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Abstract— Modeling and control of networked feedback
systems are studied in this paper. Motivated by the two-port
circuit theory, new network models are proposed which take
inter-channel interference into consideration. Quadratic
stability and stabilization are employed to study stability of
the closed-loop system over the networked channel leading
to the framework of H∞ control. This paper will focus
on formulation for networked stabilization in presence
of the uncertainties induced by imperfect channels and
quantization errors.

I. INTRODUCTION

Networked feedback control (NFC) has received great
attention recently, witnessed by the special issues in
[1], [2] and ever-increasing volume of research papers
in archival journals and professional conferences. While
many research results exist, this paper is motivated by
feedback control under limited information as pioneered
in [8], [10], [20]. Most of the existing work in this
problem area focuses on derivation of bounds [3], [4],
[12], [13], [14], [19] on the minimal data rate required
to stabilize an NFC system. See also [4], [11], [15], [16],
[17], [18] and references therein.

An NFC system differs from the traditional feedback
system in the presence of a network between the plant
and controller, which serves as the communication media
and can be wireless. Because of the bandwidth limit
and because of the channel fading, information exchange
between the plant and controller is not only limited
but also distorted. How to mitigate the information loss
and distortion has been a challenging issue in design
of NFC systems. A simple solution is to increase the
network resource including bandwidth and signal-to-
noise ratio (SNR). However perfect information exchange
requires infinite network resource that is unrealistic. A
more sophisticated solution is to design the feedback
control law capable of tolerating uncertainties induced
by imperfect channels and quantization errors. The latter
gives rise to the following two research problems. The
first is how to model the network employed in NFC
systems, and the second is the characterization of the
minimum network resource for a given NFC system.
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We are particularly attracted to the resemblance of the
communication network in the NFC system to the two-
port network of electric circuits. Indeed both are used
“over a distance” and admit the same external structure.
While the two-port circuit network models the trans-
port of energy, the communication network serves the
information exchange. For this reason we propose to use
two-port descriptions from the circuit theory [6], [7],
[9] in modeling the communication network between the
plant and controller. Specifically the limited and distorted
information will be modeled by the ideal channel or
network corrupted by nonlinear and time-varying per-
turbations. In fact four different network models will
be proposed to characterize the uncertainties induced by
imperfect channels and quantization errors, which are
parallel to those in the two-port circuit network. In this
paper we consider deterministic perturbation as the first
attempt. By restricting perturbations to sector bounded
uncertainty, we are able to develop an independent theory
and provide solution methods based on H∞ control for
design of multi-input/multi-output (MIMO) NFC systems
under output feedback control. Our work provides the
characterization of the network resource in terms of the
stability margin.

This paper will begin with the two-port circuit theory
in Section 2 and introduce the notion of stability margin
in connection with the network resource. In Section 3 new
network models are proposed to classify the uncertainties
induced by imperfect channels and quantization errors.
The paper will be concluded in Section 4. The notation
adopted in this paper is standard and will be introduced
as we proceed.

II. A TWO-PORT APPROACH

NFC systems are large scale distributed systems in
which the information exchange between subsystems is
via communication networks. There are many different
formulations for networked control problems. One basic
setup is shown on left of Fig. 1.
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Fig. 1 NFC system (left) and two-port network (right)
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The difference between this configuration and the stan-
dard feedback system lies in the presence of a network
between the plant and the controller. The information
exchange between the plant P and controller K is
via the communication network. In general, the up-link
transmission from y to w, and the down-link transmission
from v to u may use the same network. Hence there exists
interference between the up-link and down-link channels.
The networked control aims at design of a stabilizing
controller so that the feedback control system performs
satisfactorily.

