
Online Selection of H∞ Controllers for a Faulty
Linear System

Lijun Liu
and Yi Shen

and Chunhui Zhu
Department of Control Science and Engineering

Harbin Institute of Technology
Harbin Heilongjiang 150001 China

Email: liulijun.hit@gmail.com
shen@hit.edu.cn

zhuchh.hit@gmail.com

Earl H. Dowell
Department of Mechanical Engineering

and Materials Science
Duke University

Durham NC 27708 USA
Email: dowell@mail.ee.duke.edu

Abstract—This paper investigates optimal selections of con-
trollers online for a linear system with actuator faults in the
framework of H∞ control. Actuator faults are modeled into
three states: normal, loss of effectiveness and outage, and the
development of the actuator faults is predicted by using a Markov
chain model. We present five methods to construct a smaller
bank of controllers. Four selection schemes are proposed to select
an optimal controller from a bank of controllers for different
demands. Another selection scheme and one pre-selection scheme
are presented when there may be false fault detection and
isolation (FDI). Considered together, they provide a powerful
solution for all kinds of demands. Finally, we utilize an example
to explain and verify the proposed methods.

I. INTRODUCTION

Fault tolerant control systems (FTCS) can maintain sta-
bility and acceptable performances after system component
faults occur [1]. Generally, the design techniques for FTCS
can be classified as passive approach (PFTCS) and active
approach (AFTCS) [2]. PFTCS is easy to implement, but
it always results in limited recoverable faults and a low
overall performance level. AFTCS is always implemented
either by synthesizing a new control law online in real-time or
selecting a pre-computed control law online. In the approach of
selecting a pre-computed control law online, a pre-computed
control bank is established for the fault modes, and then a
suitable controller is selected for the fault mode determined
by a designed mechanism of FDI [1], [2]. The advantage of
selecting a control law online is that the constraints of real-
time computation are relaxed compared with the redesign of
the control law [3]. This paper mainly falls in the category of
online selection of controllers for actuator faults.

There are many investigations about the online selection
approach, such as gain scheduling [4], multiple model adaptive
method (MM) [5]–[8], selection based on the separation of
set [9], dissipativity-based switching [10] and general man-
agement of controllers for selection [3]. All of these methods
have made progress with the online selection FTCS. Generally,
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one fault mode may be recovered by many controllers and one
controller may also recover many fault modes in a fault toler-
ant system. However, the optimal selection and management
of the controllers has not received enough attention. The basic
selection schemes based on optimizing performance index and
minimizing switching times have been used in the literature
[3], [7]. We offer six optimal selections in the framework of
H∞ control to accommodate all kinds of applications, such as
making a trade-off between the performances and switching
times and enforcing reliability when there may be false FDI.

The designs of H∞ fault tolerant controllers have been
studied in many works [11]–[14] due to its robustness to
model uncertainty and external disturbances. In this paper,
an essential relationship is proposed between the set of H∞
controllers and the successional fault modes in Theorem 1.
By modeling the actuators into three states: normal, loss
of effectiveness and outage, the proposed H∞ control law
reduces some degree of the conservatism compared with the
existing methods [12]. The occurrence of actuator faults is
modeled by a time-homogeneous Markov chain [15], which
is used to predict the development of actuator faults, and thus
helps to design a selection scheme.

The set of all controllers is always too large to select a
proper controller. Thus five methods are presented to construct
a small set of controllers according to different demands. Then
four selection schemes are proposed to determine how to select
a proper controller from a given set of controllers. The designs
are motivated by optimizing H∞ gain, minimizing switching
times, making a trade-off between optimizing H∞ gain and
minimum-switching times, and minimizing the expedition-like
cost of H∞ gain, respectively. What is more, another selection
based on the probability of false FDI is proposed for the case
when there may be false FDI. A general pre-selection scheme
is also put forward to make the selections more robust for
the case of possible false FDI, and this pre-selection approach
can be combined with any other selection schemes. Finally, the
fault tolerant longitudinal control of a F-18 aircraft is designed
to explain and illuminate the superiorities of the proposed H∞
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control law and selections.
This article is organized as follows. Section II describes

system and fault models. Section III develops the related H∞
control theories under actuator fault modes. Section IV offers
five methods to build a small set of controllers. Four selections
are proposed in Section V. Section VI addresses tow selection
schemes when there may be false FDI. Section VII shows
an illustrative example to explain and verify the proposed
methods. A conclusion is made in Section VIII

