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Abstract— This work focuses on hybrid switching diffusion
systems. After presenting the basic models, a difficult and
fundamental problem, namely, well posedness is addressed. In
particular, continuous and smooth dependence on initial data
is treated. The main ideas are presented, whereas the verbatim
proofs can be found in [35].
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1. INTRODUCTION

Because of their wide range of applicability, hybrid switch-
ing diffusion systems have drawn growing attention espe-
cially in the fields of control and optimization recently, Such
systems are capable of describing complex systems and their
inherent uncertainty and randomness in the environment; the
formulation is versatile and provides more opportunity for
realistic modeling, but adds substantial difficulties in the
analysis. Much of the study comes from applications arising
in control engineering, manufacturing systems, estimation,
identification, and filtering, two-time-scale systems, and fi-
nancial engineering; see for example, [11], [14], [20], [21],
[22], [26], [28], [30], [37], among others. Random-switching
processes are used to model demand rate or machine capacity
in production planning, to describe the volatility changes
over time to capture discrete shifts such as market trends
and interest rates etc. in finance and insurance, and to model
time-varying parameter for network problems.

Many real world applications in the new era require com-
plex models, in which the traditional dynamic system setup
using continuous dynamics given by differential equations
alone is inadequate. For example, one of the early efforts of
using such hybrid models for options in a financial market
can be traced back to Barone-Adesi and Whaley [1], in
which both the return rate and the volatility rate of a stock
depend on a continuous-time Markov chain. For instance,
in the simplest case, a stock market may be considered
to have two “modes” or “regimes,” up and down, resulted
from the state of the underlying economy, the general mood
of investors in the market, and so on. The rationale is
that in the different regimes, the volatility and return rates
are substantially different. Introducing hybrid models makes
it possible to describe stochastic volatility in a relatively
simple manner. That is, it is much simpler than the so-called
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stochastic volatility models, which requires the augmentation
by another diffusion process to describe the volatility. Con-
sider another example of a wireless communication network.
The performance analysis of an adaptive linear multiuser
detector in a cellular direct-sequence code-division multiple-
access wireless network with changing user activity due to
an admission or access controller at the base station. Un-
der suitable conditions, an associated optimization problem
leads to a switching diffusion limit [29]. To summarize, a
center piece in the applications mentioned above is a two-
component Markov process, a continuous component and a
discrete-event component.

Because of the salient features of the coexistence of
continuous dynamics and discrete events and their interac-
tions, switching diffusions have drawn resurgent attentions.
In addition, there have been increasing demands for modeling
large-scale and complex systems, designing optimal controls,
and conducting optimization tasks. In the traditional setup,
the design of a feedback controller is based on a plant with
fixed parameters, which is inadequate when the actual system
differs from the assumed nominal model. Much effort has
been directed to the design of more “robust” controls in
recent years. Studies of hybrid systems with Markov regime
switching contribute to this end. Various regime-switching
models have been proposed and examined. The so-called
jump linear systems, widely used in engineering, have been
studied in Mariton [20]; controllability and stabilizability of
such systems are treated in Ji and Chizeck [14]. Estimation
problems are considered in Sworder and Boyd [26]. Manu-
facturing and production planning under the framework of
hierarchical structure are covered in Sethi and Zhang [21],
and Sethi, Zhang, and Zhang [22]. Financial engineering
applications and the use of hybrid geometric Brownian
motion models can be found in [30], [37], among others.
To reduce the complexity, effort has been made to deal with
hybrid systems with regime switching by means of time-
scale separation in Yin and Zhang [31]; see also [28]. Hybrid
systems have received increasing attention in recent years.
Other than the switching diffusion systems mentioned above,
one may find the formulation in somewhat different setup
in Bensoussan and Menaldi [2]. A treatment of stochastic
hybrid systems with applications to communication networks
is in Hespanha [10]. Recently, stability of hybrid switching
diffusion processes have received much attention; see, for
example, [15], [17], [19], [39], [40], [42] and the references
therein. Numerical methods for switching diffusions and
related control problems can be found in [24], [25], [27],
[38]. For references on stochastic control and controlled
Markov processes, we refer the reader to Fleming and Rishel
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[8], Krylov [16], and Yong and Zhou [36].
Although it is seemingly not much different from a

