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Abstract— We discuss a model predictive control approach
to trajectory tracking problems of constrained nonlinear con-
tinuous time systems, where the reference trajectory is a
priori known and asymptotically constant. The proposed NMPC
scheme is able to explicitly consider input and state constraints
while guaranteeing recursive feasibility. To handle the time-
varying nature of the tracking problem we advocate the use
of time-varying level sets of Lyapunov functions as terminal
regions. We prove a necessary and sufficient condition for
positive invariance of these sets and show how these sets can
be efficiently computed, if a quadratic Lyapunov function is
available. As an example we consider a nonlinear CSTR reactor.

Index Terms— nonlinear model predictive control, trajectory
tracking, time-varying level sets, invariant sets

I. INTRODUCTION

Nonlinear model predictive control (NMPC) is an es-
pecially useful control strategy for MIMO systems that
are subject to input and state constraints. By now many
elaborated results exist for set-point stabilization, both in
discrete and continuous time, e.g. [4], [6], [11]. Results
on predictive control for path-following problems are also
available [5]. So far only limited results for the application
of NMPC to problems governed by time-varying dynamics
are available, e.g. [6], [8]. One reason why results on NMPC
for time-varying systems are rather sparse in the literature are
the difficulties of designing local control Lyapunov functions
–which are often used to enforce stability via terminal
constraints and end penalties– for time-varying dynamics.

In this work we discuss the application of NMPC to
constrained trajectory tracking problems, where the reference
trajectory is a priori known and asymptotically constant. This
leads to inherently time-varying problems. Explicit stability
results on NMPC for trajectory tracking are limited. Few
works consider tracking problems without constraints: In
[9] output tracking is discussed in discrete time, while [12]
presents results for continuous time systems based on a
terminal equality constraint. The tracking of asymptotically
constant references in the presence of constraints has been
considered in [10]. There the prediction horizon is required
to be longer than the finite convergence time of the reference.

Our contributions are as follows: In Section II we propose
a sampled-data continuous time NMPC scheme for trajectory
tracking of asymptotically constant references, where input
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and state constraints are present. We state sufficient conver-
gence conditions based on time-varying terminal regions and
end penalties. In comparison to previous works the proposed
NMPC scheme allows choosing the length of the prediction
horizon completely independent from the convergence time
of the reference, cf. [10]. Hence one can use short horizons
which are desirable from the computations point of view.
We consider state and input constraints and do not require
zero-terminal constraints to guarantee convergence of the
tracking error, cf. [9], [12]. Our main results are presented
in Section III: We introduce a concept of time-varying
level sets of Lyapunov functions and prove a necessary
and sufficient condition for positive invariance of these sets.
We show how these sets can be obtained via a convex
optimization problem, if a quadratic Lyapunov function is
available. This allows to guarantee stability of the NMPC
scheme and facilitates recursive feasibility of the optimal
control problems. In Section IV we consider a trajectory
tracking task for a nonlinear chemical reactor as an example.
We draw conclusions in Section V.

Notation & Definitions

The interior of a compact set B is denoted as int(B).
The set of k-times continuously differentiable functions on
R is written as Ck. The norm ‖x‖ of x ∈ Rn denotes
the 2-norm and ‖A‖ of A ∈ Rn×n the induced 2-norm.
The solution at time t of an ODE ẋ = f(x, u) starting
at x(t0) = x0 and driven by the input u is denoted as
x(t, x0|u). If no ambiguity about the initial condition can
arise we write x(t|u). The set of time-varying matrices in
Rn×m that are piecewise continuous and bounded in their
elements for all t ∈ [0,∞) is written as BC(Rn×m). If
A(t) ∈ BC(Rn×n) is symmetric and positive semi-definite,
then we write A(t) ∈ BC+

0 (Rn×n). Accordingly A(t) ∈
BC+(Rn×n), if A(t) = AT (t) > 0. The minimal eigenvalue
of Q ∈ Rn×n is denoted as λmin(Q).