A natural question arises: how can we model the
communication network connecting the two? This has
been an unsettled issue for a long time. Since the external
structure of the communication network has a remarkable
resemblance to a two-port electrical circuit network, used
for transport of energy, as shown on right of Fig. 1, we
propose to use two-port descriptions in the circuit theory
to model the communication network between the plant
and controller. Another similarity of an electrical two-
port and the communication network in an NFC system
is that both are often used “over a distance”: the former
is often used to model a transmission line for distance
energy transport while the latter is often used for remote
information exchange, which provides a justification.

The study of electrical two-ports is now standard in
circuit theory. See textbooks [6], [7], [9] and handbook
[5]. An electrical two-port has four external variables,
which are two port currents I1(s), I2(s) and two port
voltages V1(s), V2(s), represented in the s-domain under
Laplace transform. These variables are not completely
independent but rather related, dependent on the internal
structure of the circuit. Assume linear and time-invariant
(LTI) circuits. Then the relationships of these variables
may be represented in several different ways. We restrict
to only those of the two-port applicable to modeling
the communication network in this paper, although other
representations can also be potentially useful.

The first is the admittance description. If we set the
port voltages V1(s) and V2(s) as independent variables,
the port currents I1(s) and I2(s) can be expressed as[

I1(s)
I2(s)

]
=

[
Y11(s) Y12(s)
Y21(s) Y22(s)

][
V1(s)
V2(s)

]
,

where Y (s) = [ Yij(s) ]
2,2
i,j=1,1 is called the admittance

matrix or the Y -matrix. The elements of Y (s) are called
admittance parameters or Y -parameters.

The second is the impedance description. If we set the
port currents I1(s) and I2(s) as independent variables,
the port voltages V1(s) and V2(s) can be expressed as[

V1(s)
V2(s)

]
=

[
Z11(s) Z12(s)
Z21(s) Z22(s)

][
I1(s)
I2(s)

]
,

where Z(s) = [ Zij(s) ]
2,2
i,j=1,1 is called the impedance

matrix or the Z-matrix. The elements of Z(s) are called
impedance parameters or Z-parameters. Apparently, there
holds Y (s)−1 = Z(s).

The third is the Transmission A-matrix description. If
we consider port 1 and port 2 as the output port and the
input port respectively, and set the input port variables
V2(s) and I2(s) as independent variables, then the output
port variables V1(s) and I1(s) can be expressed as[

V1(s)
I1(s)

]
=

[
A11(s) A12(s)
A21(s) A22(s)

][
V2(s)
I2(s)

]
,

where TA(s) = [ Aij(s) ]
2,2
i,j=1,1 is called transmission

A-matrix. The elements of TA(s) are called transmission
A parameters.

The final one is the Transmission B-matrix description.
If we reverse the position of the input port and output
port, then V1(s) and I1(s) become independent variables,
and V2(s) and I2(s) can be expressed as[

V2(s)
I2(s)

]
=

[
B11(s) B12(s)
B21(s) B22(s)

][
V1(s)
I1(s)

]
,

where TB(s) = [ Bij(s) ]
2,2
i,j=1,1 is called transmission

B-matrix. The elements of TB(s) are called transmission
B parameters. Apparently, there holds TB(s) = TA(s)

−1.
Coming back to the communication network in Fig.

1, we name the two ports in the network as the con-
troller port and the plant port. Each port has an input
variable and an output variable. Here we need to have
several leaps of faith. First, we will deal with discrete-
time systems instead of continuous-time circuits. So
the frequency domain is now z-domain instead of s-
domain. Secondly, since we will deal with nonlinear and
stochastic parameters, it will be more convenient for us to
work in the time domain. Thus the elements of the Y , Z ,
TA, and TB matrices become operators on discrete-time
signal spaces. Thirdly, the port variables are vector-valued
and no longer voltages and currents. We will analogously
treat the input variables v and y as voltages and the output
variables u and w as currents. After the translation, we
obtain the descriptions of the communication network as[

w
u

]
= Y

[
v
y

]
,

[
v
y

]
= Z

[
w
u

]
, (1)[

v
w

]
= TA

[
y
u

]
,

[
y
u

]
= TB

[
v
w

]
. (2)