diffusion, even if the switching is a finite-state Markov
chain independent of the Brownian motion (subsequently
referred to as Markov-modulated switching diffusions), the
interactions due to the switching process makes the analysis
much more difficult. One of the main features of our recent
works [32], [33], [34], [35], [39], [40] is: A large part of
it deals with the switching component depending on the
continuous component. This is often referred to as state-
dependent switching process in what follows. For such pro-
cesses, properties as recurrence, ergodicity were considered
in Zhu and Yin [39], and strong Feller and weak stabilization
were treated in [40]. As demonstrated in Zhu, Yin, and Song
[42], in the fully degenerate case, the classical Hartman–
Grobman theorem has new twist when random switching
is considered. In any event, for state-dependent switching
diffusions, the analysis is much more difficult than that of
the Markovian-switching cases. Although the existence and
uniqueness of the solutions of switching diffusions can be
obtained [34], the well posedness turns out to much more
difficult to deal with. Here, by well posedness we refer to
the continuous and smooth dependence of initial data. The
main difficulty lies in that since the switching component
depends on the continuous component. The sample paths
of switching diffusion with different initial data on the
continuous component will be infinitely often different. In
this paper, we take up this issue and present a positive answer
to the proposed question.

The rest of the paper is arranged as follows. The mathe-
matical formulation of the switching diffusions is given next.
Then Section 3 is devoted to two main issues, namely weak
continuity and smooth dependence on the initial data (to be
more precisely on the continuous component).

2. SWITCHING DIFFUSIONS

We begin this section with some intuitive descriptions and
examples. Then we present the mathematics models.
What is a Switching Diffusion? Roughly speaking, switch-
ing diffusions are systems involve both diffusion and discrete
jumps. In our setup, the discrete events are modeled by
a finite-state process, whereas the continuous events are
diffusion like processes. Consider a switching diffusion that
consists of three diffusions sitting on three parallel plans.
The discrete event is a three-state jump process. We de-
note the pair of processes by (continuous process, discrete
event) = (X(t), γ(t)). Suppose that initially, the process
is at (X(0), γ(0)) = (x, 1). The discrete event process
sojourns in discrete state 1 for a random duration; during
this period, the continuous component evolves according to
the diffusion process specified by the drift and diffusion
coefficients associated with discrete state 1 until a jump
takes place for the discrete component. At random moment
τ1, a jump to discrete state 3 occurs. Then the continuous
component evolves according to the diffusion process whose
drift and diffusion coefficients are determined by discrete
event 3. The process wanders around in the third plan until

another random jump time τ2. At τ2, the system switches to
the second parallel plan and follows another diffusion with
different drift and diffusion coefficients and so on.

Examples of Switching Diffusion Systems. To demonstrate
the utility of the switching diffusion models, this section
provides a number of examples.

Example 2.1:. The well-known Lotka-Volterra models
concern ecological population modeling. The models have
been extensively studied in the literature. When two or more
species live in proximity and share the same basic require-
ments, they usually compete for resources, food, habitat, or
territory. Both deterministic and stochastic models of the
Lotka-Volterra systems have been studied extensively.

It has been noted that the growth rates and the carrying
capacities are often subject to environmental noise. More-
over, the qualitative changes of the growth rates and the
carrying capacities form an essential aspect of the dynamics
of the ecosystem. These changes usually cannot be described
by the traditional (deterministic or stochastic) Lotka-Volterra
models. For instance, the growth rates of some species in
the rainy season will be much different from those in the
dry season. Moreover, the carrying capacities often vary
according to the changes in nutrition and food resources.
Similarly, the interspecific or intraspecific interactions differ
in different environment.

