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Abstract— Based on trend-following trading strategies that
are widely used in the investment world, this work provides
a set of sufficient conditions that determines the optimality of
the traditional trend-following strategies when the trends are
completely observable. A dynamic programming approach is
used to verify the optimality under these conditions. The value
functions are characterized by the associated HJB equations,
and are shown to be either linear functions or infinity depending
on the parameter values. The results reveal two counter-
intuitive facts: (a) trend following may not lead to optimal
reward in some cases even when/if the investor knows exactly
when a trend change occurs; (b) stock volatility is not relevant
in trend following when trends are observable.

Index Terms— regime-switching process, quasi-variational
inequality, trend-following strategy.

I. INTRODUCTION

Active market participants can be classified in accordance
with their trading strategies: Those who trade contra-trend
and those who follow the trend. In this paper, we focus on
the trend-following (TF) trading strategies. The basic premise
underlying the trend-following rules is that the market can
be regarded either as a bull market or a bear market at a
given time. Trend-following strategies are concerned with
trading rules that trade with the market, i.e., go long in a bull
market or go short in a bear market. One way to capture the
market trends is to use the geometric Brownian motions with
regime switching. A standard geometric Brownian motion
(GBM) model involves two parameters, the expected rate of
return and the volatility, both assumed to be deterministic
constants. In a model with regime switching, these key
parameters are allowed to be market trend (or regime)
dependent. The regime-switching model was first introduced
by Hamilton [10] to describe a regime-switching time series.
Subsequently, it is extensively studied in connection with
option pricing; see Di Masi et al. [7], Bollen [1], Buffington
and Elliott [2], Yao et al. [19], and references there in.

In the financial engineering literature, stock trading rules
have been studied under various diffusion models for many
years. For example, Øksendal [18, Examples 10.2.2-4] con-
sidered optimal exit strategy for stocks whose price dynamics
were modeled by a geometric Brownian motion. Stock
selling rules under regime-switching models have gained
increasing attention. For example, Zhang [23] considered
a selling rule determined by two threshold levels, a target
price and a stop-loss limit. Under the regime-switching
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model, optimal threshold levels were obtained by solving
a set of two-point boundary value problems. In Guo and
Zhang [9], the results of Øksendal [18] were extended to
incorporate a model with regime switching. In addition to
these analytical results, various mathematical tools have been
developed to compute these threshold levels. A stochastic
approximation technique was used in Yin et al. [20], and
a linear programming approach was developed in Helmes
[11]; and the fast Fourier transform was used in Liu et
al. [15]. Furthermore, consideration of capital gain taxes
and transaction costs in connection with selling can be
found in Cadenillas and Pliska [3], Constantinides [4], and
Dammon and Spatt [5] among others. Recently, there has
been growing effort concerning trading rules that involved
both buying and selling. For instance, Zhang and Zhang
[22] developed optimal trading strategies in a mean-reverting
market, which validated a well-known contra-trend trading
method. In particular, they established two threshold prices
(buy and sell) that maximized overall discounted return if one
traded at those prices. These results are extended to allow
short sales in Kong and Zhang [13]. In addition to the results
obtained in [22] along this line of research, an investment
capacity expansion/reduction problem was considered in
Merhi and Zervos [17]. Under a geometric Brownian motion
market model, the authors used the dynamic programming
approach and obtained an explicit solution to the singular
control problem. A more general diffusion market model
was treated by Løkka and Zervos [16] in connection with
an optimal investment capacity adjustment problem. More
recently, Johnson and Zervos [12] studied an optimal timing
of investment problem under a general diffusion market
model. The objective was to maximize the expected cash flow
by choosing when to enter an investment and when to exit
the investment. An explicit analytic solution was obtained in
[12].

In this paper, we consider a regime-switching model for
the stock price dynamics. The price of the stock follows a
geometric Brownian motion whose drift switches between
two different regimes representing the up trend (bull market)
and down trend (bear market), respectively. We model the
switching as a Markov chain. In addition, we assume trading
one share with a fixed percentage slippage cost. As in Zhang
and Zhang [22] we introduce optimal value functions that
correspond to starting net position being either flat or long.
We focus on a fundamental issue in trend-following trading.
Under the framework of a regime-switching market, we pose
the following question: If the investor has the full knowledge
of market trends, i.e., she or he knows exactly when the
market turns from bull to bear (or bear to bull), will she or
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he always be profitable? We address this best-case scenario.
In particular, we aim at classifying parameter regions so that
the optimal trading strategy varies on each of these regions.
We use a dynamic programming approach, and derive a
system of two variational inequalities, which can be casted
into the form of HJB equations. We find solutions to these
equations and construct the corresponding trading rules. We
also provide verification theorems to justify the optimality of
these trading rules. The results reveal two counter intuitive
facts:
(a) trend following may not lead to optimal reward in some

cases even the investor knows exactly when a trend
change occurs;

(b) stock volatility is not relevant in trend following when
trends are observable.

