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Abstract— This paper presents a new optimization-based
iterative learning control (ILC) framework for multiple-point
tracking control. Conventionally, one demand prior to designing
ILC algorithms for such problems is to build a reference
trajectory that passes through all given points at given times.
In this paper, we produce output curves that pass close to
the desired points without considering the reference trajectory.
Here, the control signals are generated by solving an optimal
ILC problem with respect to the points. As such, the whole
process becomes simpler; key advantages include significantly
decreasing the computational cost and improving performance.
Our work is then examined in both continuous and discrete
systems.

I. INTRODUCTION

In control theory, control schemes to achieve outputs that
pass through specified terminal points have been divided
into two steps: trajectory planning and tracking control. In
these schemes, the trajectory planner attempts to generate an
optimal reference trajectory from information of the given set
of points; the main focus of research in this area pertains to
interpolation techniques. On the other hand, the controller—
which is designed to track the desired outputs—focuses
on the system dynamics. Here, the improved accuracy in
trajectory tracking results has led to the development of
various control schemes, such as proportional integral deriva-
tive (PID) control, feedback control, adaptive control, and
iterative learning control (ILC).

ILC is a control methodology for tracking a desired trajec-
tory in repetitive systems, such as those found in applications
such as robotics, semiconductors, and chemical processes.
The ILC algorithm refines input sequences through the expe-
riences of previous iterations so that the output converges to
a reference trajectory trial-to-trial. A number of publications
[1]– [4] have shown that the ILC algorithm guarantees the
convergence of the output to the desired trajectory in the
iteration domain. In ILC research, terminal iterative learning
control (TILC) is derived to generate inputs such that outputs
track given desired terminal points. In addition, a number
of applications showed that the performance of tracking
predefined points could be improved using ILC theory [5]–
[8]. However, although these works demonstrated the ef-
fectiveness of ILC theory in dealing with terminal control
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problems, they only addressed these issues with one terminal
point. Thus, the common approach is to build an ILC
algorithm that produces an initial input that only considers
the errors of the endpoint from previous iterations. Recently,
there has been some research that considers a TILC problem
in which the system has multiple desired terminal points [9]–
[11]. Specifically, in [9], an ILC framework was developed
in which the reference trajectory is updated in the frequency
domain between trials; the work in [10] investigates an
interpolation technique for iteratively updating the reference
trajectory. On the other hand, TILC was developed to directly
specify points, rather than to determine a trajectory. In
[11], the monotonic convergence of errors at all points can
be ensured; however, the performance is dependent on the
sampling time.

In most publications, ILC theory follows the direction of
tracking a prior identified trajectory. Thus, the ILC law forms
the basis for the TILC problem by defining the reference
trajectory that goes through the established set of points.
However, dividing the TILC problem into trajectory planning
and trajectory tracking shows drawbacks under certain cir-
cumstances. First, most trajectory planning algorithms face
difficulties in generating an optimal reference trajectory. In
particular, the existence of a large number of points can
lead to a significant increase in the computational analysis
and memory requirements. Second, ILC theory [1]– [3] has
shown that the system performance and rate of convergence
depend on both the system dynamics and the reference
trajectory. Consequently, even if an optimal trajectory is
chosen, the ILC controller could be unsatisfactory. And the
last reason is that the existence of errors in both stages can
result in deficient performance as an effect of the indirect
method. Therefore, these reasons motivate our study to
combine two stages into one ILC controller such that it
improves the performance and optimizes the computational
cost.

In this paper, we attempt to design a controller subject
to both assigned points and a dynamic system capable of
tracking multiple points in repetitive systems. Even though
this problem has been previously considered in terms of
the optimal control for single-input single-output (SISO)
systems [12], our goal is to propose an ILC theory for
multi-input multi-output (MIMO) systems. The proposed
ILC scheme is then applied to investigate the repetitive nature
of these systems. Furthermore, the optimal ILC controllers
and analyses are shown to consider limitations in actuator
demands. Another limitation we are attempting to overcome
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is the requirement to pass over all given points, which is
overly restrictive in many systems since the data is noise
contaminated. Moreover, the relationship of the control sig-
nal and system performance is also presented as an effect of
our algorithm.

The remainder of this paper is organized as follows. In
Section II, we provide the problem formulation of TILC.
Section III then considers our work with continuous systems,
while Section IV presents the problem in discrete systems.
Simulation results are given in Section V, and Section VI
concludes this work.