II. AN NMPC SCHEME FOR TRAJECTORY TRACKING

Consider a continuous time nonlinear system of the form

ẋ(t) = f(x(t), u(t)), x(0) = x0, (1)

where x ∈ X ⊂ Rn and u ∈ U ⊆ Rm are state and input
constraints defined by simply connected compact sets X ,U .
We assume that f is continuous and locally Lipschitz in
x. Subsequently we want to solve the following trajectory
tracking problem.
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Problem 1 (Constrained Trajectory Tracking)
Given a system (1) and an a priori known reference trajec-
tory xr(t) ∈ C1. Design a controller such that:
P1 Reference Convergence: The system state x(t) con-

verges to the reference lim
t→∞
‖x(t)− xr(t)‖ = 0.

P2 Constraint Satisfaction: The state and input con-
straints are satisfied for all t ≥ 0 : x(t) ∈ X , u(t) ∈ U .

The standard approach to solve trajectory tracking prob-
lems is based on the definition of the error variable

e(t) := x(t)− xr(t). (2)

Under the assumptions that the reference is a priori known
and xr(t) ∈ C1 the tracking problem can be reformulated as
a set-point stabilization problem of the error dynamics

ė = f̃(t, e, u) := f(e+ xr(t), u)− ẋr(t), (3)

which are inherently time-varying for varying xr(t).
In order to solve this problem we propose an NMPC

scheme based on the error dynamics (3). To distinguish
between the predicted controller variables and the real system
variables we denote the predicted inputs and states with ē, ū
etc. To find suitable inputs, as usual in NMPC, at each
sampling instant tk = kδ, δ > 0, k ∈ N the following
optimal control problem (OCP) is solved repeatedly

minimize
ū(·)

J (e(tk), ē(·), ū(·)) . (4a)

The cost functional to be minimized is given as

J (·) =

∫ tk+Tp

tk

F (t, ē, ū) dτ + E(t, ē)|tk+Tp , (4b)

where F (·) : R+
0 × X × U → R+

0 is denoted as stage cost
and F (t, 0, 0) = 0. We assume that F is lower bounded
by a class K function ψ(‖e‖). As standard in NMPC the
term E(·) : R+

0 × Rn → R+
0 is referred to as end penalty,

see [11]. The time Tp denotes the prediction horizon. This
optimal control problem is subject to the predicted system
behavior and further constraints

˙̄e = f̃(t, ē, ū), ē(tk) = x(tk)− xr(tk), (4c)
∀t ∈ [tk, tk + Tp] : ē(t) + xr(t) ∈ X , ū(t) ∈ U , (4d)

ē(tk + Tp) ∈ Etk+Tp . (4e)

Finally the optimal solution ū?(t|ē(tk)) is applied to the
system such that for all t ∈ (tk, tk+1]: u(t) = ū?(·). For
simplicity we assume that the problem data guarantees the
existence of an optimal solution which is attained, cf. [6].

Here we advocate the use of time-varying terminal regions,
which we denote as Etk+Tp . Therefore (4e) requires that at
the end of each prediction the predicted tracking error ē(tk+
Tp) has to be inside a time-varying terminal region. Clearly
for all e ∈ Etk+Tp : e + xr(tk + Tp) ∈ X needs to hold.
In Section III we show how suitable sets Et can be derived
via the concept of time-varying level sets of a Lyapunov
function. Note that the length of the prediction horizon Tp
has to be chosen such that the OCP (4) is feasible.

As mentioned before the trajectory tracking problem is
inherently time-varying, which needs to be taken into ac-
count, if one wants to derive stability conditions. Hence the
next result is mainly an adaption of NMPC stability results
presented in [6].

Theorem 1 (Convergence of NMPC for Trajectory Tracking)
Consider the constrained trajectory tracking problem (P1-
P2) for system (1).