We point out that analytic or closed-form solutions in
stochastic control problems are rarely obtainable. An analytic
solution is desirable in practice because it provides a clear
picture on dependence of random variables. It can also
be useful for the related computational methods because it
usually reveals the basic structure of the underlying problem.
This paper reports a set of closed-form solutions to the
optimal control problem under consideration. It adds to the
list of ‘solvable’ stochastic control problems in the literature.
In this paper, we present the main ideas and results. The
detailed development and verbatim proofs can be found in
our recent paper [14].

In Section II, problem setup is constructed. In Section III,
classification of parameter regions are provided so that the
optimal trading rules have the same structure on each of
these regions. In Section IV, the associated HJB equations
and their solutions are studied. Closed-form solutions are
obtained. In Section V, verification theorems with sufficient
conditions are given. Finally, Section VI concludes the paper
with further remarks.

II. PROBLEM SETUP

Let Xt denote the price of the asset under consideration at
time t. We consider the case when Xt is a regime-switching
geometric Brownian motion governed by

dXt = Xt(µ(ζt)dt+ σ(ζt)dWt), (1)

where ζt ∈ {1, 2} is a two-state Markov chain, µ(1) = µ1,
µ(2) = µ2 are the expected return rates, σ(1) = σ1 and
σ(2) = σ2 the volatilities, and Wt is a standard Brownian
motion. In this paper, ζt = 1 indicates a bull market and
ζt = 2 a bear market, i.e., µ1 > 0 and µ2 < 0. Assume
that ζt is observable and its generator is given by Q =
(

−η1 η1
η2 −η2

)

, for some η1 > 0 and η2 > 0. Assume

also that {ζt} and {Wt} are independent.
Remark 2.1: The observability of ζt is imposed mainly to

simplify the matter to the extent that we can extract useful
information without undue technical difficulties. It allows
us to formulate/visualize the issue in more depth and is
helpful in providing optimality conditions that are otherwise
hard to see. In addition, under the best case scenario, we

can identify market conditions potentially to avoid trades
which might be unprofitable even under the best market
information. Finally, the corresponding value functions will
provide an upper bound for trading performance which can
be used as a general guide to rule out unrealistic expectations.

In this paper, we allow to buy or sell at most one share at
a time. Moreover, we consider the case that the net position
at any time can be either flat (no stock holding) or long
(with one share of stock holding). Let 0 ≤ b1 ≤ s1 ≤
b2 ≤ s2 ≤ · · · be a sequence of stopping times. A buying
decision is made at bn and a selling decision is made at
sn, for n = 1, 2, . . .. Let kt denote the net position with

kt =

{

0, flat,
1, long one share. If the initial net position is

long (k0− = 1), then one should sell the stock before
acquiring any share. Similarly, if the initial net position is
flat (k0− = 0), then one should first buy a share before a
subsequent selling. We define the sequence of stopping times
for each initial position k as follows:

Ξ0 = (b1, s1, b2, s2, . . .) if k = 0,
Ξ1 = (s0, b1, s1, b2, s2, . . .) if k = 1.

In this paper, we impose slippage cost on each transaction.
Slippage cost usually refers to the spread between expected
price and the actual price paid. Slippage affects all trading
activities especially those with frequent transactions and
those with larger orders. In this paper, we assume that a
fixed percentage of slippage cost δ is incurred with each
transaction. The value for δ depends on the liquidity of the
underlying stock. Its normal range is from 0.01% to 1%. Let
r > 0 be the discount rate. Given the initial states X0 = x,
ζ0 = ζ, and initial net position k = 0, 1, the reward functions
of decision sequences, Ξk , are given as follows:

Jk(x, ζ,Ξk)

=











































E

∞
∑

i=1

[e−rsiXsi(1− δ)− e−rbiXbi(1 + δ)],

if k = 0,
E{e−rs0Xs0(1− δ)

+
∞
∑

i=1

(e−rsiXsi(1− δ)− e−rbiXbi(1 + δ))},

if k = 1.