In the ideal situation, the network transmits signals faith-
fully and instantaneously, yielding u = v and w = y.
Let m and p be dimension of u and y, respectively. This
means that nominally, the Y -matrix, Z-matrix, A-matrix,
B-matrix all take trivial values

Y0 = TB0 =

[
0 Ip
Im 0

]
, TA0 = Z0 =

[
0 Im
Ip 0

]

2388



where Ik is the identity matrix of size k. In practice,
transmission errors and interference occur. We deem the
errors and interferences as generated by perturbations on
the Y , Z , TA, and TB matrices, giving rise to

Y = Y0 +Δ, Z = Z0 +Δ,
TA = TA0 +Δ, TB = TB0 +Δ.

(3)

By partitioning Δ compatibly, the above gives rise to the
same form of channel representation:

JΔ =

[
0 I
I 0

]
+Δ =

[
Δ11 I +Δ12

I +Δ21 Δ22

]
(4)

where Δ12 and Δ21 are used to model the transmission
distortion and Δ11 and Δ22 are used to model the inter-
channel interference. Although we use the same symbol
Δ to denote the perturbation of the four matrices, it has
different physical meanings when it is used in association
with the different two-port descriptions and it enters the
networked system in different ways. We will develop a
parallel theory for all these descriptions. The user will
need to make a choice of which description to use as
his/her model based on the understanding of the network
under consideration. In this paper we focus on deter-
ministic modeling of the network channel, and assume
that the perturbation Δ as a double-input/double-output
(DIDO) possibly nonlinear, time-varying, and dynamic
system with norm bound

‖Δ‖∞ := sup
‖s‖2 �=0

‖Δs‖2
‖s‖2 ≤ δ,

‖s‖2 :=

( ∞∑
t=0

‖s(t)‖2
)1/2

,

(5)

for some δ > 0 where s(t) has dimension m + p with
time t integer valued, and ‖ · ‖ denotes the Euclidean
norm.

The aforementioned four network models are impor-
tant because they not only describe the network chan-
nel, but also characterize the loss and distortion of the
information exchange between the plant and controller.
Moreover they provide a rough measure to the network
resource through δ−1 with δ the norm bound in (5).
Roughly speaking, large δ−1 (i.e., small δ) implies more
network resource at the expense of high SNR and large
bandwidth in transmission and receiving of signals, while
small δ−1 (i.e., large δ) implies less network resource
consumed. Network control aims at design of a controller
K(z) that stabilizes the underlying networked feedback
system in Fig. 1 for the network model in which Δ is
bounded by δ > 0 as in (5). Because of the scarce of
the network resource, there is an incentive to maximize
the norm bound δ subject to stability of the NFC system.
The associated maximum, denoted by δmax, is termed
stability margin. The following small gain result is now
well known [21].

Lemma 1 Consider the feedback system in Fig. 2 where
the transfer matrix T (z) represents an LTI system and Δ
represents a linear/nonlinear and time varying dynamic
system. Denote σ(·) the maximum singular value. Then
the feedback system is stable for all possible Δ satisfying
the norm bound in (5), if and only if ‖T ‖H∞ :=
sup
|z|>1

σ[T (z)] < δ−1.

T (z)

Δ�

�
e(t) d(t)

Fig. 2 Block diagram of the feedback system

III. NETWORK MODELS AND THEIR ANALYSIS

Under the two-port approach, the NFC system admits
the following block diagram:

P (z)K(z) w(t)

v(t) u(t)

y(t)
Network

Channel

� �

��

Fig. 3 NFC system as a two-port network

In the ideal case of no channel distortion or the channel
having unlimited bandwidth,[

w(t)
u(t)

]
=

[
0 I
I 0

] [
v(t)
y(t)

]
=: J0

[
v(t)
y(t)

]
. (6)