II. SYSTEM AND FAULT DESCRIPTION

Consider a linear system with external disturbance{
ẋ(t) = Ax(t) +Bfu(t) +Bww(t)

z(t) = Cx(t) +Dfu(t) +Dww(t)
(1)

where x(t) ∈ Rn is the system state, u(t) ∈ Rm is the control
input, w(t) ∈ L2 is the exogenous disturbance and z(t) is
the penalized output. A,Bf , Bw, C,Df and Dw are constant
matrices with appropriate dimensions.

The actuator faults are modeled by Bf = B(Λ + ∆),
where Λ = diag[λ1, λ2, . . . , λm] is a known matrix to classify
different fault modes and ∆ = diag[δ1, δ2, . . . , δm] is an
unknown matrix to compensate errors. The other types of fault
such as actuator bias or blocked are considered as exogenous
disturbance. Correspondingly, let Df = D(Λ + ∆). B and D
are coefficient matrices for the normal system.

Moreover, assume that FDI can ensure accurate detection for
the kth actuator in normal case, i.e., when λk = 1, δk = 0.
When the kth actuator is loss of effectiveness, 0 < λk +
δk < 1. Assume 0 < σk < 1 is the known lower bound of
effectiveness of the kth actuator. Then let λk = σk in the case
of loss of effectiveness. When the kth actuator is outage, λk =
0 and 0 ≤ δk < 1. Hence we use {λ1

k, λ
σk

k , λ0
k} to describe

the kth actuator in the state of normal, loss of effectiveness
and outage, respectively.

Define a set F = {Λ | λk ∈ {λ1
k, λ

σk

k , λ0
k}. The number

of elements of F is |F| = 3m. So by using the index set
I = {0, 1, 2, . . . , 3m − 1}, either Λi ∈ F or i ∈ I denotes
the ith fault mode. Generally, i = 0 is associated with the
normal system. For two fault modes Λi = diag[λi1 , . . . , λim ]
and Λj = diag[λj1 , . . . , λjm ], if λik ≥ λjk holds for all k =
1, . . . ,m, then a partial ordering “ � ” on the set I can be
defined by Λi � Λj .

Based on above partial ordering “ � ”, the predecessors of
Λi are defined by P(Λi) = {Λj | Λj � Λi}, and its successors
are defined by S(Λi) = {Λj | Λi � Λj}.

Actuator failures are a random process and we assume it is
a time-homogeneous Markov chain. Suppose the fault mode
is Λ(t0) at initial time t0. Then the probability of the fault
mode Λi occurring at time tn = t0 + nT is Pr(Λi(nT )) =
Pr(λi1(nT ) = λu1

1 , . . . , λim(nT ) = λum
m ), where uk ∈

{1, σk, 0} for k = 1, . . . ,m. Define the distribution
pn , (Pr(Λ0(nT )), P r(Λ1(nT )), . . . , P r(Λ3m−1(nT )))T ,
which is a 3m× 1 vector. Due to the known fault mode Λ(t0)
at time t0, the distribution p0 is known. According to reliable

historic data, the transition matrix W from pn−1 to pn can be
estimated. Then pn = Wpn−1 = Wnp0.

III. H∞ FAULT TOLERANT CONTROL

Assume a state feedback control law of system (1) is u =
Kix under the fault mode Λi. Then the transfer function matrix
T iwz from w to z is given by

T iwz(s) = (C +DfiKi)(sI − (A+BfiKi))
−1Bw +Dw

where Bfi = B(Λi + ∆i) and Dfi = D(Λi + ∆i).
The H∞ design specifications are to find a state feedback

matrix Ki such that (A+BfiKi) is Hurwitz and ‖T iwz(s)‖∞ <
γ for a given constant γ > 0.

The following definitions are used to classify fault modes
and make the problems clearer and more accurate.

Definition 1: A feedback control u = Kx is an admissible
control law if the H∞ specifications are achieved.

Definition 2: A fault mode Λi, i ∈ I is structure recover-
able (SR) if there exists an admissible control u = Kix.