Therefore, it is natural to consider a stochastic Lotka-
Volterra ecosystem in random environment that can be for-
mulated by use of an additional factor process. For i =
1, . . . , r, let xi(t) denote the population size of the ith
species in the ecosystem at time t. Consider the following
stochastic differential equation with regime switching

dxi(t) = xi(t)
{[
bi(γ(t))−

r∑

j=1

aij(γ(t))xj(t)
]
dt

+σi(γ(t)) ◦ dwi(t)
}
, i = 1, . . . , r,

(2.1)

where w(t) = (w1(t), . . . , wr(t))
′ is an r-dimensional

standard Brownian motion, γ(t) ∈ S = {1, . . . ,m0} is
a continuous time Markov chain describing the random
environments, and for γ ∈ S, b(γ) = (b1(γ), . . . , br(γ))

′,
A(γ) = (aij(γ)), Σ(γ) = diag(σ1(γ), . . . , σr(γ)) represent
different growth rates, community matrices, and noise inten-
sities in different external environments, respectively, and z ′

denotes the transpose of z. The above formulation is seen to
be in the form of Stratonovich. This form is often considered
to be more suitable for environmental modeling.

Regime-switching stochastic Lotka-Volterra models have
drawn much attention lately. For instance, the study of
trajectory behavior of Lotka-Volterra competition bistable
systems and systems with telegraph noises, stochastic popu-
lation dynamics under regime switching, the dynamics of
a population in a Markovian environment, the evolution
of a system composed of two predator-prey deterministic
systems described by Lotka-Volterra equations in random
environment were investigated by a host of researchers;
see [41] for an extensive list of references. In the absence
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of regime switching, the system is completely modeled
by stochastic time evolution in a fixed environment. The
results in a fixed environment correspond to ours in the case
when the Markov chain has only one state or the Markov
chain always stays in the fixed state (environment). When
random environments are considered, the system’s qualitative
behavior can be drastically different; see [41].

Example 2.2:. Consider a regime-switching linear system

ẋ(t) = A(γ(t))x(t) +B(γ(t))u(t),

where γ(t) is a continuous-time Markov chain taking values
in a finite set S = {1, . . . ,m0}, A(i) and B(i) for i ∈ S are
matrices with compatible dimensions, and u(·) is the control.
In lieu of one linear system, we have a number of systems
interconnected through the Markov chain. Such systems have
enjoyed numerous applications in emerging application areas
as financial engineering, wireless communications, as well
as in existing applications. A class of important problems
concerns the asymptotic behavior of such systems when
they are in operations for a long time. Very often, in many
engineering problems, one is more interested in the system
stability. Much interest lies in finding admissible controls
so that the resulting system will be stabilized. In [20],
stabilization for robust controls of jump linear quadratic (LQ)
control problems was treated. In [14], both controllability and
stabilizability of jump linear LQ systems were considered.
In [4], adaptive LQG problems with finite-state process
parameters were treated. Additional difficulties come when
the switching process γ(t) cannot be observed, but we can
only observe it with a noise added. That is, we can observe

dX(t) = [A(γ(t))X(t) +B(γ(t))u(t)]dt+ dw(t).

For such partially observed systems, it is natural to use
nonlinear filtering techniques. The associated filter is the
well-known Wonham filter, which is one of a handful of
finite dimensional filters in existence. Stabilization of linear
systems with hidden Markov chains were considered in [5],
[7]. In both of these references, averaging criteria were used
for the purpose of stabilization;

lim sup
t→∞

E[|X(t)|2 + |u(t)|2] <∞,

in [7], whereas stabilization under

lim sup
t→∞

1

t
E

∫ t

0

[|X(s)|2 + |u(s)|2]ds <∞

was considered in [5]. A question of considerable practical
interest is: Can we design controls so that the resulting
system will be stable in the almost sure sense. Using Won-
ham filters and converting the partial observed system to
an equivalent fully observed system, almost sure stabilizing
controls were found under the criterion

lim sup
t→∞

1

t
log |X(t)| ≤ 0 almost surely (2.2)

in [3]. The main idea lies in analyzing the sample path
properties using a suitable Liapunov function. We refer the
reader to the reference given above for further details.