II. MULTIPLE-POINT TRACKING WITH ILC
In a multiple terminal points problem, there are specified

time instants in system operation t1, t2, . . . , tM , where 0 ≤
t1 < t2 < ... < tM ≤ T. Let us define the desired outputs
at these points as

yd(t1), yd(t2), . . . , yd(tM ).

The control task is to then construct a control law that drives
the outputs through or close to these points. In conventional
control schemes, the trajectory planner builds a reference
trajectory yref such that yref passes the desired points at
t1, t2, . . . , tM . Note that the trajectory is usually chosen
from an optimal strategy; for example, minimizing the total
passing time. Then, from the system model, we design
a controller to track the given trajectory. One traditional
solution is the use a PID control and feedback control to
generate the correction signal u(t).

The intelligent control technique ILC can be applied to
repetitive systems that operate over an interval [0, T ] to
track the reference trajectory yref . In this case, the learning
algorithm utilizes output errors and control inputs from
previous iterations to compute updated control inputs as

uk+1 = Tuuk + Teek

where the error at the k-th iteration ek is calculated from

ek = yref − yk.

For the linear time invariant plant yk = Tsuk, the algorithm
satisfies the convergence of error, lim

k→∞
ek = e∗, if

ρ(Tu − TeTs) < 1,

where ρ(A) is the spectral radius of the matrix A.
As discussed, the ILC theory is typically built from

the reference trajectory yref ; in contrast, we propose an
optimal ILC approach to work directly with multiple points
yd(t1), yd(t2), . . . , yd(tM ). To generate the optimal control
signal, we consider a performance index that adopts the
errors at multiple points, such that

J =

m∑
i=1

‖ek+1(ti)‖qi +
∥∥uk+1 − uk

∥∥
R
+
∥∥uk+1

∥∥
S

where ek(ti) is the error at the terminal time instant ti in
the k-th iteration, i.e.,

ek(ti) = yd(ti)− yk(ti).

In the cost function, we consider the norms of errors at
multiple points, the control signal, and its rate of change.
It is notable that the cost function approach was previously
investigated in a norm optimal ILC [13] for treatment with
a desired trajectory rather than the specific data points.
By minimizing J , a sequence of optimal control signals
in the iteration domain is produced. Moreover, by driving
the outputs close to the desired prespecified points, it leads
to a trade-off between the control energy and the system
performance.

III. OPTIMAL ILC FOR CONTINUOUS SYSTEMS

In this section, we consider an ILC algorithm capable of
tracking multiple terminal points for a continuous system.
In this case, a linear time invariant system operates on an
interval t ∈ [0, T ], such that

ẋk(t) = Axk(t) +Buk(t)

yk(t) = Cxk(t) (1)

where k is the iteration index. The system is a MIMO system
that has matrices A, B, and C with appropriate dimensions.
In this paper, we assume that the system is both controllable
and observable.

The primary control task is then to achieve the desired
output of the terminal points through an ILC algorithm trial
to trial. From the linear system theory, we can find output of
the system at the i−th sample time in the k-th iteration as

yk(ti) = CeAtixk(0) + C

∫ ti

0

eA(ti−t)Buk(t)dt.

As a result, the error is computed as

ek(ti) = yd(ti)− CeAtixk(0)− C
∫ ti

0

eA(ti−t)Buk(t)dt.

Obviously, without loss of generality, it is possible to replace
yd(ti) with yd(ti)−CeAtixk(0); or just assume that xk(0) =
0. Furthermore, the initial state condition is assumed to be
identical in all iterations.

By defining

pi(t) =

{
CeA(ti−t)B if t ≤ ti

0 if t > ti
,

we can rewrite the terminal point errors at the time instant
ti as

ek(ti) = yd(ti)−
∫ T

0

pi(t)uk(t)dt.

Then, the super vector frameworks with respect to the given
time instants of outputs and errors are given as

yd = [ yTd (t1) yTd (t2) . . . yTd (tM ) ]T

ek = [ eTk (t1) eTk (t2) . . . eTk (tM ) ]T .

Similarly,

P(t) =
[
pT1 (t) pT2 (t) . . . pTM (t)

]T
.
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And the multiple errors in the super vector forms are:

ek+1 = yd −
∫ T

0

P(t)uk+1(t)dt.

Next, we consider the following performance index:

J =

M∑
i=1

eTk+1 (ti)qiek+1 (ti) +

∫ T

0

uTk+1 (t)Suk+1 (t) dt

+

∫ T

0

(
uk+1 (t)− uk (t)

)T
R
(
uk+1 (t)− uk (t)

)
dt

(2)

where R,S, and qi are diagonal positive definite matrices
with R,S = (rI, sI) and qi is the weighting matrix for the
error at the time instant ti.