So the fault set I can be divided as I = I+
⋃
I−, where

I+ is a SR set and I− is a non-SR set.
Definition 3: A fault tolerant strategy (FTS) is a surjective

mapping from the SR set I+ on a control law set K and
|K| ≤ |I+|.

Definition 4: Extended fault tolerant strategy (EFTS) is a
mapping from I+ on 2K (the power set of K).

Definition 5: A fault mode i ∈ I+ is practical recoverable
(PR) by a given FTS if this FTS gives a mapping from i to
Ki and u = Kix is an admissible controller. If all SR are PR,
then this FTS is the complete FTS. A complete EFTS is the
extension of a complete FTS.

The H∞ design specifications need to be converted to linear
matrix inequalities (LMI) for further studies.

Lemma 1: If there exist a feedback matrix Ki and a sym-
metric positive definite matrix Pi such that the following
inequality holds,(

M111 PiBw + (C +DfiKi)
TDw

(∗) DT
wDw − γ2I

)
< 0 (2)

where M111 = (A + BfiKi)
TPi + Pi(A + BfiKi) + (C +

DfiKi)
T (C + DfiKi), and (∗) denotes a corresponding

symmetric term. Then there is a control law u = Kix such
that the H∞ specifications are achieved for Λi.

Inequality (2) cannot be solved directly because of the
unknown matrices Bfi and Dfi. Lemma 2 gives the solvable
LMI to obtain an admissible controller for each SR fault mode.

Lemma 2: If there exists a symmetric positive definite ma-
trix Pi and a positive semidefinite matrix Yi such that the
following inequality holds,(

M211 PiBw + (C −DΛ2
iB

TYiPi)
TDw

(∗) 2DT
wDw − γ2I

)
< 0 (3)

where M211 = PiA + ATPi − PiBΛ2
iB

TYiPi −
PiY

T
i BΛ2

iB
TPi + (C −DΛiB

TYiPi)
T (C −DΛiB

TYiPi) +
PiY

T
i BΛi(I − Λi)D

TD(I − Λi)ΛiB
TYiPi. Then u =
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−ΛiB
TYiPix such that the H∞ specifications are achieved

for Λi.
Thus we can get an admissible controller for a certain fault

mode. A meaningful question is whether this controller is an
admissible controller or not for other fault modes. Lemma 3
is used to answer this question.

Lemma 3: Suppose there exists a symmetric positive def-
inite matrix P and a positive semidefinite matrix Y , and let
K = −ΛBTY P for a given fault mode Λ. If the following
inequality holds for the current fault mode Λi,(

M311 PBw + (C +DΛiK)TDw

(∗) 2DT
wDw − γ2I

)
< 0 (4)

where M311 = PA+ATP +PBΛiK +KTΛiB
TP + (C +

DK)T (C+DK)+KT (I−Λi)D
TD(I−Λi)K, then u = Kx

such that the H∞ specifications hold for Λi.
Theorem 1 proposes the compatible relationship of H∞

controllers between successional fault modes on the basis of
Lemmas 1, 2 and 3. This relationship is a fundamental theory
for constructing EFTSs and selection schemes.

Theorem 1: Suppose Λi � Λj for i, j ∈ I+, if there exists
solutions Pj and Yj of inequality (3) for the fault mode Λj ,
and let Kj = −ΛjB

TYjPj , then u = Kjx can also achieve
the H∞ specifications under the fault mode Λi.

Note 1: It is omitted to prove Lemmas 1, 2 3 and Theorem
1 because of the limitation of length of a Conference Paper.

IV. DESIGN OF EFTS
For the given H∞ specifications, we can test inequality (3)

to divide I into I+ and I−. EFTS shows a comprehensive
relationship between I+ and the controller set K for further
selecting a control law. Here five methods are addressed
to construct EFTS due to different demands. Based on the
relationship between H∞ controllers and fault modes proposed
by Theorem 1, EFTS can be constructed from aspects of
fault modes (Method 1), H∞ controllers (Methods 2, 3) or
combining them together (Methods 4 and 5).

Method 1: Let M+ be the set of minimal elements of I+,
and u = Kjx be an admissible control for j ∈ M+. Let
M+

i = S(Λi)
⋂
M+, a complete EFTS can be constructed

by

i ∈ I+ =⇒ u = Kx,K ∈ {Kj | j ∈M+
i }.