Formulation. Let (Ω,G, {Gt}t≥0, P ) be a complete prob-
ability space with a filtration {Gt}t≥0 satisfying the usual
condition (i.e., it is right continuous with G0 containing all
P -null sets). Let x ∈ R

r, S = {1, . . . ,m0}, and Ψ(x) =
(ψij(x)) an m0 ×m0 matrix depending on x satisfying the
q-property, which means that for any x ∈ R

r, ψij(x) ≥ 0
for i 6= j and

∑m0

j=1 ψij(x) = 0. For any twice continuously
differentiable function h(·, i), i ∈ S, define L by

Lh(x, i) =
1

2
tr(a(x, i)∇2h(x, i))

+b′(x, i)∇h(x, i) + Ψ(x)h(x, ·)(i),
(2.3)

where ∇h(·, i) and ∇2h(·, i) denote the gradient and Hessian
of h(·, i), respectively, b′(x, i)∇h(x, i) denotes the usual
inner product on R

r, and for each i ∈ S

Ψ(x)h(x, ·)(i) =
∑

j∈S

ψij(x)(h(x, j) − h(x, i)). (2.4)

Consider a Markov process Y (t) = (X(t), γ(t)), whose
associated operator is given by L. Note that Y (t) has
two components, an r-dimensional continuous component
X(t) and a discrete component γ(t) taking values in S =
{1, . . . ,m0}.

Recall that the process Y (t) = (X(t), γ(t)) may be
described by the following pair of equations:

dX(t) = b(X(t), γ(t))dt+ σ(X(t), γ(t))dw(t),
X(0) = x, γ(0) = γ,

(2.5)

and

P{γ(t+ δ) = j|γ(t) = i,X(s), γ(s), s ≤ t}
= ψij(X(t))δ + o(δ), i 6= j,

(2.6)

where w(t) is a d-dimensional standard Brownian motion,
b(·, ·) : Rr×S 7→ R

r, and σ(·, ·) : Rr×S 7→ R
r×d satisfying

σ(x, i)σ′(x, i) = a(x, i). Note that (2.5) depicts the system
dynamics and (2.6) delineates the probability structure of
the jump process. Note that if γ(·) is a continuous-time
Markov chain independent of the Brownian motion w(·) and
Ψ(x) = Ψ or Ψ(x) = Ψ(t) (independent of x), then equation
(2.5) together with the generator Ψ or Ψ(t) is sufficient
to characterize the underlying process. As long as there is
an x-dependence, equation (2.6) is needed in delineating
the dynamics of the switching diffusion. By considering x-
dependent generator Ψ(x), our model provides more realistic
formulation allowing the switching component depending on
the continuous states. This, in turn, allows the coupling and
correlation between X(t) and γ(t).

The evolution of the discrete component or the switching
process γ(·) can be represented by a stochastic integral
with respect to a Poisson random measure p(dt, dz), whose
intensity is dt ×m(dz), where m(·) is the Lebesgue mea-
sure on R. The compensated or centered Poisson measure
µ(ds, dz) = p(ds, dz)−ds×m(dz) is a martingale measure.
We refer to [18], [23], [34] for details.

Similar to diffusions, for each ı ∈ S and each f(·, ı) ∈ C2,
a result known as generalized Itô’s lemma (see [18], [23])
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reads

f(X(t), γ(t))− f(X(0), γ(0))

=

∫ t

0

Lf(X(s), γ(s))ds+M1(t) +M2(t),
(2.7)

where L is the operator defined in (2.3), and

M1(t) =

∫ t

0

〈
∇f(X(s), γ(s)), σ(X(s), γ(s))dw(s)

〉
,

M2(t) =

∫ t

0

∫

R

[
f(X(s), γ(0) + h(X(s), γ(s), z))

−f(X(s), γ(s))
]
µ(ds, dz),

where
〈
z, y

〉
denotes the usual inner product on R

r and h
is an integer-valued function (see [34] for more details).

In view of the generalized Itô formula,

Mf (t) = f(X(t), γ(t))− f(X(0), γ(0))

−

∫ t

0

Lf(X(s), γ(s))ds
(2.8)

is a (local) martingale. Similar to the case of diffusion
processes, we can define the corresponding notion of solution
of martingale problem accordingly.