Suppose that an end penalty E(t, e(t)) ∈ C1 and a time-
varying terminal region Et exist such that for all t ≥ 0 a
control u(t) = k(t, e) ∈ U guarantees the following:
• For all ẽ ∈ Et̃ and all t ≥ t̃

e(t, ẽ|k(t, e)) ∈ Et
xr(t) + e(t, ẽ|k(t, e)) ∈ X (5a)

hold.
• For all solutions e(t, ẽ|k(t, e)) ∈ Et it holds

Ė(t, e) +
∂E(t, e)

∂e
ė+ F (t, e, k(t, e)) ≤ 0. (5b)

• The optimal control problem (4) has a feasible solution
for e(0) = x0 − xr(0).

Then the closed loop defined by (1) and (4) guarantees
convergence of the tracking error

lim
t→∞
‖e(t)‖ = lim

t→∞
‖x(t)− xr(t)‖ = 0

and constraint satisfaction e(t) + xr(t) ∈ X , u(t) ∈ U .

The proof of the theorem employs the ideas on NMPC
for time-varying systems as presented in [6]. We sketch
briefly the main issues here. Firstly, note that (5a) is simply
a positive invariance condition, where the invariant set Et is
allowed to change with time. Secondly, recursive feasibility
can easily be shown by concatenating an optimal input
with the terminal feedback law k(t, e). Thirdly, condition
(5b) requires a cost decrease for all e(t) ∈ Et, which is
necessary in order to use the value function of the OCP (4)
as a Lyapunov function. The main difference to standard
approaches is that the end penalty E(t, e) as well as the
terminal region Et may depend explicitly on time, cf. [6],
[11]. This theorem is the basis for the further developments.

III. SUITABLE TERMINAL REGIONS AND END PENALTIES

Subsequently we discuss how a suitable time-varying
terminal region Et and an end penalty E(·) can be determined
such that the suppositions of Theorem 1 are fulfilled. Our
agenda is as follows: Firstly, we consider the linearization
of the error dynamics (3) along the reference xr(t). We
derive a suitable feedback as well as a Lyapunov function for
the contolled linear time-varying (LTV) error system. This
feedback law serves as terminal control law k(t, e) in (5).
Secondly, we introduce the concept of time-varying level
sets of Lyapunov functions. We formulate an optimal control
problem to compute constraint consistent time-varying level
sets for the LTV error system. We show how this proposed
problem can an be approximated as a convex optimization
problem. Based on these time-varying sets we derive a
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suitable terminal region Et for the nonlinear error dynamics.
Finally, we clarify how the conditions of Theorem 1 can be
verified.

To follow this agenda we make standing assumptions.
A1 The a priori known reference trajectory is asymp-

totically constant and defined for all t ≥ 0, s.t. xr(t) ∈
int(X ) ⊂ Rn and xr(t) ∈ C1. Furthermore lim

t→∞
xr(t) =

xr(T ) with T <∞.
A2 An admissible reference input ur(t) ∈ int(U) ⊂ Rm

defined for all t ≥ 0 with ẋr = f(xr, ur) is known.
A3 The reference trajectory xr(t) ends in a stabilizable set-

point of (1). The matrices A(T ), B(T )

A(T ) = ∂f
∂x

∣∣
xr(T ),ur(T )

, B(T ) = ∂f
∂u

∣∣
xr(T ),ur(T )

(6a)

are stabilizable and f(x, u)|xr(T ),ur(T ) = 0.
A4 The constraints X , U of system (1) are box constraints

xmin ≤ x ≤ xmax and umin ≤ u ≤ umax.
A5 The stage cost F in (4b) is

F (t, e, u) := eTQF e+ (u− ur(t))TRF (u− ur(t))

with QF , RF > 0.

A. Stabilization of the LTV Error System

Consider the error dynamics (3) and assumptions A1-
A3. The Jacobian linearization of the error system along
the reference trajectory xr(t) and reference input ur(t)
expressed in the coordinates e = x− xr and w = u− ur is

ė = A(t)e+B(t)w, (7)

where the time-varying matrices A(t) ∈ BC(Rn×n) and
B(t) ∈ BC(Rn×m). The next lemma states sufficient condi-
tions for exponential stabilizability of the LTV system (7).