For a given feedback matrix K, let I+(K) be the subset
of I+ such that u = Kx is an admissible control for the
fault modes in I+(K). If some controllers must be involved in
EFTS, the following method can achieve this goal by choosing
the related fault modes.

Method 2: Let I+(KJ ) ,
⋃
i∈J I+(Ki) for a given set

J ∈ I+. If I+(KJ ) = I+, then a complete EFTS can be
constructed by

i ∈ I+ =⇒ u = Kx,K ∈ {Kj | i ∈ I+(Kj), j ∈ J }.

For ∀i ∈ I+, define Ki = {Ki1 , . . . ,Kil} as the control
law set such that u = Kijx is an admissible control for the
given fault mode i ∈ I+.

Method 3: Let H be a hitting set of the collection {Ki, i ∈
I+}, and let Hi , H

⋂
Ki, then a complete EFTS can be

constructed by

i ∈ I+ =⇒ u = Kx,K ∈ Hi.

The following method can find the smallest EFTS.
Method 4: Let H∗ be the minimal hitting set of the collec-

tion {Ki, i ∈M+}, and let H∗i , H∗
⋂
Ki, then the smallest

complete EFTS can be constructed by

i ∈ I+ =⇒ u = Kx,K ∈ H∗i .

The following method contains controllers to maximize
system performances most of the time.

Method 5: Let m0 be the greatest element of I+, and mk

is the maximal element of {I+ \ {
⋃

0≤j≤k−1 I+(Kmj
)}}.

When {
⋃

0≤j≤k I+(Kmj )} = I+, a complete EFTS can be
constructed by

i ∈ I+ =⇒ u = Kx,K ∈ {Kmj | i ∈ I+(Kmj )}.

V. THE OPTIMAL SELECTION OF EFTS

An EFTS may contain many admissible control laws for
each fault mode i ∈ I+. This section will give four selection
policies to obtain the optimal FTS.

Optimizing performance index and minimizing switching
times of controllers are the common desired performances
for most of control systems, and have been used to select
a controller in the existing literature [3], [7]. It is well known
that the selection based on optimizing performance index
always chooses the corresponding controller for a given fault
mode (Selection 1). But from Theorem 1, we know that the
selection based on minimizing switching times of controllers
always chooses the controller designed for the fault mode with
more faults (Selection 2). However these kinds of control laws
always lead to a high H∞ gain. Sometimes we need a trade-
off between them to meet different requirements (Selections 3
and 4).

Selection 1 emphasizes to optimize H∞ gain, which is fairly
simple and straight-forward. Selection 2 focuses on minimiz-
ing the probability of switching of controllers. When a low
H∞ gain and a low-switching are required simultaneously, Se-
lection 3 makes a trade-off between them. Another intractable
case is that when a control law is the optimal selection for
the fault mode Λi, and it is still an admissible control for
other fault modes but has very bad performances. Selection 4
based on minimizing the expedition-like cost of H∞ gain is
proposed to handle this kind of problem. Considered together,
these selections provide a powerful solution for all kinds of
demands.

Selection 1: For a given EFTS, let Ki = {Ki1 , . . . ,Kin} be
the corresponding control law set of the fault mode Λi, i ∈ I+.
Suppose γ∗ij is the optimal H∞ gain by solving inequality (2)
for each control law Kij ∈ Ki for 1 ≤ j ≤ n. Then the best
control law to be selected for Λi is Kij with the minimal H∞
gain γ∗ij .
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Selection 2: For the fault mode Λi, i ∈ I+ and
the corresponding control law set Ki, let SKij =
S(Λi)

⋂
I+(Kj),∀Kj ∈ Ki. If the control law for the current

fault mode Λi is Kj , then Kj is also the admissible control
law for the rest fault modes in SKij . So the switching of
controllers is not required from Λi to the fault modes in
SKij . Let Φ(i,Kj , t0, tn) be the probability of non-switching
for Λi and Kj from time t0 to the expected ending time
tn, i.e., Φ(i,Kj , t0, tn) =

∑
j∈SKij

Pr(Λj(tn) | Λi(t0)), where

Pr(Λj(tn) | Λi(t0)) is conditional probability that the fault
mode is Λj at tn when the fault mode is Λi at t0. Then the best
selection is the control law K∗j with maximal Φ(i,K∗j , t0, tn).