Given initial position k, let Vk(x, ζ) denote the value func-
tions with the initial states X0 = x and ζ0 = ζ. That is,

Vk(x, ζ) = sup
Ξk

Jk(x, ζ,Ξk). (2)

Let 0 ≤ b∗1 ≤ s∗1 ≤ b∗2 ≤ s∗2 ≤ · · · denote the corresponding
jump times of ζt, i.e., b∗1 = inf{t ≥ 0 : ζt = 1}, s∗i =
inf{t ≥ b∗i : ζt = 2}, and b∗i+1 = inf{t ≥ s∗i : ζt =
1} for i = 1, 2, . . .. In the rest of this paper, we focus on
the trend-following rule: Buy at b∗n and sell at s∗n. In the
next section, we find regions for (η1, η2) so that the trend-
following strategy is optimal.
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III. CLASSIFICATION OF (η1, η2)-REGIONS AND
ASSUMPTIONS

First we note that if r ≥ µ1 then “no trading is optimal.”
In fact, it is easily seen that for any given Ξ0,

Ee−rsiXsi − Ee−rbiXbi = E

∫ si

bi

e−rtXt(−r + µ(ζt))dt.

Note that (−r + µ(ζt)) ≤ 0 under r ≥ µ1 > 0 and µ2 < 0.
This implies that

E[e−rsiXsi(1− δ)− e−rbiXbi(1 + δ)] ≤ 0.

It follows that J0(x, ζ,Ξ0) ≤ 0. Therefore, V0(x, ζ) = 0.
Similarly, V1(x, ζ) = (1− δ)x, i.e., one has to sell the share
right away at t = 0.

Note also that if r + η1 − µ1 ≤ 0, then, in view of (12)
developed in Section 4, when ζ0 = 1, we have Ee−rs∗1Xs∗1

=

xη1
∫

∞

0
e−(r+η1−µ1)udu = ∞. In this case, it is easy to see

that buying at (b∗1 = 0) and selling at (s∗1) is optimal because
the corresponding payoff J = ∞. Similarly, if ζ0 = 2, it can
be seen that buying at (b∗2) and selling at (s∗2) gives J = ∞.

Assumptions. In this paper, we assume µ1 > r > 0,
µ2 < 0, and r + η1 − µ1 > 0.

Next we determine necessary conditions that guarantee the
optimality of trend-following-trading rules. We consider the
equation (r + η1 − µ1)(r + η2 − µ2) − η1η2 = 0. Such
equation is used in Guo and Zhang [9] to determine the
region on which the optimal return is infinite. Let β1 > β2

be its roots. Then, in view of Zhang [9, Lemma 1], we have
lims1→∞ Ee−rs1Xs1 = ∞, when β2 < r < β1 which is
equivalent to

(r + η1 − µ1)(r + η2 − µ2)− η1η2 < 0. (3)

In this case, the buy (b1 = 0) and hold (s1 = ∞) strategy is
optimal and the corresponding payoff J = ∞.

Under our trading rule, i.e., buy at b∗n and sell at s∗n, in
order to generate nonnegative returns, we expect

E[e−rs∗i Xs∗i
(1− δ)− e−rb∗i Xb∗i

(1 + δ)] ≥ 0, i = 1, 2, . . . .

In particular, if i = 1 and b1 = 0, we can show, by
writing Xs∗1

in terms of ζt and Wt (detailed development is
given later in this paper in Lemma 5.1), that Ee−rs∗1Xs∗1

=
η1x

r+η1−µ1
. Note that r + η1 − µ1 > 0 when (r + η1 −

µ1)(r + η2 − µ2) − η1η2 > 0. It suffices to require that
η1

r+η1−µ1
> 1+δ

1−δ
.

For notational simplicity, define F1 = η1

r+η1−µ1
and F2 =

η2

r+η2−µ2
. Using this notation, we construct the following

parameter regions.

I =

{

(η1, η2) > 0 : F1F2 < 1, F1 >
1 + δ

1− δ

}

,

II =

{

(η1, η2) > 0 : F1F2 ≤ 1, F1 ≤
1 + δ

1− δ

}

,

III =

{

(η1, η2) > 0 : F1F2 ≥ 1, F1 >
1 + δ

1− δ

}

,

IV =

{

(η1, η2) > 0 : F1F2 > 1, F1 ≤
1 + δ

1− δ

}

.