Lemma 1 (Exponential stabilizability of LTV error system)
If assumptions A1-A3 hold, then the LTV error system (7) is
exponentially stabilizable.

Proof. We adapt results on the exponential stabilizability of
LTV systems, cf. [13] and give a constructive proof. Recall
that A(t) ∈ BC(Rn×n) and B(t) ∈ BC(Rn×m). W.l.o.g.
assume that two matrices Q(t) ∈ BC+(Rn×n) and R(t) ∈
BC+(Rm×m) are choosen such that for all t ∈ [0, T ]

Q(t) −
(
A(t) +AT (t) +B(t)R−1(t)BT (t)

)
≥ q̃I (8)

holds for some q̃ > 0 and for t ≥ T the matrices Q(t)
and R(t) are constant. We subsequently verify that the time-
varying feedback given by

ω = K(t)e = −1

2
R−1(t)BT (t) (P (t)− I) e (9)

stabilizes the LTV error system (7) exponentially. Here
P (t) ∈ BC+

0 (Rn×n) is the solution to the Riccati differential
equation (RDE)

Ṗ (t) = P (t)B(t)R−1(t)BT (t)P (t)−Q(t)

− P (t)A(t)−AT (t)P (t), P (T ) = PT ≥ 0. (10)

From the fact that for t ≥ T the LTV error system is
stabilizable the existence of a positive semi-definite solution
to (10) such that for all t ≥ 0 : P (t) ∈ BC+

0 (Rn×n) can be
inferred, cf. [1], [13].

Denote as Ã(t) := A(t) + B(t)K(t) the closed loop
system matrix of (7) under (9). Consider the candidate
Lyapunov function

V (t, e) = eT (P (t) + I) e (11)

where P (t)+I ∈ BC+(Rn×n). Its time derivative along the
solution trajectories of (7) is

V̇ = eT (A(t) +AT (t) +B(t)R−1(t)BT (t)−Q(t))e (12)

It follows from (8) that V̇ (t, e) ≤ −q̃‖e‖2. Hence V (t, e) :=
eT (P (t) + I) e is a quadratic Lyapunov function for (7)
under the feedback (9). Hence the LTV error system (7) is
exponentially stabilizable.

Remark 1 (Choosing Weight Matrices for RDE)
Equation (8) seems to be quite hard to verify. However, for
chosen constant R(t) = R > 0 one can set

Q(t) := Q̃+A(t) +AT (t) +B(t)R−1BT (t) (13)

and determine a suitable constant matrix Q̃ > 0 via a time-
discretized LMI approximation of (8). In that case the decay
(12) of V (t, e) is V̇ = −eT Q̃e and for all t ≥ T the RDE
(10) is time-invariant. Hence the boundary condition PT ≥ 0
should be obtained as stationary solution of (10) at t = T .
This also ensures that V (·) is defined for all t ≥ 0.

B. Invariant Time-Varying Sets

In standard quasi-infinite horizon NMPC approaches ([4],
[6]) one often computes a suitable level set E = {e ∈
Rn | V (t, e) ≤ c2} such that for all e ∈ E conditions similar
to (5) hold. This is restrictive, since the level set is defined
by a constant. Subsequently it is our main idea to relax this
conservatism by time-varying levels defined by an inequality
V (t, e) ≤ π2(t). In order to do so we introduce the concept
of positive invariant time-varying level sets of a Lyapunov
function.