Selection 3: Define a cost function

J(Λi,Kj) = α
γ∗ij
γ

+ β(1− Φ(i,Kj , t0, tn))

where α ≥ 0 and β ≥ 0 are constant numbers. For a expected
running time interval [t0, tn] and the initial fault mode Λi, the
best selection is the control law K∗j with the minimal J(K∗j ).

Selection 4: For the fault mode Λi, the associated control
law set Ki, the non-switching set SKij , the initial time t0 and
the expected ending time tn, the expedition-like cost of each
control law Kj ∈ Ki is defined by

Ei(Kj , t0, tn) =

∑
m∈SKij

γ∗mj
Pr(Λm(tn) | Λi(t0))∑

k∈S(Λi)
Pr(Λk(tn) | Λi(t0))

+

κ
∑

l∈{S(Λi)\SKij}

γPr(Λl(tn) | Λi(t0))∑
k∈S(Λi)

Pr(Λk(tn) | Λi(t0))

where κ is a weighted factor of minimizing switching times
and γ is an upper bound of γ. Then the best selection is
the control law K∗j with the minimal expedition-like cost
Ei(K

∗
j , t0, tn).

VI. OPTIMAL FTS WITH POSSIBLE FALSE FDI

The above four selections are used to guarantee system
reliability and performances when actuator faults occur. But
all of them are based on the correct FDI. However, false
FDI exists widely and is inevitable. The following selection
is proposed to enforce system reliability when there may be
false FDI.

Selection 5: Suppose the fault mode is Λi, i ∈ I+

at time t, FDI sends an alert fij at time tr = t +
T . fij means that the fault mode Λj ∈ S(Λi) is
detected at time tr. Let Ki =

⋃
Λj∈S(Λi)

Kj and

Ψ(Kj , fij ) =
∑

k∈SKij

Pr(Λk(tr) | fij ),∀Kj ∈ Ki, where

Pr(Λk(tr) | fij ) is the known conditional probability accord-
ing to reliable historic data. Ψ(Kn, fij ) is the probability of
Kj being an admissible control law when the fault report is
fij . So the best selection is the control law K∗j such that
Ψ(K∗j , fij ) is the maximum.

TABLE I
THE SET OF I+(Ki) AND γ∗ij

ab ab̃ a ãb ãb̃ b
Kab 0.4450 - - - - -
Kab̃ 0.4909 0.4992 0.5025 - - -
Ka 0.5006 0.5006 0.5006 - - -
Kãb 1.7406 1.8531 1.9425 1.7351 - -
Kãb̃ 2.4812 2.4820 2.4822 2.4820 2.4820 -
Kb 2.1645 - - 2.1645 - 2.1645

Generally, FDI is correct most of the time. The following
pre-selection scheme offers a test to evaluate FDI, and then
it can be mixed with any other selections to make the system
more reliable when there may be false FDI.

Selection 6: Suppose the fault mode is Λi at t0, and the
fault report is fij at tr = t0 + nT . Assume Pr(Λk(tr))
is the maximum for ∀k ∈ S+(Λi). We define a function
D(fij , tr) , Pr(Λj(tr))

Pr(Λk(tr)) . Given a threshold ε, if D(fij , tr) ≥
ε, then select a control law in the set Kj , otherwise select a
control law in the set Kk.

On the basis of the above pre-selection, further selection can
be constructed by mixing with other schemes. Here a simple
selection is presented. When Kj is the basic set to select a
control law from, define H(Kj) ,

∑
q∈SKij

Pr(Λq(tr)), then
the best selection is the control law K∗j such that H(K∗j ) is
the maximum. When Kk is the basic set to select a control law
from, define G(Kk) ,

∑
q∈SKik

Pr(Λq(tr))+NPr(Λj(tr)),
where N is a given number large enough, then the best
selection is the control law K∗k such that G(K∗k) is the
maximum.