Theorem 2.3: Let x ∈ R
r, S = {1, . . . ,m0}, and Ψ(x) =

(ψij(x)) an m0 ×m0 matrix depending on x satisfying the
q-property. Consider the two-component process Y (t) =
(X(t), γ(t)) given by (2.5)–(2.6) with initial data (x, γ).
Suppose that Ψ(·) : R

r 7→ R
m0×m0 is a bounded and

continuous function, that the functions b(·, ·) and σ(·, ·)
satisfy

|b(x, γ)|+ |σ(x, γ)| ≤ K0(1 + |x|), γ ∈ S, (2.9)

for some K0 > 0 and that for every integer N ≥ 1, there
exists a positive constant MN such that for all i ∈ S and all
x, y ∈ R

r with |x| ∨ |y| ≤MN ,

|b(x, i)− b(y, i)| ∨ |σ(x, i)− σ(y, i)| ≤MN |x− y|. (2.10)

Then there exists a unique solution (X(t), γ(t)) to equation
(2.5) with given initial data in which the evolution of the
jump process is specified by (2.6).

The proof of the theorem is deemed to be well known.
For brevity, the detailed proof is omitted. Instead, we make
the following remarks. There are a number of possible
proofs. For example, the existence can be obtained as in
[23, pp. 103–104]. Viewing the switching diffusion as a
special case of a jump-diffusion process prove the existence
and uniqueness using [13, Section III.2]. Another possibility
is to use a martingale problem formulation together with
utilization of truncations and stopping times as in [12,
Chapter IV]. In [27], we proposed and analyzed a couple
of numerical approximation algorithms for approximating
solutions of switching diffusions. We showed that the in-
terpolations of the iterates converge weakly to the switching
diffusion by a martingale problem formulation. Then using
Lipschitz continuity and the weak convergence, we further
obtain the strong convergence of the approximations. As a
byproduct, we also obtained the existence and uniqueness of
the solution.

3. WEAK CONTINUITY AND SMOOTH DEPENDENCE ON
THE INITIAL DATA

A. Weak Continuity

Definition 3.1: Recall that a stochastic process Y (t) with
right continuous sample paths is said to be weakly continuous
or continuous in probability at t if for any ε > 0,

lim
δ→0

P (|Y (t+ δ)− Y (t)| ≥ ε) = 0. (3.1)

It is mean square continuous at t if

lim
δ→0

E|Y (t+ δ)− Y (t)|2 = 0. (3.2)

The process Y (t) is said to be continuous in probability in
the interval [0, T ] (or in short continuous in probability if
the interval [0, T ] is clearly understood), if it is continuous
in probability at every t ∈ [0, T ]. Likewise it is continuous
in mean square if it is continuous in mean square at every
t ∈ [0, T ].

Theorem 3.2: Suppose that the conditions of Theorem 2.3
are satisfied. Then the process Y (t) = (X(t), γ(t)) is
continuous in probability and continuous in mean square.

Idea of Proof. We first consider the case when Ψ(x) = Ψ
and γ(·) is a continuous time Markov chain independent of
the Brownian motion w(·). Note that for any t ≥ 0, γ(t) =∑m0

i=1 iI{γ(t)=i} = χ(t)(1, . . . ,m0)
′, where

χ(t) = (I{γ(t)=1}, . . . , I{γ(t)=m0}) ∈ R
1×m0 . (3.3)

Using the fact that χ(t + δ) − χ(t) −
∫ t+δ

t
χ(s)Ψds is a

martingale, we can show that |
∫ t+δ

t
χ(s)Ψds| = O(δ) and

hence E |γ(t+ δ)− γ(t)|
2
≤ δ. Then it follows that

E|(X(t+ δ), γ(t+ δ))− (X(t), γ(t))|2 → 0 as δ → 0.

Next, for the general case where γ(·) is generated by
Ψ(x), we can show that |

∫ t+δ

t
χ(s)Ψ(X(s))ds| = O(δ)

a.s. Consequently, as in the special case above, we again
have E |γ(t+ δ)− γ(t)|

2
≤ δ and hence limδ→0E|(X(t+

δ), γ(t+ δ))− (X(t), γ(t))|2 = 0.

B. Smooth Dependence on the Initial Data x

Dealing with a continuous-time dynamic systems modeled
by differential equations together with appropriate initial
data, the well-posedness is crucial. As time-honored phe-
nomena, the well-posedness appears in ordinary differential
equations, partial differential equations together with initial
and/or boundary data, stochastic differential equations, and
stochastic differential equations with Markovian switching.
A problem for the switching diffusion is well posed if there
is a unique solution for the initial value problem and the
solution continuously depends on the initial data.