Consider the Lyapunov function (11) for the LTV system
and a function π ∈ C1 : R+

0 → R+. In order to handle
the time-varying right hand side in the inequality V (t, e) ≤
π2(t) we consider the closed set

Λ :=
{

(t, e) | V (t, e) ≤ π2(t)
}
⊂ R+

0 × Rn (14)

in the extended space R+
0 ×Rn. If the time coordinate of Λ

is fixed we write

Λt := Λ ∩ {{t} × Rn}. (15)

Additionally we define a projection Π : R+
0 × Rn → Rn

Π : (t, e) 7→ e ∈ Rn (16)

which continuously maps any extended state (t, e) onto e.
The images Π (Λt) are the time-varying level sets.
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Definition 1 (Time-Varying Level Sets)
For all t ≥ 0 we call the family of subsets of Rn given by

Lt,V,π := {e ∈ Rn|(t, e) ∈ Λ} = Π (Λt) (17a)

a time-varying level set of the Lyapunov function V (t, e) from
(11). Accordingly we define the boundary of Lt,V,π point-
wise in time as

∂Lt,V,π := ∂Π (Λt) . (17b)

For the LTV error system of the trajectory tracking task,
the time-varying level set are ellipsoids {x ∈ Rn | (x −
xr(t))

T (P (t) + I)(x− xr(t)) ≤ π2(t)} which are centered
along the reference trajectory xr(t).

For time-invariant level sets {V (t, e) ≤ c2} it is straight-
forward to conclude positive invariance. In the case of time-
varying level sets as defined above this question is more
complicated to answer.

Theorem 2 (Positive Invariance of Time-Varying Level Sets)
Consider system (7) under the feedback (9) and the sets
Lt,V,π = Π(Λt) from (17) where for all t ≥ 0 : π(t) > 0.

All solutions e(t, e0|K(t)e) with e0 ∈ Lt=0,V,π stay inside
Lt,V,π for all t ≥ 0 if and only if

∀t ≥ 0, ∀e ∈ ∂Lt,V,π : V̇ (t, e) ≤ 2π(t)π̇(t). (18)

Proof. Our proof is based on Nagumos Theorem on positive
invariance of sets for time-invariant systems, cf. [2].

We begin with proving the sufficiency of (18). The main
idea is to verify that (18) ensures the positive invariance of
the set Λ under the dynamics of the augmented system(

ṫ
ė

)
=

(
1

Ã(t)e

)
, Ã(t) = A(t) +B(t)K(t). (19)

Under the change of variables z := (t, e)T the set Λ is
described as {z ∈ R+

0 × Rn | v(z) ≤ 0} where v(z) =
V (z)−π2(z). Note that Λ is a closed set. The tangent cone
of Λ at any z ∈ ∂Λ with is

TΛ(z) = {ζ ∈ R1+n | ∇v(z)T ζ ≤ 0}. (20)

According to Nagumos Theorem positive invariance of Λ is
verified if the velocity vector ż is contained in TΛ(z) for all
z ∈ ∂Λ. We verify this in (t, e) coordinates and obtain(

dV (t,e)
dt − 2ππ̇
∂V (t,e)
∂e

)T (
1

Ã(t)e

)
= V̇ (t, e)− 2ππ̇.

Hence for all z ∈ ∂Λ supposition (18) ensures that ż =
(1, Ã(t)e)T ∈ TΛ(z). It follows that Λ is an invariant set of
the augmented system (19). Due to the construction of Lt,V,π
via Π from (16) this directly implies that if e(t0) ∈ Lt0,V,π
with t0 ≥ 0 then for all t ≥ t0 : e(t, e(t0)|k(t, e)) ∈ Lt,V,π .

The necessity of (18) is verified as follows. Assume that
for some z0 = (t0, e0) ∈ ∂Λ with t0 ≥ 0 we have ż0 6∈
TΛ(z0). Using the definition of the tangent cone (20) we
have that ∇v(z0)ż0 > 0. Hence dv(z)

dt

∣∣
z0

= ∇v(z0)ż0 > 0,

which implies that for some τ ∈ [t0, t0 + h] we have that
v(z(τ)) > 0. Consequently ż0 6∈ TΛ(z0) implies z(τ) 6∈ Λ
and e(τ, e(t0)|k(τ, e)) 6∈ Lτ,V,π.