VII. ILLUSTRATIVE EXAMPLE

We take the longitudinal control of F-18 aircraft [12] as an
example to explain the proposed methods,

A =

(
−1.175 0.9871

−8.458 −0.8776

)
, B =

(
−0.194 −0.03593

−19.29 −3.803

)
,

Bw =

(
1

4

)
, C =

0 4

0 0

0 0

 , D =

0 0

2 0

0 2

Dw =

 0.09

−0.105

0.15


Normal states of actuators are denoted by a, b respectively,
and loss of effectiveness are denoted by ã, b̃ respectively.
When actuator is outage, the corresponding symbol is omitted.
Assume the ranges of loss of effectiveness are 0.2 ≤ ã ≤ 1
and 0.2 ≤ b̃ ≤ 1. So λa ∈ {0, 0.2, 1}, λb ∈ {0, 0.2, 1}.

Let the maximal allowable H∞ gain γ < 2.5, then I can
be divided by I+ and I−, where I+ = {ab, ab̃, a, ãb, ãb̃, b}.
We can present Table I to show the associated I+(Ki) and
γ∗ij for optimal control laws obtained from LMI 3.

Assume the failures of a and b are dependent and the
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TABLE II
THE EFTSS BASED ON METHODS 1-5

ab ab̃ a ãb ãb̃ b
M1 Ka Ka Ka Kãb̃ Kãb̃ Kb

M3 Kãb̃ Kãb̃ Kãb̃ Kb

Kb

M2 Kab Kãb Kãb Kãb Kãb̃ Kb

M5 Kãb Kãb̃ Kãb̃ Kãb̃
Kãb̃ Kb

Kb

M4 Kãb̃ Kãb̃ Kãb̃ Kãb̃ Kãb̃ Kb

Kb Kb

TABLE III
THE FTSS FOR SELECTIONS 1-4

FDI ab ab̃ a ãb ãb̃ b
Slt1 Kab Kãb Kãb Kãb Kãb̃ Kb

Slt2 Kãb̃ Kãb̃ Kãb̃ Kãb̃ Kãb̃ Kb

Slt3 Kãb Kãb Kãb Kãb Kãb̃ Kb

Slt4 Kãb Kãb Kãb Kãb Kãb̃ Kb

transition matrix Wab in time interval T is

Wab =


0.955 0 0 0 0 0 0 0 0
0.01 0.95 0 0 0 0 0 0 0
0.005 0.025 0.94 0 0 0 0 0 0
0.025 0 0 0.92 0 0 0 0 0
0.0008 0.018 0 0.0238 0.9 0 0 0 0
0.0001 0.0027 0.05 0.004 0.05 0.92 0 0 0
0.004 0 0 0.05 0 0 0.93 0 0

0.00009 0.004 0 0.002 0.04 0 0.06 0.89 0
0.00001 0.0003 0.01 0.0002 0.01 0.08 0.01 0.11 1


Then we can construct the EFTSs as shown in Table II by

using Methods 1-5.
Note 2: M1 is short for Method 1 and others are the

same; J = {ab, ãb, ãb̃, b} for M2; the hitting set H =
{Ka,Kãb̃,Kb} for M3; H∗ = {ãb̃, b} for M4; {m0 =
ab,m1 = ãb,m2 = ãb̃,m3 = b} for M5; M1 = M3 and
M2 = M5 in this simple example.

It is shown that there may be many admissible control
laws for some fault modes. So it is necessary to select the
optimal one according to different demands. Then four FTSs
are constructed in Table III according to Selections 1 - 4 based
on EFTS M5.

Note 3: Slt1 is short for Selection 1 and others are the
same; assume all actuators are normal at t0 = 0 and give the
expected ending time tn = 10T for Slt2, Slt3 and Slt4; the cost

function for Slt3 is J(ab,Kj) =
γ∗
0j

2.5 +3(1−Ψ(ab,Kj , t0, tn));
the weighted factor is κ = 10 for Slt4.

Now we design a simulation to verify the proposed fault
tolerant control approaches. Suppose the system plans to run
from t0 = 0T to tf = 10T and the actuators are normal at
t0. Then the first actuator is loss of effectiveness a = 0.3 at
t = 2T , and it is outage a = 0 at t = 5T . The disturbance is
chosen as

w(t) =


1 + 0.2r(t), 0.5 ≤ t < 3.5

− 1 + 0.2r(t), 3.5 ≤ t < 7

0, otherwise
(5)

where r(t) produces a random number in [0,1].
Selections 1-4 are used to construct fault-tolerant control

strategies. The result is compared with that of Adaptive

0 2 4 6 8 10
−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Time(T)

q(t)