We can then rewrite (2) to incorporate the vector form of
multiple errors as

J = eTk+1Qek+1 +

∫ T

0

uTk+1 (t)Suk+1 (t) dt

+

∫ T

0

(
uk+1 (t)− uk (t)

)T
R
(
uk+1 (t)− uk (t)

)
dt

where Q is a symmetric positive definite weight matrix.

A. ILC Controller

To obtain the optimal input at the (k + 1)-th iteration,
differentiating J with respect to uk+1(t) ∈ L2[0, T ] then
setting this derivative to vanish yields

−PT (t)Q

(
yd −

∫ T

0

P (t)uk+1 (t) dt

)
+(R+ S)uk+1 (t) = Ruk (t) .

Here, we introduce a new variable zk such that

uk(t) = PT (t)zk (3)

with respect to the control signal at the k-th iteration; we
can then rewrite (3) as

−PT (t)Q

(
yd −

∫ T

0

P (t)PT (t) zk+1dt

)
+ (R+ S)PT (t) zk+1 = RPT (t) zk.

With the chosen R,S = (rI, sI), the following equation is
derived:(

(r + s)I+Q

∫ T

0

P (t)PT (t) dt

)
zk+1 = rzk +Qyd.

(4)
The new algorithm is built on the basis of vector zk, and the
control inputs follow from the sequence {zk} by trials. This
derivation significantly decreases the computational cost in
the ILC algorithm since the dimensions of system matrices
are optimized into the number of desired terminal times.

In the next section, we will show the convergence property
of the zk updating equation. Accordingly, the convergence
properties of the control input and errors are evaluated.

B. Convergence

Given

W =

∫ T

0

P(t)PT (t)dt,

since different pi(t) vanish at different times, the set of
functions pi(t) with i = 1, 2, . . . ,M are linearly indepen-
dent. Therefore, W is a symmetric positive definite matrix.
Thus, (4) can be rewritten as

((r + s) I+QW) zk+1 = (rI+QW) zk +Qek, (5)

where ek = yd −Wzk.
Lemma 3.1: The iterative learning equation (5) is conver-

gent if Q,R, and S are chosen such that

ρ
(
((r + s) I+QW)

−1
r
)
< 1. (6)

Proof: First, we prove the non-singularity of
[(r + s)I+QW]. It can be examined easily that the fol-
lowing equalities always hold with appropriate dimensions
of K,L,X, Y and that K,L is invertible.[

K 0
0 L+ Y K−1X

]
=

[
I 0

−Y K−1 I

] [
K −X
Y L

] [
I K−1X
0 I

]
,[

K +XL−1Y 0
0 L

]
=

[
I XL−1

0 I

] [
K −X
Y L

] [
I 0

−L−1Y I

]
.

Then, using the product property for determining matrices in
the above equalities, we obtain

det

[
K −X
Y L

]
= detK det

(
L+ Y K−1X

)
= detLdet

(
K +XL−1Y

)
Therefore, we see that the non-singularity of L + Y K−1X
is equivalent to the non-singularity of K + XL−1Y . Now,
substituting K = (r + s)I,X = Y = W

1
2 , and L = Q−1,

and noting that (r + s)I +W
1
2QW

1
2 is nonsingular since

W
1
2QW

1
2 > 0 and (r + s)I > 0, we have

(r + s)I +W
1
2QW

1
2 is nonsingular

⇔ Q−1 +W (r + s)−1I is nonsingular
⇔ (r + s)I +QW is nonsingular.

Consequently, the sequence of zk is obtained from

zk+1 = Tzzk +Teek

with Tz and Te are defined as

Tz = ((r + s) I+QW)
−1

(rI+QW) ,

Te = ((r + s) I+QW)
−1

Q.

Thus, this results in the condition for convergence of the
iterative learning algorithm as

ρ (Tz −TeW) < 1,

where Tz −TeW = ((r + s) I+QW)
−1
r.
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Moreover, note that if Q = qI, where q is real positive,
the algorithm achieves monotonic convergence. The reason
is that now ((r + s) I+QW)

−1
r is a symmetric positive

definite matrix which has the largest singular value equals
its spectral radius, and ρ

(
((r + s) I+QW)

−1
r
)
< 1 [11].

As such, from the result of Lemma (3.1), we obtain the
following convergence property of the control input.