When distortion is present, the nominal channel gain J0
is assumed to be perturbed to ĴΔ(t) that is time-varying
and represented by a lower linear fractional transform
(LFT) ĴΔ(t) = F�(J,Δt), i.e.,

ĴΔ(t) = J11 + J12Δt(I − J22Δt)
−1J21 (7)

where σ(Δt) ≤ δ for some δ > 0 at each time t. The
nonlinearity and dynamics of Δt are removed to simplify
the presentation, but our results in this paper hold for the
general case. The unstructured form of Δt is attributed
to the interference between input and output channels of
the plant/controller. The matrix J is specified by

J =

[
J11 J12
J21 J22

]
, J11 = J0. (8)

This section aims to derive the expression of J for the
LFT in (7) under four different two-port descriptions
proposed in (1) and (2), and analyze their corresponding
network models.
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The distorted channel and the plant/controller form a
closed-loop. Denote q as the unit advance operator. On
one hand the forward path can be described by[

v(t)
y(t)

]
= H(q)

[
w(t)
u(t)

]
,

H(z) = diag[K(z), P (z)].

(9)

On the other hand the feedback path is described by[
w(t)
u(t)

]
=

[
Ĵ11(Δ) Ĵ12(Δ)

Ĵ21(Δ) Ĵ22(Δ)

] [
v(t)
y(t)

]
(10)

where ĴΔ :=
[
Ĵij(Δ)

]
is partitioned compatibly with

J0. See the illustration in the next figure.

�[
w(t)
u(t)

] H(z)

ĴΔ(t)
�

[
v(t)
y(t)

]

Fig. 4 Two port network as single feedback loop

It follows that feedback stability amounts to stability and
invertibility of (I − ĴΔH) that is not easy to study, if
ĴΔ is nonlinear and time-varying. By recalling ĴΔ(t) in
(7), the above figure can be converted equivalently to the
next block diagram:

H(z) [
v(t)
y(t)

][
w(t)
u(t)

]
J

d(t)e(t)

�

�

Δ�

�

Fig. 5 Equivalent LFT feedback system

As a result Δ can be isolated by defining an upper LFT
T (z) = Fu[J,H(z)], i.e.,

T (z) = J22 + J21H(z)[I − J11H(z)]−1J12 (11)

that is the transfer matrix from d(t) to e(t). As such the
feedback loop in Fig. 4 is equivalent to the one in Fig. 2
of Section 2. Hence if T (z) is stable, then the two port
network is stabilized, if and only if ‖T ‖H∞ < δ−1, in
light of Lemma 1, in the case of nonlinear/dynamic Δt.

If K(z) in Fig. 3 is kept intact in the feedback path,
and P (z) and Δt are lumped together to form a perturbed
plant, then the uncertain plant for Fig. 3 is found to be

PΔ = F�(ĴΔ, P ) = Ĵ11 + Ĵ12P (I − Ĵ22P )−1Ĵ21 (12)

where ĴΔ as partitioned in (10) is compatible with that
of J in (8), yielding the feedback loop (a) in Fig. 6.

�PΔ(z)

K(z) �

v(t) w(t) Δt

G(z)

K(z)

(b)(a)

w(t)

�
�

�

�

d(t)

v(t) e(t)

Fig. 6 Equivalent LFT in alternative forms

Because ĴΔ is fractional of Δt, PΔ(z) is fractional of
Δt as well. That is, there exists G(z) = [ Gij(z) ]

2,2
i,j=1,1

that is a function of P (z) such that

PΔ(q) = G22(q) +G21(q)Δt[I −G11(q)Δt]
−1G12(q),

or PΔ(q) = Fu[G(q),Δt]. A controller K(z) can then
be synthesized such that T (z) = F�[G(z),K(z)], i.e.,

T = G11 +G12K[I −G22K]−1G21 (13)

is internally stable that in turn leads to the feedback
system in Fig. 2. It should be clear that the above
T (z) is identical to the one in (11). Thus quadratic
stability is again ensured by the condition ‖T ‖H∞ < δ−1.
The maximum of the channel distortion bound δ under
stability constraint is the same as the stability margin
δmax leading to H∞ optimal control.