II

IV

I

III

µ1 − r (µ1−r)(1+δ)
2δ

η2

η1

η2 =
r−µ2
µ1−r

η1 − (r − µ2)

Fig. 1. (η1, η2) regions

It is easy to see that these four regions consist of a partition
of {(η1, η2) : η1 > 0, η2 > 0}, as shown on figure 1.

In the subsequent sections, we will show
• On Region I: Trend following gives the optimal strate-

gies with finite optimal payoff;
• On Region II: No trade is optimal if there is no initial

position; otherwise, hold the position till the first time
entering a bear market;

• On Region III: Trend following is optimal with infinite
optimal payoff. In this case, the buy and hold strategy
is also optimal.

• Finally, on Region IV: The buy and hold strategy is
optimal. Trend following on the other hand is not
optimal.

In the next few sections, we first focus on the optimality
of trend-following strategies on Region I. Then we discuss
the results on other regions.

IV. HJB EQUATIONS

In this section, we study the corresponding HJB equations.
Let A be the generator of (Xt, ζt) given by

Af(x, ζ) =
x2σ2(ζ)

2

∂2

∂x2
f(x, ζ) + xµ(ζ)

∂

∂x
f(x, ζ) +Qf(x, ·)(ζ)

where

Qf(x, ·)(ζ) =

{

η1(f(x, 2)− f(x, 1)), if ζ = 1,
η2(f(x, 1)− f(x, 2)), if ζ = 2.

Formally, the associated system of HJB equations should
have the form:















min{rv0(x, ζ)−Av0(x, ζ),
v0(x, ζ) − v1(x, ζ) + x(1 + δ)} = 0,

min{rv1(x, ζ)−Av1(x, ζ),
v1(x, ζ) − v0(x, ζ)− x(1− δ)} = 0.

(4)
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Our trend-following rule says that one should buy at the
switching times of bear-to-bull and sell at the switching
times of bull-to-bear. In terms of the market trend ζt and net
position kt, we have the following strategies. When ζt = 1,

if kt = 0, buy one share,
if kt = 1, hold the share.

When ζt = 2,

if kt = 0, stay flat,
if kt = 1, sell one share.

Therefore, vk(x, ζ) has to satisfy the following conditions
to qualify for being solutions to the HJB equations (4):















































rv1(x, 1)−Av1(x, 1) = 0,
rv0(x, 2)−Av0(x, 2) = 0,
v0(x, 1)− v1(x, 1) + x(1 + δ) = 0,
v1(x, 2)− v0(x, 2)− x(1− δ) = 0,
rv0(x, 1)−Av0(x, 1) > 0,
rv1(x, 2)−Av1(x, 2) > 0,
v1(x, 1)− v0(x, 1)− x(1− δ) > 0,
v0(x, 2)− v1(x, 2) + x(1 + δ) > 0.

(5)

From the first two equations of (5), we have


























rv1(x, 1) =
x2σ2

1

2

∂2

∂x2
v1(x, 1) + xµ1

∂

∂x
v1(x, 1)

+η1(v1(x, 2)− v1(x, 1)),

rv0(x, 2) =
x2σ2

2

2

∂2

∂x2
v0(x, 2) + xµ2

∂

∂x
v0(x, 2)

+η2(v0(x, 1)− v0(x, 2)).

(6)

Consider the case when the value functions are linear with
respect to the initial state x, i.e.

{

v1(x, 1) = A1x,
v0(x, 2) = A2x,

(7)

for some A1, A2 ≥ 0. Then by the third and fourth equations
of (5), we obtain

{

v0(x, 1) = [A1 − (1 + δ)]x,
v1(x, 2) = [A2 + (1− δ)]x.

(8)

Substitute (7) and (8) into (6) to get






















A1 =
η1[(r + η2 − µ2)(1− δ)− η2(1 + δ)]

(r + η1 − µ1)(r + η2 − µ2)− η1η2
,

A2 =
η2[η1(1− δ)− (r + η1 − µ1)(1 + δ)]

(r + η1 − µ1)(r + η2 − µ2)− η1η2
.

