active the results are intriguingly
different. For example, in the sub-optimal case (Fig. 6, right)
the optimal initial inter-period step index is 1 for most states.

The explicit running cost function has proven indispens-
able for exactly determining the optimal initial condition of
an asynchronous control law, and its use yields conclusions
far superior to conclusions achievable by performing simula-
tions (or by guessing). Thus the periodic reverse reachability
algorithm of Section V is deemed a very useful tool, should
an answer to the question of optimal asynchronous controller
initialization be required.

VIII. CONCLUSION

A periodic reverse reachability algorithm to construct the
explicit PWQ running cost function of autonomous periodic
PWA systems was presented. Available explicitly, the PWQ
running cost function can subsequently be employed for anal-
ysis purposes. For example the performance, of the system
as a whole, w.r.t asynchronous input update patterns can
be determined rapidly and exactly. Furthermore, the explicit
running cost function enables one to strategically determine
the optimal initial condition for asynchronous control laws.
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