In the rest of this section we will derive the network or
channel models corresponding to the four different two-
port descriptions in (1) ∼ (4).

Case 1 Admittance description: The channels involve
additive distortion by (1) and (3). Thus

ĴΔ = J0 +Δ =

[
Δ11 I +Δ12

I +Δ21 Δ22

]
. (14)

The feedback system over additively distorted channels
is illustrated in Fig. 7 next.

P (z)

Δ22

K(z)

Δ21

��
u(t)
�

Δ11

y(t)

�

Δ12
�

�

�

�� �

v(t) w(t)

�

�

�

�

Fig. 7 NFC system under admittance description
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The presence of (Δ11,Δ22) represents the interference
between the input/output channels of the plant/controller
or inter-channel interference. To write ĴΔ in form of LFT
in (7), we identify

J11 = J0, J12 = I, J21 = I, J22 = 0. (15)

The channel distortion in Case 1 can be motivated by
logarithmic quantization at both the input and output of
the plant which induces multiplicative error. Specifically
if interferences between input and output channels of the
plant are ignored, then Δ11 = 0, Δ22 = 0.

To compute T (z) in (11), we note that J11 = J0. Direct
calculation shows that

T = H

[
(I − PK)−1 P (I −KP )−1

K(I − PK)−1 (I −KP )−1

]
. (16)

Denoting T (z) by T1(z) to signify Case 1 yields

T1 =

[
K(I − PK)−1 KP (I −KP )−1

PK(I − PK)−1 P (I −KP )−1

]
. (17)

Networked stabilization requires

σ(Δt)‖T1‖H∞ ≤ δ‖T1‖H∞ < 1.

In Case 1, the equivalently perturbed plant PΔ(z) is
given by PΔ(z) = F�(ĴΔ, P ), leading to

PΔ = Δ11 + (I +Δ12)P (I −Δ22P )−1(I +Δ21)

It can be verified that PΔ(z) = Fu[G(z),Δ] with

G(z) =

[
G11 G12

G21 G22

]
=

⎡⎣ 0 0 I
0 P P
I P P

⎤⎦ . (18)

v(t)

y(t)
P (z)

Δ22

K(z)
w(t)

�

�

�
�

Δ21

�

Δ11

�
Δ12

�

�� �

�

�

�

u(t)
�

Fig. 8 NFC system under impedance description

Case 2 Impedance description: Channels involve feed-
back distortion. By (1) and (3),

ĴΔ = (J0 +Δ)−1 = J0 − J0Δ(I + J0Δ)−1J0, (19)

by J−1
0 = J0. Clearly with

J =

[
J11 J12
J21 J22

]
=

[
J0 −J0
J0 −J0

]
,

the LFT form in (7) holds. The NFC system over chan-
nels with feedback distortion is illustrated in Fig. 8 where
Δ11 and Δ22 are the inter-channel interference.

To compute the corresponding T (z) in (11), denoted
by T2(z), note that J0 = J3

0 . Therefore T2(z) = −J3
0 −

J0T1(z)J0 = −J0(J0 + T1)J0, leading to

T2 = −
[

P (I −KP )−1 (I − PK)−1

(I −KP )−1 K(I − PK)−1

]
. (20)

In upper LFT form, PΔ(z) = Fu[G(z),Δ] with

G(z) =

[
G11 G12

G21 G22

]
=

⎡⎣ 0 I I
I P P
I P P

⎤⎦ . (21)

Case 3 Transmission A description: The relations in (2)
and (3) can be brought to[

w(t)
u(t)

]
= ĴΔ(Δ)

[
v(t)
y(t)

]
, ĴΔ(Δ) = F�(J,Δ).