It is not difficult to see that these two constants are positive
on Region I. In fact, for (η1, η2) ∈ I, we have

(r + η1 − µ1)(r + η2 − µ2)− η1η2 > 0, (9)

η1(1− δ)− (r + η1 − µ1)(1 + δ) > 0. (10)

Note that r + η2 − µ2 > 0 as µ2 < 0, so (9) implies that
r + η1 − µ1 > 0. Consequently,

(r + η1 − µ1)[(r + η2 − µ2)(1− δ)− η2(1 + δ)]
= (r + η1 − µ1)(r + η2 − µ2)(1− δ)
−(r + η1 − µ1)η2(1 + δ)

> η1η2(1− δ)− (r + η1 − µ1)η2(1 + δ) (By (9))
= η2[η1(1− δ)− (r + η1 − µ2)(1 + δ)]
> 0 (By (10)).

As a result, we have the following inequality

(r + η2 − µ2)(1− δ)− η2(1 + δ) > 0, (11)

which implies A1 > 0. Similarly, under (9) and (10), it can
be shown that A1 > 1+δ. Therefore, vk(x, ζ) ≥ 0 on Region
I.

Next we show that the value functions vk(x, ζ) defined in
(7) and (8) satisfy the system of HJB equations. It suffices
to check the last four inequalities of (5). Indeed,































rv0(x, 1)−Av0(x, 1) =
[η1(1− δ)− (r + η1 − µ1)(1 + δ)]x > 0,

rv1(x, 2)−Av1(x, 2) =
[(r + η2 − µ2)(1− δ)− η2(1 + δ)]x > 0,

v1(x, 1)− v0(x, 1)− x(1− δ) = 2δx > 0,
v0(x, 2)− v1(x, 2) + x(1 + δ) = 2δx > 0,

by (9) and (10).

V. A VERIFICATION THEOREM

We give a verification theorem to show that the solution
vk(x, ζ) of the HJB equations (4) are equal to the value
functions Vk(x, ζ), and sequences of optimal stopping times
can be constructed accordingly. We need the following
lemma in the proof of the verification theorem. Recall the
jump times of ζt defined as b∗1 = inf{t ≥ 0 : ζt = 1}, s∗i =
inf{t ≥ b∗i : ζt = 2}, and b∗i+1 = inf{t ≥ s∗i : ζt = 1} for
i = 1, 2, . . .. Recall that F1 = η1

r+η1−µ1
and F2 = η2

r+η2−µ2
.

Lemma 5.1:. For each n = 1, 2, . . ., we have














Ee−rs∗nXs∗n
=

{

(F1F2)
n−1F1x if ζ0 = 1,

(F1F2)
nx if ζ0 = 2,

Ee−rb∗nXb∗n
=

{

(F1F2)
n−1x if ζ0 = 1,

(F1F2)
n−1F2x if ζ0 = 2.

Proof. Note that

Xs∗n
= Xb∗n

exp
(

∫ s∗n

b∗n

(

µ1 −
σ2
1

2

)

dt+

∫ s∗n

b∗n

σ1dWt

)

,

Xb∗n+1
= Xs∗n

exp
(

∫ b∗n+1

s∗n

(

µ2 −
σ2
2

2

)

dt+

∫ b∗n+1

s∗n

σ2dWt

)

.

We first consider the case when ζ0 = 1. In this case,
b∗1 = 0. Recall that s∗1 is an exponential random variable
with parameter η1. Moreover, let

Mu = exp
(

∫ u

0

−
σ2
1

2
dt+

∫ u

0

σ1dwt

)

.

Then, Mu is a martingale (see Elliott [Thm 13.27] [6]) and
it is independent of s∗1. It follows that, by conditioning on
s∗1,

Ee−rs∗1Xs∗1
= xη1

∫

∞

0

e−(r+η1−µ1)udu. (12)

Recall the assumption that r + η1 − µ1 > 0. We obtain
Ee−rs∗1Xs∗1

= η1x
r+η1−µ1

= F1x. Moreover, having right con-
tinuous sample paths and being Feller continuous, (Xt, ζt)
possesses the strong Markov property by virtue of Yin and
Zhu [21, p.51, Corollary 2.19]. Thus, we have

Ee−rb∗2Xb∗2
=

η1η2x

(r + η2 − µ2)(r + η1 − µ1)
= F1F2x.

7084



Continuing this way, we have
{

Ee−rs∗nXs∗n
= (F1F2)

n−1F1x,

Ee−rb∗nXb∗n
= (F1F2)

n−1x.