 

 

Slt1
Slt2
Slt3&4
ARH

Fig. 1. Response Curve of q(t) for Controllers of Selections 1-4 and Adaptive
Reliable H∞ Controller

TABLE IV
ACTUAL H∞ GAINS OF SELECTIONS 1-4 AND ARH

Slt1 Slt2 Slt3 Slt4 ARH
Gains 1.6973 1.7220 1.7207 1.7207 3.1985

TABLE V
THE CONDITION PROBABILITY OF EACH FDI FOR NORMAL MODE

ab ab̃ a ãb ãb̃ b others
f00 1 0 0 0 0 0 0
f01 0.02 0.95 0.01 0 0.02 0 0
f02 0.01 0.04 0.94 0 0 0 0.01
f03 0.01 0.02 0 0.93 0.01 0.03 0
f04 0 0.04 0 0.04 0.90 0 0.02
f05 0.01 0 0 0.05 0 0.91 0.03

Reliable H∞ controller (short for ARH in Fig. 1 and Table
IV) in [12]. The FTSs from Slt1 and Slt4 are the same in
this simple example. Fig. 1 shows the response curve of pitch
rate q(t) for different control methods in this faulty case. The

actual H∞ gain
∫ tn
t0

zT zdt∫ tn
t0

wTwdt
is shown in Table IV. It is observed

that our methods have better performance to reject exogenous
disturbance and accommodate actuator faults. The design
requirement that H∞ gain γ < 2.5 is fully satisfied by our
methods but is violated by Adaptive Reliable H∞ Controller.
The H∞ gains of Slt3 and Slt4 are a little better than that
of Slt2. Selections 2, 3 and 4 incorporating Markov model
require only two times of switching, but Selection 1 without
considering Markov model requires three times of switching.
Basically these results reflect the design motivations.

Suppose there may be false FDI to make a wrong detection
for fault modes. If the fault mode is normal ab at time t0,
then suppose Table V shows the probability of each detection
at time tr = t0 + T . The total fault modes are marked by
{0, 1, 2, 3, 4, 5}, as shown in Table V.

Two FTSs are constructed in Table VI according to Selec-
tions 5 and 6 when there may be false FDI.

Note 4: Slt5 and Slt6 are based on EFTS M5; assume all
actuators are normal at t0 = 0 and the expected ending time is
tn = 10T ; the FDI report time is tr = T for Slt5; let ε = 0.10
and N = 10 for Slt6.

In order to test the fault tolerant controllers incorporating
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TABLE VI
THE FTSS FOR SELECTIONS 5 AND 6

FDI ab̃ a ãb ãb̃ b
Slt5 Kãb̃ Kãb̃ Kb Kãb̃ Kb

Slt6 Kãb̃ Kãb̃ Kãb̃ Kãb̃ Kb

TABLE VII
TIMES OF FTCS SATISFYING γ < 2.5

Slt1 Slt2 Slt3 Slt4 Slt5 Slt6
Success 8978 9186 9000 9000 9347 9186

with false FDI, assume actuator faults occur randomly during
the running time 0 to 10T . The accuracy of FDI is shown in
Table V. We make an assumption that at most one fault mode
is activated during one running. When the system runs 10000
times, the number of FTCS successfully satisfying H∞ gain
γ < 2.5 is shown in Table VII. It shows that the selections
incorporating with false FDI are more successful to cope with
potential false detection.

VIII. CONCLUSION

This paper presents a H∞ control design for a linear system
with actuator faults by selecting a pre-computed control law
online. The actuator faults are modeled by three states and
Markov chain. Five methods to construct a small set of
controllers from the set of all controllers are given for different
requirements. Four selection schemes are designed to get
a proper controller from a bank of admissible controllers.
Another two selection schemes are motivated by coping with
the case when there may be false FDI. These six selections
combining with the five EFTSs offer a powerful solution for all
kinds of applications in the framework of H∞ control. Finally,
a numerical example is employed to illustrate the proposed
methods and shows encouraging results.

However, the switching of controllers from one fault mode
to another can induce transients. This kind of transient is
harmful and easily makes the system unstable due to saturating
the actuators and FDI delay. It is a critical problem for
applications of the online selection approach of FTCS and
will be the subject of future researches.
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