By straightforward calculation, ĴΔ(Δ) is obtained as

ĴΔ =

[
Δ22

I

]
(I +Δ12)

−1
[
I −Δ11

]
+

[
0 I +Δ21

0 0

]
. (22)

The above identifies the LFT representation ĴΔ(Δ) =
F�(J,Δ) by J11 = J21 = J0 and

J12 =

[
0 I
−I 0

]
, J22 = −

[
0 0
I 0

]
.

See Fig. 9 next.

v(t)

y(t)
P (z)

Δ11

K(z)
w(t)

�
�

�

Δ12

�
�

u(t)
�

Δ22

�Δ21

���

�

�

�

�

Fig. 9 NFC system under transmission A description

We use (17) to compute T (z) in (11), denoted by T3(z) :

T3 = −
[

0 0
−I 0

]
+

[
0 I
I 0

]
T1

[
0 I
−I 0

]
=

[
P
I

]
(I −KP )−1

[ −I K
]
. (23)

Let P = NM−1 be right coprime factorization. The
equivalently perturbed plant in (12) can be written as

PΔ = Ĵ11 + Ĵ12N(M − Ĵ22N)−1Ĵ21.

By the expressions in (22) and after lengthy calculation,
we obtain PΔ = NΔM

−1
Δ , specified by

PΔ = (Δ11 + (I +Δ12)P ) (Δ22P + I +Δ21)
−1

.
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In upper LFT form, PΔ(z) = Fu[G(z),Δ] with

G(z) =

[
G11 G12

G21 G22

]
=

⎡⎣ −P 0 P
−I 0 I
−P I P

⎤⎦ . (24)

If the interference is ignored or Δ11 = 0 and Δ22 = 0,
then PΔ = (I +Δ12)P (I +Δ21)

−1.

Case 4 Transmission B description: We have[
w(t)
u(t)

]
= ĴΔ(Δ)

[
v(t)
y(t)

]
, ĴΔ(Δ) = F�(J,Δ),

by (2) and (3) where ĴΔ(Δ) is obtained as

ĴΔ =

[
I

Δ22

]
(I +Δ12)

−1
[ −Δ11 I

]
+

[
0 0

I +Δ21 0

]
. (25)

�

w(t)v(t)

Δ22

�
�Δ12

�
��

Δ11

y(t)u(t)��
Δ21

�

�K(z)

�

� �P (z)�

Fig. 10 NFC system in transmission B description

For the corresponding NFC system illustrated above,
ĴΔ = F�(J,Δ) is specified by J11 = J0, J21 = I , and

J12 =

[ −I 0
0 I

]
, J22 = −

[
0 0
I 0

]
.

It follows that T4(z), to signify Case 4, is given by

T4 = −
[

0 0
I 0

]
+ T1(z)

[ −I 0
0 I

]
(26)

=

[
K
I

]
(I − PK)−1

[ −I P
]
. (27)

To compute the equivalently perturbed plant, let P =
M̃−1Ñ be left coprime factorization. The equivalently
perturbed plant as given in (12) can be written as

PΔ = Ĵ11 + Ĵ12(M̃ − Ñ Ĵ22)
−1Ñ Ĵ21 = M̃−1

Δ ÑΔ.

After length calculation and noting P = M̃−1Ñ lead to

PΔ = (I +Δ12 − PΔ22)
−1 (P (I +Δ21)−Δ11)

In upper LFT form, PΔ = Fu(G,Δ) with

G =

[
G11 G12

G21 G22

]
=

⎡⎣ 0 0 I
−I P P
−I P P

⎤⎦ . (28)

IV. CONCLUSION

NFC systems are investigated in this paper focusing on
network or channel modeling, and problem formulation
under H∞ framework. Due to the page limit, the H∞
solution to the networked stabilization problem as formu-
lated in this paper will be presented elsewhere. Although
only deterministic channel distortions are considered, our
framework can be adapted easily to accommodate the
stochastic ones such packet drop etc.
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