Recall that a vector β = (β1, . . . , βr) with nonnegative
integer components is referred to as a multi-index. Put |β| =
β1 + · · ·+ βr, and define Dβ

x as

Dβ
x =

∂β

∂xβ
=

∂|β|

∂xβ1

1 · · ·∂xβr

r

.
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Definition 3.3: Suppose that Φ(x1, . . . , xr) is a random
function. Its partial derivative in mean square with respect
to xi for some 1 ≤ i ≤ r is defined as the random variable
Φ̃(x1, . . . , xr) such that

lim
∆xi→0

E

∣∣∣∣
1

∆xi

[
Φ(x1, . . . , xi +∆xi, . . . , xr)

−Φ(x1, . . . , xi, . . . , xr)
]
− Φ̃(x1, . . . , xr)

∣∣∣∣
2

= 0.

When the mean square partial derivative exists, we normally
write it as

Φ̃(x1, . . . , xr) =
∂Φ(x1, . . . , xr)

∂xi
= Φxi

(x1, . . . , xr).

Theorem 3.4: Assume the conditions of Theorem 2.3 with
the modification of the local Lipschitz condition replaced by
a global Lipschitz condition. Let (Xx,γ(t), γx,γ(t)) be the
solution to the system given by (2.5) and (2.6). Assume that
for each i ∈ S, b(·, i) and σ(·, i) have continuous partial
derivatives with respect to the variable x up to the second
order and that

∣∣Dβ
xb(x, i)

∣∣+
∣∣Dβ

xσ(x, i)
∣∣ ≤ K0(1 + |x|

p
), (3.4)

where K0 and p are positive constants and β is a multi-
index with |β| ≤ 2. Then Xx,γ(t) is twice continuously
differentiable in mean square with respect to x.

Idea of Proof. a.) Without loss of generality, we prove
Theorem 3.4 whenX(t) is 1-dimensional. Let δ 6= 0 be small
and denote x̃ = x+δ. Let (X(t), γ(t)) be the switching dif-
fusion process satisfying (2.5) and (2.6) with initial condition
(x, γ) and (X̃(t), γ̃(t)) be the process starting from (x̃, γ)
(i.e., (X(0), γ(0)) = (x, γ)) and (X̃(0), γ̃(0)) = (x̃, γ)
respectively).

Fix any T > 0 and let 0 < t < T . Put Ξδ(t) =

Ξx,δ,γ(t) := X̃(t)−X(t)
δ

. Then we have

Ξδ(t) = 1 + ηδ(t)

+
1

δ

∫ t

0

[b(X̃(s), γ(s))− b(X(s), γ(s))]ds

+
1

δ

∫ t

0

[σ(X̃(s), γ(s))− σ(X(s), γ(s))]dw(s),

(3.5)
where

ηδ(t) =
1

δ

∫ t

0

[b(X̃(s), γ̃(s))− b(X̃(s), γ(s))]ds

+
1

δ

∫ t

0

[σ(X̃(s), γ̃(s))− σ(X̃(s), γ(s))]dw(s).

b.) Show that

lim
δ→0

E

[
sup

0≤t≤T

|ηδ(t)|2
]
= 0. (3.6)

A crucial point is to use the technique of basic coupling of
Markov processes (see for example, the book of Chen [6, p.
11]). Let (γ(t), γ̃(t)) be a discrete random process with a

finite state space S × S such that

P
[
(γ(t+ δ), γ̃(t+ δ)) = (j, i)

∣∣

(γ(t), γ̃(t)) = (k, l), (X(t), X̃(t)) = (x, x̃)
]

=

{
ψ̃(k,l)(j,i)(x, x̃)δ + o(δ), if (k, l) 6= (j, i),

1 + ψ̃(k,l)(k,l)(x, x̃)δ + o(δ), if (k, l) = (j, i),

where δ → 0, and the matrix (ψ̃(k,l)(j,i)(x, x̃)) is the basic
coupling of matrices Ψ(x) = (ψkl(x)) and Ψ(x̃) = (ψkl(x̃))
satisfying