C. Computation of Time-Varying Level Sets

Naturally, the question arises how to determine π(t) such
that Lt,V,π based on V from (11) is as large as possible,
consistent with the constraints, and positive invariant in the
sense of Theorem 2.

To achieve this one can state the problem of finding
the maximum volume constraint consistent positive invariant
time-varying level set as follows.

maximize
wπ,π0

∫ T

0

vol (Lτ,V,π) dτ (21a)

subject to the dynamics

π̇(t) = wπ(t), π(0) = π0, π̇(T ) = 0 (21b)

and the following constraints

∀t ∈ [0, T ] : π(t) > 0, (21c)
∀t ∈ [0, T ] : Lt,V,π = Π (Λt) , (21d)

∀e ∈ ∂Lt,V,π : V̇ (t, e) ≤ 2π(t)wπ(t), (21e)
∀e ∈ Lt,V,π : K(t)e+ ur(t) ∈ U ⊂ Rm, (21f)
∀e ∈ Lt,V,π : e+ xr(t) ∈ X ⊆ Rn. (21g)

The main idea behind this optimization problem is to maxi-
mize the volume of the corresponding projections Lt,V,π =
Π (Λt) over the time span [0, T ]. The time evolution of
π(t) is described by the scalar ODE (21b), where wπ is
the input and consequently a decision variables of the OCP
(21). At the end of the reference trajectory the time-varying
level set should not change anymore, hence for t = T we
require π̇(T ) = 0. The initial condition π(0) = π0 is also a
decision variable. Due to the construction of the time-varying
level sets π(t) has to be always strictly positive (21c). The
positive invariance property from (18) is expressed in (21e).
Naturally, we want to achieve that the constraints on states
and input are respected, hence (21f-g).

The optimal control problem (21) is not straightforward
to solve. Relying on concepts for computation of maxi-
mum volume ellipsoids we reformulate (21) as a convex
problem, cf. [3]. Consider the change of coordinates ξ =

1
π(t)S(t)e, S(t) =

√
(P (t) + I). Rewriting Lt,V,π in new

ξ coordinates yields Lt,V,π =
{
π(t)S−1(t)ξ | ‖ξ‖2 ≤ 1

}
.

Relying on this reformulation the objective (21a) can be
stated as maximize

∫ T
0

log det
(
S−1(τ)π(τ)

)
dτ . The evo-

lution of P (t) and hence also the evolution of S(t) are not
effected by the choice of π(t) hence the objective (21a)
is equivalent to maximizing

∫ T
0
π(t). If the weight matrix

Q(t) is choosen according to Remark 1 we have V̇ (t, e) =
−eT Q̃e. Rewriting this in ξ coordinates yields V̇ (t, e) =
−π2(t) · ξTS−T (t)Q̃S−1(t)ξ ≤ −q(t)π2(t), where q(t) =

λmin(S−T (t)Q̃S−1(t)) > 0. Since π(t) > 0, π̇ = wπ we
require −q(t)π(t) ≤ 2wπ(t) instead of (21e).

Using similar ideas for (21f-g) the reformulation of (21)
can now be stated as follows.

maximize
wπ,π0

∫ T

0

π(τ)dτ (22a)
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subject to the linear dynamics

π̇(t) = wπ(t), π(0) = π0, π̇(T ) = 0, (22b)

and additional constraints

2wπ(t) ≥ −π(t) · q(t), (22c)

‖xi − xr(t)‖ ≥ π(t) ·
∥∥S−1(t)

∥∥ , (22d)

‖ui − ur(t)‖ ≥ π(t) ·
∥∥K(t)S−1(t)

∥∥ , (22e)

where q(t) = λmin(S−T (t)Q̃S−1(t)) and i ∈ {min,max}.
Note that π(t) and wπ(t) appear in affine expressions. Hence
a time discretization of (22) leads to a linear programm.