Similarly, if ζ0 = 2, we can show
{

Ee−rs∗nXs∗n
= (F1F2)

nx

Ee−rb∗nXb∗n
= (F1F2)

n−1F2x.

The proof is complete. �
Theorem 5.2:. Let (η1, η2) ∈ I and















v1(x, 1) = A1x,
v0(x, 2) = A2x,
v0(x, 1) = [A1 − (1 + δ)]x,
v1(x, 2) = [A2 + (1− δ)]x,

(13)

with






















A1 =
η1[(r + η2 − µ2)(1− δ)− η2(1 + δ)]

(r + η1 − µ1)(r + η2 − µ2)− η1η2
,

A2 =
η2[η1(1− δ)− (r + η1 − µ1)(1 + δ)]

(r + η1 − µ1)(r + η2 − µ2)− η1η2
.

Then, vk(x, ζ) = Vk(x, ζ), for k = 0, 1 and ζ = 1, 2.
In addition, when k = 0, let η∗0 = (b∗1, s

∗

1, b
∗

2, s
∗

2, . . .),
where the stopping times b∗1 = inf{t ≥ 0 : ζt = 1}, s∗i =
inf{t ≥ b∗i : ζt = 2}, and b∗i+1 = inf{t ≥ s∗i : ζt = 1}
for i = 1, 2, . . .. When k = 1, let η∗1 = (s∗0, η

∗

0) with s∗0 =
inf{t ≥ 0 : ζt = 2}. Then η∗0 and η∗1 are optimal.

Proof. The proof is divided into two steps. In the first
step, we show that vk(x, ζ) ≥ Jk(x,Ξk,ζ) for all Ξk,ζ . Then
in the second step, we show that vk(x, ζ) = Jk(x,Ξ

∗

k,ζ ).
Therefore, vk(x, ζ) = Vk(x, ζ) and Ξ∗

k,ζ is optimal.
It is clear that vk(x, ζ) satisfy the HJB equations (4). Using

rvk(x, ζ) −Avk(x, ζ) ≥ 0 and Dynkin’s formula, we have,
for any stopping times 0 ≤ θ1 ≤ θ2, a.s.,

Ee−rθ1vk(Xθ1 , ζθ1) ≥ Ee−rθ2vk(Xθ2 , ζθ2),

for k = 0, 1.
Recall that v0 ≥ v1−x(1+δ) and v1 ≥ v0+x(1−δ). Given
Ξk,ζ = (b1, s1, b2, s2, . . .), we have

v0(x, ζ0) ≥ Ee−rb2v0(Xb2 , ζb2) + Ee−rs1Xs1(1− δ)
−Ee−rb1Xb1(1 + δ).

Continuing this way and using the fact that vk ≥ 0, we
get

v0(x, ζ) ≥ E

N
∑

i=1

{e−rsiXsi(1− δ)− e−rbiXbi(1 + δ)}.

Sending N → ∞, we have v0(x, ζ) ≥ J0(x,Ξ0) for all
Ξ0. This implies that v0(x, ζ) ≥ V0(x, ζ). Similarly, we can
show that v1(x, ζ) ≥ V1(x, ζ).

Now we establish the equalities. It is easy to see that s∗i <
∞ and b∗i < ∞, a.s. Recall that v0(x, 1) = v1(x, 1)−x(1+δ)
and v1(x, 2) = v0(x, 2) + x(1− δ). We have

v0(x, ζ)

= Ee−rb∗1v0(Xb∗1
, ζb∗1 )

= Ee−rs∗1v0(Xs∗1
, ζs∗1 ) + E[e−rs∗1Xs∗1

(1− δ)

−e−rb∗1Xb∗1
(1 + δ)].

Continuing this way, we obtain

v0(x, ζ) = Ee−rs∗N v0(Xs∗
N
, ζs∗

N
)

+E

N
∑

i=1

[e−rs∗i Xs∗i
(1− δ)− e−rb∗i Xb∗i

(1 + δ)].

(14)
Similarly, we have

v1(x, ζ) = Ee−rs∗Nv0(Xs∗
N
, ζs∗

N
) + E[e−rs∗0Xs∗0

(1− δ)]

+E

N
∑

i=1

[e−rs∗i Xs∗i
(1− δ)− e−rb∗i Xb∗i

(1 + δ)].