Ψ̃(x, x̃)f̃(k, l)

=
∑

(j,i)∈S×S

ψ(k,l)(j,i)(x, x̃)(f̃(j, i)− f̃(k, l))

=
∑

j

(ψkj(x) − ψlj(x̃))
+(f̃(j, l)− f̃(k, l))

+
∑

j

(ψlj(x̃)− ψkj(x))
+(f̃(k, j)− f̃(k, l))

+
∑

j

(ψkj(x) ∧ ψlj(x̃))(f̃ (j, j)− f̃(k, l)),

for any function f̃(·, ·) defined on S × S.
c.) For any fixed T > 0, we have

E

[
sup

0≤t≤T

∣∣∣X x̃,γ(t)−Xx,γ(t)
∣∣∣
2
]
≤ K |x̃− x|

2
, (3.7)

where K is a constant depending only on T and the global
Lipschitz and the linear growth constant K0.

d.) Let ξ(t) := ξx,γ(t) be the solution of

ξ(t) = 1 +

∫ t

0

bx(X(s), γ(s))ξ(s)ds

+

∫ t

0

σx(X(s), γ(s))ξ(s)dw(s),

(3.8)

where bx and σx denote the partial derivatives of b and σ with
respect to x, respectively. Then (3.5)–(3.7) and [9, Theorem
5.5.2] imply that

E
∣∣Ξδ(t)− ξ(t)

∣∣2 → 0 as δ → 0 (3.9)

and ξ(t) = ξx,γ(t) is mean square continuous with respect
to x. Therefore, (∂/∂x)X(t) exists in the mean square
sense and (∂/∂x)X(t) = ξ(t). Likewise, we can show that
(∂2/∂x2)Xx,γ(t) exists in the mean square sense and is
mean square continuous with respect to x. The proof of the
theorem is thus concluded.

Remark 3.5: If Ψ(x) = Ψ and γ(·) is a continuous time
Markov chain independent of the Brownian motion w(·),
then the assertions of Theorem 3.4 can be established using
essentially the same arguments as those for the counterparts
of diffusion processes (see, for example, [9]). In our setup,
however, the state-dependent-switching or the x-dependent
Ψ(x) creates much difficulty. The arguments for diffusion
processes do not work here because γ̃(t) may not equal to
γ(t) for infinitely many t > 0 even though γ̃(0) = γ(0).
Nevertheless, with the coupling method, we are able to show
(3.6), which is a key step in the proof of Theorem 3.4.
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As a by-product of Theorem 3.4, we can show that the
possibly degenerate initial value problem (3.10)–(??) has a
classical solution.

Theorem 3.6: Assume the conditions of Theorem 3.4. In
addition, suppose that |Ψ(x)| ≤ K for all x ∈ R

r and some
K > 0, that η(·, i) ∈ C2 with Dθ

xη(·, i) being Lipschitz
continuous for each i ∈ S and multi-index θ with |θ| = 2,
and that

∣∣Dβ
xη(x, i)

∣∣ ≤ K(1 + |x|
p
), where K and p are

positive constants and β is a multi-index with |β| ≤ 2. Then
the function v defined by v(t, x, i) := Ex,i[η(X(t), γ(t))]
is continuously differentiable w.r.t. the variable t and twice
continuously differential w.r.t. the variable x. Moveover, v
satisfies the system of Kolmogorov backward equations

∂v(t, x, i)

∂t
= Lv(t, x, i), (t, x, i) ∈ (0, T ]× R

r × S,

lim
t↓0

v(t, x, i) = η(x, i), (x, i) ∈ R
r × S,

(3.10)
where Lv(t, x, i) in (3.10) is to be interpreted as L applied
to the function (x, i) 7→ v(t, x, i).

4. FURTHER REMARKS

After providing an overview of certain features and ex-
amples of switching diffusion processes, we examined the
smooth dependence on the initial data of the switching dif-
fusions, which is part of the fundamental issue of well posed-
ness. These results are important for control systems. They
can be used in control design, optimality seeking, wireless
communication networks, stabilization and destabilization of
controlled systems, financial engineering applications.
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