D. Terminal Regions and End Penalties

We need to ensure that the time-varying set Lt,V,π is
positive invariant under the nonlinear error dynamics (3)
subject the two degrees of freedom control u = K(t)e +
ur(t). In general this is not the case and difficult to enforce.
However, we know that the closed loop LTV error system
(7) is (exponentially) stable. Hence it can be shown that
for some 0 < π̃(t) ≤ π(t) the set L̃t,V,π̃ will be positive
invariant for the nonlinear error system (3) controlled via
u = K(t)e+ ur(t). To obtain π̃(t) we rewrite the nonlinear
error dynamics (3)

ė = Ã(t)e+ Φ(t, e), (23)

where Ã(t) = A(t) + B(t)K(t) is the closed loop
system matrix of the LTV error system and Φ(t, e) =
f̃ (t, e,K(t)e+ ur(t))− Ã(t)e.

Actually, we need to guarantee that for all t ≥ T the
Lyapunov function of the LTV error system is also a local
Lyapunov function for the nonlinear error dynamics valid on
L̃t,V,π̃ . It is important to note that for the preceding time
points t ∈ [0, T ) positive invariance of L̃t,V,π̃ is sufficient
in order to use Lt,V,π̃ as terminal region in the NMPC
algorithm for trajectory tracking (4). We apply a similar ratio
as for usual time-invariant level sets, cf. [4]. We assume
that π(t) for the LTV error system is computed via a time
discretization of (22). We shrink π(t) point-wise in time
down to π̃(t) ≤ π(t) by a sequence of global optimization
problems. For t = T consider L̃T,V,π̃ and the function φT

φT (e) = 2eT P̃ (T )Φ(T, e)− eT q̃e+ ε · eT P̃ (T )e (24a)

where ε = λmin
(
S−1(QF +KTRFK)S−1|t=T

)
and

P̃ (T ) = P (T )+I . Note φT (e) is an upper bound for dV (t,e)
dt

along the trajectories of the nonlinear error dynamics (3)
under the linear feedback (9). Now one iteratively solves
φ∗T = maxφT (e) for all e ∈ L̃T,V,π̃ . Start with π̃(T ) = π(T )
and compute φ∗T . If φ∗T ≥ 0 halve π̃(T ) and repeat until
φ∗T < 0. This is a nonlinear global optimization problem.
For the remaining time points 0 ≤ t < T we solve the easier
problem maxφt(e) for all e ∈ ∂L̃t,V,π̃ where φt is

φt(e) = 2eT P̃ (t)Φ(t, e) − eT q̃e − 2 ˙̃π(t)π̃(t). (24b)

Obviously we cannot solve this problem for all t ∈ [0, T ). If
one applies time discretization on ˙̃π(t) = wπ̃ a sequence of

nonlinear optimization problems is obtained, which can be
solved recursively backwards in time. However, one needs
to ensure a sufficiently fine time discretization.

It remains to show that the time-varying level sets L̃t,V,π̃
and a suitably defined end penalty fulfill the suppositions of
Theorem 1. The following lemma holds.

Lemma 2 (Stabilizing Time-Varying Level Sets)
Consider the constrained trajectory tracking problem P1-P2
for system (1). Suppose that for all t ∈ [0, T ] : π̃(t) ∈ (0,∞)
and Etk+Tp = L̃tk+Tp,V,π̃ . The set L̃t,V,π̃ and the end penalty

E(t) =

{ ∫ T
t
α(τ) dτ + β α(T )

2γ t ∈ [0, T ),

β α(T )
2γ e−2γ(t−T ) t ≥ T,

(25)

where α(t), β, γ are

α(t) = π̃2(t)‖S−1(t)‖2‖QF +K(t)TRFK(t)‖,
β = p+ 1, p = sup ‖P (t)‖,
γ = 1

2(p+1)λmin
(
S−1(QF +KTRFK)S−1|t=T

)
fulfill the suppositions of Theorem 1.

Due to space limitations we sketch only the main ideas
of the proof here. Clearly the time-varying sets L̃t,V,π̃ are
positive invariant under the terminal control law u = K(t)e+
ur(t). Note that state and input constraints are fulfilled for
any nominal solution e(t, e0|u) with e0 ∈ L̃t,V,π̃ .