Theorem 3.1: For the linear continuous system (1), the
following ILC system

uk(t) = PT (t)zk

zk+1 = Tzzk +Teek

drives the system outputs close to the desired terminal points.
Moreover, the control input converges to a fixed point u∞(t)
as

u∞(t) = PT (t)(sI+QW)−1Qyd.

Proof: First, we define the L2-norm of the control
signal as

‖u(t)‖2 =

∫ T

0

uT (t)u(t)dt.

Then,

‖uk(t)‖2 =

∫ T

0

zTk P(t)PT (t)zkdt

= zTk Wzk.

Since W is a positive definite matrix, W = VTV, in which
V has independent columns, leads to zTk Wzk = ‖Vzk‖2 .
Therefore,

‖uk (t)‖ ≤ ‖V‖ ‖zk‖ .

Consequently, the convergence of the control signal is guar-
anteed from the convergence of the zk learning algorithm,
as in Lemma (3.1). In this case, the converged vector of zk
is achieved from (5),

((r + s)I+QW)z∞ = rz∞ +Qyd,

or equivalently,

z∞ = (sI+QW)−1Qyd.

Hence, the converged input is

u∞(t) = PT (t)(sI+QW)−1Qyd.

C. Control Performance

The performance of the controller depends on the steady
state value of error e∞, such that

e∞ = yd −
∫ T

0

P(t)u∞(t)dt

= yd −W(sI+QW)−1Qyd. (7)

From (7), we can conclude that the steady state error does
not depend on the parameter R; i.e., the performance of
the controller and the rate of convergence are unrelated.
Moreover, the weighting matrices Q and S determine the

performance of the tracking technique, where the entries of
the matrix Q determine how the different performance the
points are achieved; in practical applications, there is always
the case in which the importances of particular points are
different. Additionally, from (7), the smallest possible error
at all terminal points e∞ = 0 requires that s = 0, with
positive definite matrices Q and W.

IV. OPTIMAL ILC FOR DISCRETE-TIME SYSTEMS

In this section, we analyze the point tracking control
problem in discrete-time systems. Our motivation is the fact
that many practical implementations will result in a discrete-
time ILC algorithm. Let us first consider the linear discrete-
time invariant system

xk(t+ 1) = Axk(t) +Buk(t)

yk(t) = Cxk(t) (8)

where xk(t) ∈ Rp, uk(t) ∈ Rm, and yk(t) ∈ Rn, and k
is the iteration index. In addition, the system operates on a
time interval t = 0, 1, 2, . . . , N − 1, and matrices A,B, and
C are system matrices with appropriate dimensions.

In the k-th iteration, the output of the system at the i-th
sample time is calculated as

yk(ti) = CAtixk(0) + C

ti−1∑
j=0

Ati−j−1Buk (j).

Here, if we assume xk (0) = 0, the errors are computed as

ek(ti) = yd(ti)− C
ti−1∑
j=0

Ati−j−1Buk (j).

Then, formulating the N -sample sequence of inputs in a
super-vector framework:

uk =
[
uTk (0) uTk (1) . . . uTk (N − 1)

]T
,

and by introducing gi(t)

gi(t) =

{
CAti−t−1B if t < ti

0 if t ≥ ti
,

the output at the i-th time instant is expressed as

yk(ti) =

N−1∑
t=0

gi(t)uk(t)

= gT
i uk

where gi is defined by

gi =
[
gi(0) gi(1) . . . gi(N − 1)

]T
.

As a result, the cost function for the problem of tracking
multiple terminal points t1, t2, ..., tM in the discrete time
model is given as

J =

M∑
i=1

(
yd (ti)− gT

i uk+1

)T
qi

(
yd (ti)− gT

i uk+1

)
+ uT

k+1Suk+1 +
(
uk+1 − uk

)T
R
(
uk+1 − uk

) (9)
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where R,S = (rI, sI), qi are positive definite diagonal
matrices.

Similar to the previous section, we define

yd =
[
yTd (t1) yTd (t2) . . . yTd (tM )

]T
G =

[
gT
1 gT

2 . . . gT
M

]T
.

Then, the cost function (9) can be rewritten as

J =
(
yd −Guk+1

)T
Q
(
yd −Guk+1

)
+ uT

k+1Suk+1 +
(
uk+1 − uk

)T
R
(
uk+1 − uk

)
.