Finally, it remains to show that Ee−rs∗N v0(Xs∗
N
, ζs∗

N
) → 0

as N → ∞. This follows from v0(Xs∗
N
, ζs∗

N
) = A2Xs∗

N
and

Lemma 5.1 together with the condition (r + η1 − µ1)(r +
η2 − µ2) > η1η2. This completes the proof. �

Region II:
We show in this subsection that the trend following

strategy is not optimal on Region II. This is mainly because
η1 is too large which lead to the short lived subsequent bull
markets. Let























v0(x, 1) = 0;
v0(x, 2) = 0;

v1(x, 1) =
η1(1− δ)

r + η1 − µ1
x;

v1(x, 2) = (1− δ)x.

It is direct to show that these functions solve the HJB
equations (4). Moreover, it can be shown similarly as in
Theorem 5.2 that vk(x, ζ) ≥ Vk(x, ζ). Furthermore, we
consider the following strategies: If there is no existing
position, do not trade; If the initial holding is one share,
then sell it right away in a bear market and, if in a bull
market, hold it till the end of the bull market and then sell
it. It is easy to see that the corresponding payoff is given by
vk(x, ζ). Therefore, they are indeed the value functions and
the above strategy is optimal.

Region III:

Note that on this region, F1F2 ≥ 1 and F1(1− δ)− (1 +
δ) > 0. It follows that, in view of Lemma 5.1,

J0(x, 1,Ξ
∗

0)

=

∞
∑

i=1

[

Ee−rs∗i Xs∗i
(1− δ)− Ee−rb∗i Xb∗i

(1 + δ)
]

=

∞
∑

i=1

[

(F1F2)
i−1F1(1− δ)x − (F1F2)

i−1(1 + δ)x
]

=

∞
∑

i=1

(F1F2)
i−1 [F1(1− δ)− (1 + δ)]x = ∞.

(15)
Similarly, we have

J0(x, 2,Ξ
∗

0)

=
∞
∑

i=1

[

(F1F2)
i(1− δ)x − (F1F2)

i−1F2(1 + δ)x
]

=

∞
∑

i=1

(F1F2)
i−1F2 [F1(1− δ)− (1 + δ)]x = ∞.
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Note also that Ξ∗

1 = (s∗0,Ξ
∗

0). Therefore, we have

J1(x, ζ,Ξ
∗

1) ≥ J0(x, ζ,Ξ
∗

0) = ∞.

It follows that the trend-following strategies are optimal and
Vk(x, ζ) = ∞. Also, the buy and hold strategy is optimal as
noted in §3 when F1F2 < 1. In this case the value function
V = ∞.

Region IV:

It is clear that the buy and hold is optimal on this region
and the corresponding payoff J = ∞, which in turn implies
V = ∞.

We next show that the trending following is not optimal.
Note that on this region, F1F2 > 1 and F1(1−δ)−(1+δ) ≤
0. Using (15), we have

J0(x, 1,Ξ
∗

0) =

∞
∑

i=1

(F1F2)
i−1 [F1(1− δ)− (1 + δ)]x

≤ 0.

Similarly, J0(x, 2,Ξ∗

0) ≤ 0. Moreover, the trend-following
strategy gives

J1(x, 1,Ξ
∗

1) ≤ Ee−rs∗0Xs∗0
(1− δ) =

η1x(1− δ)

r + η1 − µ1
,

J1(x, 2,Ξ
∗

1) ≤ x(1− δ).

Therefore, Jk < ∞, k = 0, 1. This means that the trend
following strategy is not optimal.

Remark 5.3: In general, a trend-following strategy re-
quires the bull markets to last long enough to be profitable.
In this paper, 1/η1 represents the expected duration of a bull
market. If η1 > (µ1 − r)(1 + δ)/(2δ) as shown in Figure 1,
then 1/η1 is too small for the trend following to be profitable.
This is very counter intuitive because even buy-and-hold will
produce greater returns (Vk(x, ζ) = ∞) on Region IV!

VI. CONCLUDING REMARKS

This paper treated a basic trend following strategy and
established regions on which the traditional trend following
can be profitable. It also identified regions with negative
returns under the trend-following strategy, which are the
regions that a trend-following investor should avoid. It would
be interesting to extend the results to incorporate more
realistic scenarios including the case of the market trends
being not completely observable and/or with possible delays,
and the case for trading a basket of stocks.
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