The end penalty (25) is obtained as an approximation of
the worst case cost inside L̃t,V,π̃ which consists of two parts.
The first part is the cost associated to a solution which travels
through the boundary of the terminal region ∂L̃t,V,π̃ for all
t ∈ [0, T ]. The second part uses the fact that inside L̃T,V,π̃ the
terminal control law guarantees exponential cost decrease.
Simple calculations verify that E(t) ∈ C1 and that E(t)
fulfills (5b).

IV. TRAJECTORY TRACKING OF A CHEMICAL REACTOR

As an example we consider a set-point change of a
continuously stirred tank reactor (CSTR) along an a priori
given reference trajectory. In the reactor an exothermic,
irreversible reaction A → B takes place. The dynamics of
the CSTR are as follows

ċA =
q

V
(cAf − cA)− k(cA, T ),

Ṫ =
q

V
(Tf − T ) + −4H

ρCp
k(cA, T ) + UA

V ρCp
(Tc − T ),

where k(cA, T ) = k0e
−E
RT cA. Details on the model and its

parameters can be found in [7]. The states cA in [mol/l] and
T in [K] describe the concentration of reactant A and the
reactor temperature. The coolant stream temperature Tc in
[K] is the input variable. The objective is to design an NMPC
controller which stabilizes the CSTR around a previously
computed reference trajectory which drives the system in 18
minutes from the set-point cA1 = 0.6, T1 = 344 to cA2 =
0.45, T2 = 352 via the coolant stream temperature Tc. The
system is subject to the input constraint 270 ≤ Tc ≤ 350
and the state constraints 0.1 ≤ cA ≤ 0.63, 300 ≤ T ≤ 400.
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Fig. 1. Visualization of time-varying level sets L̃t,V,π̃ .

The weight matrices for the cost function F (·) are RF =
5 · 10−3 and QF = [60.7,−6.5;−6.5, 2.5]. The boundary
condition P (T ) and the time-varying Q(t) for the RDE (10)
are chosen according to Remark 1 with Q̃ = QF and R =
0.2 · RF . The prediction horizon is set to Tp = 0.5[min]
and much shorter than the length of the reference trajectory
which is 18[min]. The control horizon is δ = 0.3[min]. The
diameter functions π(t), π̃(t) are obtained via (22) and (24).
Both are computed on a time grid with δt = 10−3[min].

The results are illustrated in Figure 1. In the upper part the
red dash-dot curve shows π(t) which defines the positively
invariant time-varying level set Lt,V,π from (14) - (17). The
blue curve depicts π̃(t) which is obtained via successive
shrinking of π(t) point-wise in time until (24) is satisfied.
The peaks (at t = 4.3 and t = 5) are caused by changes
in the set of active constraints. It should be noted that the
time-varying level sets are locally changing in size. This can
be observed in Figure 1 upper part, as π̃(t) is increasing

along several parts of the reference trajectory. In Figure 1,
lower part, the black curve depicts the reference trajectory in
the cA−T plane. The red dash-dot ellipsoids are a selection
from the time-varying level set of the LTV error system. The
blue ellipsoids are samples from the terminal region L̃t,V,π̃
of the OCP (4). Note we plot only a few of the numerous
ellipsoids computed on the time grid with δt = 10−3[min].
The thin black line shows one sample trajectory under the
proposed NMPC scheme which starts outside of the level set
at t = 0 at cA = 0.5[mol/l], T = 340[K].

V. CONCLUSIONS

We propose an NMPC scheme for constrained trajectory
tracking problems and present convergence conditions where
a time-varying terminal region is used. The nice feature about
this time-varying terminal regions is that they are not strictly
shrinking with time but rather can be locally expanding. In
order to achieve this, we introduce the concept of a time-
varying level set of a Lyapunov function which is efficiently
computable via a convex optimization problem, if a quadratic
Lyapunov function is available.
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