(10)

Note that the controller in the (k + 1)-th trial is achieved
from the required stationary condition δJ/δuk+1 = 0, or

−GTQ (yd −Guk+1) +R (uk+1 − uk) + Suk+1 = 0
(11)

Setting
uk = GT zk,

the equation (11) is derived as

−Q
(
yd −GGT zk+1

)
+r
(
zk+1 − zk

)
+szk+1 = 0. (12)

Hence, (12) is an iterative learning algorithm, i.e.,

((r + s) I+QWd) zk+1 = (rI+QWd) zk +Qek, (13)

where Wd = GGT is a symmetric positive definite matrix.
From Lemma (3.1), matrix ((r + s) I+QWd) is positive
definite; therefore, by defining

Lz = ((r + s) I+QWd)
−1

(rI+QWd) ,

Le = ((r + s) I+QWd)
−1

Q,

and from (13), leads to the following theorem regarding the
ILC control algorithm for discrete-time systems.

Theorem 4.1: For the linear discrete-time system (8), the
ILC system

uk = GT zk

zk+1 = Lzzk + Leek

drives the system outputs close to the desired terminal points.
Moreover, the control input converges to a fixed point u∞
as

u∞ = GT (sI+QWd)
−1Qyd

and the error e∞ is defined as

e∞ = yd −Wd(sI+QWd)
−1Qyd.

Proof: The results of Theorem (4.1) are obtained in the
same manner as for Lemma (3.1) and Theorem (3.1).

In the case of a discrete time system, we can more clearly
see a significant decrease of the computational analyses. In
our learning algorithm, vector zk ∈ RM , and Lz , Le are
mM × mM matrices where M is the number of terminal
points. In comparison, the conventional ILC algorithm up-
dates the input with the system matrix mN ×mN . As the
length of iteration increases (N > 1000), which is common
in many applications such as robotics with a high sampling
rate, the requirement of memory and time dramatically
increases.

V. NUMERICAL EXAMPLE

In this section, we present an example of tracking multiple
points with a linear continuous system model. The simulation
illustrates the convergences of error and inputs under our
proposed ILC approach. Accordingly, based on suitable
chosen weighting matrices, the ILC algorithm produces well-
behaved output curves that go through, or very close to,
desired multiple terminal points after some iterations. The
results are then compared to different weighting matrices to
demonstrate the trade-off between the error and energy of
the control signal.

Here, the continuous system is chosen as

ẋ =

 0 1 0
0 0 1
−0.2 −0.3 −1

x+

 0
0
1

u

y =
(
0 0 0.1

)
x

which operates on interval t ∈ [0, 1]. We select 10 points in
the interval as desired points.

For the first case, weighting matrices are Q = 5I, R =
5.10−3I, and S = 10−3I. In Fig. 1, the results show the
fast convergence of control input signal and error through
iterations. Hence, we could achieve a very good performance
without creating a trajectory. Fig. 2 contains output curves
that are generated from different iterations. It can be seen
that after 20 iterations, the output curve passes almost exactly
through all terminal points.
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Fig. 1. Convergence of input and error sequences.

Next, to show the effect of parameters, we change the
weighting matrix Q to Q = I. By comparing the output
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curves obtained in Figs. 2 and 3, we can see the difference
in system performance. In the same iteration, the errors at the
terminal points are larger than the ones obtained from Q =
5I. However, the control signal expends less energy; in this
example, the energy of the control signal at the 20th iteration
in the two cases is calculated as 380 and 300, respectively.
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Fig. 2. Output curves with Q = 5I.
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Fig. 3. Output curves with Q = I.

VI. CONCLUSION

The concept of learning through the experience of ILC
to track a desired trajectory has been extensively analyzed
in the area of control. However, when there is a mass data
point, these ILC approaches have trouble in generating an
optimal trajectory, performance, and rate of convergence.
Moreover, most ILC algorithms formulate system models
in a lift-system representation; thus, the computational cost
and time increases whenever the length of the operation
time increases. Our approach overcomes these drawbacks
by utilizing only the essential information of data points
without building the desired trajectory. In this paper, we
have shown that the ILC approach that investigates critical

points can successfully obtain the convergence of error and
control inputs. By manipulating these parameters, a very
good performance is achieved.

This paper makes two key contributions to this research
field. The first is to present an analysis of the optimal
tracking of multiple points problem based on ILC theory.
The results improve upon those obtained by a traditional
ILC, being significantly more direct and simple. The second
contribution relates to a new class of application: path
scheduling. For example, when we design an optimal path for
an autonomous vehicle, we may have to impose restrictions
on particular points and control signals, which may require
learning to deliver a suitable path. The proposed ILC theory
is appropriate for use in this case. Future work will extend
the theory to more generic scenarios where we consider the
path scheduling problem for multiple vehicles in a particular
context such as conflict avoidance.
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